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Background: Non-small cell lung cancer, comprising lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma, is one of the leading causes of

cancer-related mortality. Pyroptosis is a new form of programmed cell death

involved in cancer development. The relationship between LUAD and

pyroptosis is unclear. This research aims to investigate this relationship and

develop a stratified clinical model based on pyroptosis-related genes (PRGs).

Methods: We analyzed the data of LUAD from The Cancer Genome Atlas

(TCGA) and evaluated the expression of 48 PRGs to identify the differentially

expressed genes. Then, constructing the risk model using the least absolute

shrinkage and selection operator and the Cox regression method to find the

gene signatures. The functional enrichment, immune cell infiltration, tumor

mutational burden (TMB), and expression of immune checkpoints were

compared to investigate the potential mechanism. The IC50 of common

drugs was evaluated and compared. The inflammasome activation assay and

lactate dehydrogenase (LDH) assay of NLR-family CARD-containing protein 4

(NLRC4) were also performed to confirm the role of pyroptosis in LUAD.

Results: The pyroptosis-related model accurately predicted the prognosis of

patients with LUAD, with the low-risk group exhibiting a higher survival

probability. The risk score was an independent prognostic factor for survival.

The stratified patients exhibited distinct tumor microenvironments, TMB, and

drug sensitivity. The validation experiments of NLRC4 confirmed its role in

inducing pyroptosis via promoting IL-1 maturation.

Conclusion: PRGs regulated the tumor microenvironment and influenced the

outcome of LUAD. NLRC4 may function as a hub gene in the process of LUAD.
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Introduction

Lung cancer is the leading cause of cancer-related mortality

worldwide, with 1.8 million newly diagnosed cases and

1.6 million deaths per year (Bray, et al., 2018). More than 85%

of patients with lung cancer are diagnosed with non-small cell

lung cancer (NSCLC), with lung adenocarcinoma (LUAD) and

lung squamous cell carcinoma being the most common subtypes

(Duma, et al., 2019). Numerous studies have been conducted on

the strategies against lung cancer, leading to a significant decrease

in mortality and an increase in survival due to advances in

diagnosis and treatment. For those tissue biopsies might not

be technically feasible can take liquid biopsies, detect ctDNA in

plasma, and obtain molecular information (Thai, et al., 2021).

With the advent of novel technologies such as next-generation

sequencing, lung cancer treatment has entered the molecular era,

the development of target therapy and immunotherapy have

marked a turning point in cancer treatment. Early clinical trials

with these therapies revealed rapid and long-lasting responses in

14%–20% of patients with pretreated advanced NSCLC (Wu,

et al., 2020). Although great progress has been made in this field,

significant obstacles remain: the mechanism of target therapy

resistance; the treatment for rare somatic activating oncogene

mutations; as well as the biomarkers to predict the response of

anti-cancer therapy (Hirsch, et al., 2017). During the past decade,

although the discovery of predictive biomarkers has created new

therapeutic opportunities with targeted therapy and

immunotherapy, there are still many limitations. Programmed

death-ligand 1 (PD-L1) is a predictive biomarker used to guide

treatment decisions for its expression is associated with an

increased likelihood of response to programmed death-1 (PD-

1) pathway blockade, but responses to immune checkpoint

inhibitors (ICIs) can also be seen in patients with no tumor

PD-L1 expression. High tumor mutational burden (TMB) might

be predictive of response to ICIs without any prospective

validation. Moreover, the mutation of on- and off-target

resistance has not been solved successfully, which needs

further investigation for better clinical practice (Thai, et al.,

2021). Thus, new biomarkers need to be urgently discovered

to learn more about the pathogenesis of LUAD so that new

targets can be developed.

According to the prevailing opinion, the 10 hallmarks of

cancer lead to cancer initiation and progression (Hanahan and

Weinberg, 2011). Among these, the ability to resist cell death

and escape immunological damage was discussed in this

study. Cell death is a physiological process that regulates

cell proliferation, stress response, and immunological

response, as well as inhibits tumor growth. Besides

apoptosis and necrosis, autophagy, anoikis, and pyroptosis

were also described (Fernandes-Alnemri, et al., 2007).

Pyroptosis is an inflammatory form of programmed cell

death initiated by caspase 1/4/5/11. It is triggered by

certain inflammasomes and results in cell swelling, plasma

membrane lysis, chromatin fragmentation, and releasing of

intracellular proinflammatory components (Fang, et al.,

2020). Recent scientific advances have led to the

identification of numerous genes as essential regulators of

pyroptosis. The relationship between cancer and pyroptosis is

intricate. Paclitaxel and cisplatin triggered pyroptosis in

A549 via the caspase 3/gasdermin E (GSDME) pathway;

the effectiveness was associated with the expression of

GSDME (Zhang, et al., 2019). However, another study

revealed that GSDME was associated with radioresistant

lung cancer cells, and its expression was indicative of a

poor prognosis for LUAD (Wei, et al., 2020). Apart from

its prognostic value, pyroptosis increases the immunological

defenses of the host and contributes to the release of tumor

antigens, a previous study demonstrated that pyroptosis

stimulated the activation of CD8+ T lymphocytes and

inhibited tumor growth and migration (Tang, et al., 2020).

Available evidence indicates that pyroptosis plays an

essential but complex role in tumors. Less attention has

been paid to its precise mechanism in LUAD, particularly

the impact of the hub genes on the microenvironment and

anti-cancer immunity. With new technology, the appropriate

treatment based on the gene expression pattern to optimize

therapeutic benefits has developed. In this study, we examined

the expression pattern of pyroptosis-related genes (PRGs) in

LUAD, assessed their clinical utility, investigated the

relationship between pyroptosis and TME, and provided

therapeutic suggestions. We also explored the role of NLR-

family CARD-containing protein 4 (NLRC4) in LUAD to find

a new biomarker or therapeutic target.

Materials and methods

Dataset collection and processing

The LUAD mRNA sequencing data and corresponding

clinical data up to 29 April 2022, were obtained from The

Cancer Genome Atlas (TCGA) website (https://portal.gdc.

cancer.gov). The gene expression profiles were normalized

using the “limma” package. 48 PRGs were extracted from the

previous study (Wang, et al., 2021). Their information is shown

in Table 1. Figure 1 illustrates the complete workflow of the

study.

Identification of differentially expressed
PRGs

The differentially expressed genes (DEGs) were extracted

based on RNA expression between the normal and tumor

samples in the entire cohort. The following criteria were used:

|logFC| >0.5 and FDR <0.05. The “pheatmap” package was
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TABLE 1 Differences in expression of pyroptosis-related genes between LUAD and normal samples.

Gene symbol Full name logFC p FDR

AIM2 Absent in melanoma 2 2.956308 7.49E-15 3.00E-14

CARD8 Caspase recruitment domain-containing protein 8 −0.43852 2.48E-11 7.94E-11

CASP1 Caspase 1 −0.7689 2.17E-17 1.16E-16

CASP3 Caspase 3 0.857751 5.28E-26 8.44E-25

CASP4 Caspase 4 0.300571 0.003537 0.005305042

CASP5 Caspase 5 −1.17359 6.90E-20 5.52E-19

CASP6 Caspase 6 1.078872 3.68E-29 8.83E-28

CASP8 Caspase 8 0.563998 1.51E-13 5.56E-13

DDX3X DEAD-box helicase 3 X-linked −0.31273 2.68E-06 6.13E-06

GBP1 Guanylate binding protein 1 −0.14397 0.000133 0.000246347

GBP2 Guanylate binding protein 2 0.272685 0.860409 0.860408749

GBP5 Guanylate binding protein 5 0.732585 0.081692 0.095639142

GSDMA Gasdermin A 1.113508 1.82E-05 3.64E-05

GSDMB Gasdermin B 1.851111 4.64E-19 3.18E-18

GSDMC Gasdermin C 2.735457 2.13E-15 9.30E-15

GSDMD Gasdermin D 0.297322 0.009873 0.013539723

GSDME Gasdermin E 0.677512 0.013544 0.018058017

GZMA Granzyme A 0.155768 0.044481 0.054745779

GZMB Granzyme B 0.117265 0.006247 0.008819273

HMGB1 High mobility group box 1 −0.10315 0.000176 0.000313767

IFI16 interferon γ-inducible protein 16 0.649383 0.000206 0.000352345

IL18 Interleukin 18 −0.2668 0.000113 0.00021771

IL1B Interleukin 1β −0.83492 6.83E-13 2.34E-12

IRF1 Interferon regulatory factor 1 −0.50135 1.76E-07 4.45E-07

IRF2 Interferon regulatory factor 2 −0.09168 0.014351 0.018616998

IRF8 Interferon regulatory factor 8 −0.83976 1.29E-15 6.18E-15

MEFV Mediterranean fever −1.50059 2.85E-25 3.43E-24

NAIP neuronal apoptosis inhibitor protein −0.0802 0.004813 0.007001444

NEK7 NIMA-related kinase 7 −0.75799 5.68E-22 5.45E-21

NLRC3 NOD-like receptor family CARD domain containing 3 −0.03511 0.048797 0.058556187

NLRC4 NOD-like receptor family CARD domain containing 4 −1.89292 1.90E-32 9.11E-31

NLRC5 NOD-like receptor family CARD domain containing 5 0.459784 0.028978 0.036603825

NLRP1 NOD-like receptor (NLR) family pyrin domain-containing 1 −0.31658 9.75E-06 2.03E-05

NLRP12 NOD-like receptor (NLR) family pyrin domain-containing 12 −0.35668 2.91E-08 8.22E-08

NLRP2 NOD-like receptor (NLR) family pyrin domain-containing 2 1.315508 0.652115 0.665990211

NLRP3 NOD-like receptor (NLR) family pyrin domain-containing 3 −0.67298 5.87E-08 1.57E-07

NLRP6 NOD-like receptor (NLR) family pyrin domain-containing 6 0.307339 0.236802 0.258329677

NLRP7 NOD-like receptor (NLR) family pyrin domain-containing 7 2.136525 5.36E-07 1.29E-06

NLRP9 NOD-like receptor (NLR) family pyrin domain-containing 9 0.665345 0.095985 0.109697104

NOD1 Nucleotide-binding oligomerization domain-containing protein 1 −0.25127 3.69E-06 8.05E-06

NOD2 Nucleotide-binding oligomerization domain-containing protein 2 0.051304 0.450026 0.480027341

NR2C2 nuclear receptor subfamily 2, group C, member 2 0.214582 0.593925 0.619747761

P2RX7 P2X purinoceptor 7 −0.8271 1.67E-17 1.00E-16

PKN1 Serine/threonine-protein kinase N1 −0.16294 0.000444 0.000687913

PKN2 Serine/threonine-protein kinase N2 0.230417 0.163305 0.182294012

PYCARD Apoptosis-associated speck-like protein containing a CARD −0.2949 0.000231 0.000382215

TNF Tumor necrosis factor −0.23493 0.000321 0.000513452

ZBP1 Z-DNA-binding protein 1 1.384278 1.02E-09 3.06E-09
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used to create a heatmap of all these genes. In addition to this,

we also performed a preliminary analysis of the correlation

among PRGs based on their expression. A protein-protein

interaction (PPI) network for DEGs was constructed using the

Search Tool for the Retrieval of Interacting Genes (https://

string-db.org/). Cytoscape was then used for additional

display, and the hub genes were obtained using the

Maximal Clique Centrality (MCC) method. The association

network of PRGs was used to emphasize the significance.

Construction and validation of the
pyroptosis-related gene prognosticmodel

In addition, we randomly separated the data into two

groups (the training and testing datasets). The clinical data

were compared and summarized in Table 2.The

associations between each gene and survival status in the

TCGA cohort were investigated using Cox regression

analysis to establish the predictive value of PRGs. We

chose a cutoff p value of 0.05 to avoid omissions. The

least absolute shrinkage and selection operator (LASSO)

method was used for variable selection and shrinkage using

the “glmnet” R package in the training dataset to filter the

candidate genes and generate the prognostic model. After

determining the penalty parameter (λ) for the model, the

risk scores were computed for each patient based on the

expression level of the extracted gene, and the risk score

formula was as follows: Risk score = ∑n
i Xi × Yi (X:

coefficients, Y: gene expression level).

Prognostic value and validation of the risk
model

The clinical data (age and stage) of all patients were

retrieved and analyzed in conjunction with the risk score.

The univariate and multivariate Cox regression models were

used to determine the independence of components. The

“prcomp” function in the “stats” R package was used to

conduct principal component analysis (PCA) based on the

gene signature. The sensitivity and specificity of the

prognostic model were tested using time-dependent

receiver operating characteristic (ROC) analysis. A 1-, 3-,

and 5-year ROC curve study was performed using the

“survival” “survminer” and “timeROC” R packages.

Patients with LUAD were divided into subgroups with low

and high risk based on the median risk score. Kaplan-Meier

(K-M) analysis was used to evaluate the prognostic value of

the risk model, including the overall survival (OS) in all three

datasets, and the progression-free survival (PFS) in the whole

dataset. This was done to ensure that the risk model was

stable. The OS in patients with different stages was also

analyzed.

FIGURE 1
Schematic overview of the workflow in this study.
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Functional enrichment analysis of the
differentially expressed genes between
the low- and high-risk groups

The full cohort of patients with LUADwas separated into two

subgroups according to the median risk score. And the clinical

features of the two risk-groups were also compared. DEGs

between low- and high-risk groups were filtered based on the

criteria of |log2FC| ≥1 and FDR <0.05. The “clusterProfiler” and
“enrichplot” packages were used to conduct Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses based on these DEGs.

Genetic and clinicopathological features
based on the risk model

TMB represents the number of mutations per million bases

in tumor tissues. The tumor tissues with a higher TMB are

detected by the immune system more quickly, enhancing the

efficacy of immunotherapy (Chan, et al., 2019). The TMB score

for each patient with LUAD was calculated using the somatic

mutation data of patients obtained from the TCGA database to

investigate the association between the expression pattern of

PRGs, TMB, and immunity. In addition, the relationship

between the TMB and the risk score derived by the stratified

model, as well as the impact of these factors on survival were also

evaluated. The infiltration score of 16 immune cells and the

activity of 13 immune-related pathways were measured using the

single-sample gene set enrichment analysis (ssGSEA) function of

“gsva” R package. Furthermore, we analyzed the immune cells

infiltration with different methods. The Estimation of Stromal

and Immunological Cells in Malignant Tumors using the

Expression Data (ESTIMATE, https://bioinformatics.

mdanderson.org/estimate/index.html) website provided the

stromal score, immune score, and ESTIMATE score of

samples in the TCGA database, which were applied for

further validation.

Analyses of the sensitivity to anti-cancer
therapy based on the model

ICIs are an efficient method for treating various types of

cancer. In this study, the expression levels of immune checkpoint

molecules, such as cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) and PD-L1, were compared between the two groups to

see whether the stratified model could identify patients with

LUAD having a favorable response to ICIs. Besides comparing

the expression of immune-checkpoint-related genes, we also

TABLE 2 Comparison of clinical characteristics. (Chi-squared test).

Parameter Type Total Testing Training p value

Age <60 137 (27.57%) 68 (27.42%) 69 (27.71%) 0.2666

≥60 360 (72.43%) 180 (72.58%) 180 (72.29%)

Gender FEMALE 268 (53.92%) 144 (58.06%) 124 (49.8%) 0.0787

MALE 229 (46.08%) 104 (41.94%) 125 (50.2%)

Stage Stage I 265 (53.32%) 145 (58.47%) 120 (48.19%) 0.1572

Stage II 118 (23.74%) 50 (20.16%) 68 (27.31%)

Stage III 80 (16.1%) 40 (16.13%) 40 (16.06%)

Stage IV 26 (5.23%) 12 (4.84%) 14 (5.62%)

unknow 8 (1.61%) 1 (0.4%) 7 (2.81%)

T T1 168 (33.8%) 95 (38.31%) 73 (29.32%) 0.1522

T2 262 (52.72%) 125 (50.4%) 137 (55.02%)

T3 45 (9.05%) 18 (7.26%) 27 (10.84%)

T4 19 (3.82%) 9 (3.63%) 10 (4.02%)

unknow 3 (0.6%) 1 (0.4%) 2 (0.8%)

N N0 320 (64.39%) 167 (67.34%) 153 (61.45%) 0.2467

N1 93 (18.71%) 41 (16.53%) 52 (20.88%)

N2 70 (14.08%) 33 (13.31%) 37 (14.86%)

N3 2 (0.4%) 2 (0.81%) 0 (0%)

unknow 12 (2.41%) 5 (2.02%) 7 (2.81%)

M M0 328 (66%) 165 (66.53%) 163 (65.46%) 0.9883

M1 25 (5.03%) 12 (4.84%) 13 (5.22%)

unknow 144 (28.97%) 71 (28.63%) 73 (29.32%)

Frontiers in Genetics frontiersin.org05

Dong et al. 10.3389/fgene.2022.997319

https://bioinformatics.mdanderson.org/estimate/index.html
https://bioinformatics.mdanderson.org/estimate/index.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.997319


analyzed the Tumor Immune Dysfunction and Exclusion (TIDE)

score to identify ICI-beneficial patients. Following the uploading

of the gene expression file as the instruction, the TIDE score was

acquired from the website (http://tide.dfci.harvard.edu/). The

Cancer Immunome Atlas (TCIA) was applied to conduct

comprehensive immunogenomic analyses based on the

sequencing data from TCGA. We also used “pRRophetic” R

package to evaluate drug sensitivity, which was determined by

the concentration that could inhibit 50% of cellular growth

(IC50) based on the risk level.

Bioinformatics validation of NLRC4

We compared the pattern of NLRC4 expression in pan-

cancer. Also, we separated the complete dataset into low- and

high-expression groups according to the mRNA level of

NLRC4 in LUAD. GO enrichment and KEGG analyses

were performed on the basis of the DEGs obtained from

the two groups. The correlations with the LUAD

microenvironment, including TMB, immune cell

infiltrations, and immune checkpoints were also evaluated.

Additionally, clinical factors, such as survival and medication

sensitivity were applied to investigate its value in clinical. The

methods used here were mentioned above. In addition, we

acquired the immunophenoscore (IPS) for each LUAD from

the Cancer Immunome Database (https://tcia.at/home). It

served as a predictor of anti-CTLA-4 and anti-PD-

1 treatment response (Charoentong, et al., 2017). And we

compared the differences in IPS between the low- and high-

expression groups.

Cell culture and inflammasome activation
assay

Human embryonic kidney 293 cells (HEK-293T) were

cultured on Dulbecco’s modified Eagle’s medium (DMEM,

Gibco, US) containing 10% fetal bovine serum (Gibco, US)

and antibiotics (penicillin and streptomycin). H1299 cells

were cultured in an incubator at 37°C in the presence of 5%

CO2 with Roswell Park Memorial Institute1640 (RPMI-1640,

Gibco, US) containing 10% fetal bovine serum and antibiotics.

HEK-293T or H1299 cells were plated into six-well tissue culture

plates overnight. HEK-293T cells were transfected with

Polyethylenimine and Human influenza hemagglutinin (HA)

tagged full-length NLRC4, pro-caspase 1, apoptosis-related

specific protein (ASC), and pro-interleukin (IL)-1β to imitate

the activation of the inflammasome, while H1299 cells were

transfected with HA-tagged full-length NLRC4 for the lactate

dehydrogenase (LDH) assay. The cells were collected for further

study after 48 h incubation.

Lactate dehydrogenase (LDH) assay

LDH is a stable cytoplasmic enzyme present in every cell.

When the plasma membrane is compromised, LDH is rapidly

released into the culture supernatant. LDH leakage was evaluated

using a colorimetric LDH test kit (Promega, US) following the

manufacturer’s protocols. The absorbance value of each group

was compared with the absorbance value of the control group.

Quantitative polymerase chain reaction
and Western blotting

RNA was extracted using TRIzol (ThermoFisher, US)

following the manufacturer’s protocols. The isolated RNA was

reverse-transcribed into cDNA using a first-strand cDNA

synthesis kit (ABclonal, CN). Quantitative PCR was

performed in triplicate using the MonAmp SYBR Green

qPCR Mix kit (Monad, CN), and was performed on an RT-

PCR instrument (Bio-RAD, US). Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) was used as a reference.

The primer sequences for qPCR were as follows:

RT-PCR GAPDH Forward 5′-TGACTTCAACAGCGACAC
CCA-3′

RT-PCR GAPDH Reverse 5′-CACCCTGTTGCTGT
AGCCAAA-3′

RT-PCR NLRC4 Forward: 5′-GTGTTCTCCCACAAGTTT
GA-3′

RT-PCR NLRC4 Reverse: 5′-AGTAACCATTCCCCTTGG
TC-3′

RT-PCR caspase-1 Forward: 5′-CAGACAAGGGTGCTG
AACAA -3′

RT-PCR caspase-1 Reverse: 5′ -TCGGAATAACGGAGT

CAATCA-3′
RT-PCR IL-1β Forward 5′-ATGGCAGAAGTACCTGAG

CTC-3′
RT-PCR IL-1β Reverse 5′-TTAGGAAGACACAAATTG

CATG-3′
The cells were collected and lysed with 2% sodium dodecyl

sulfate (SDS) in the presence of complete protease inhibitor

mixture. The loading volume was mainly adjusted by the

expression of tubulin. After adjusting by 1 × loading buffer,

equal amounts of protein were loaded onto SDS-PAGE gels and

transferred to NC membranes. The membranes were blocked for

1 h at RT with 5% milk and subsequently incubated at 4°C

overnight with the primary antibody. After washing the

membrane, incubated with secondary antibody for 1 h at RT.

Then, washed the membrane again before chemiluminescence

analysis. The following antibodies were used: HA (CST,

United States, cat#3724S), caspase-1 (CST, United States,

cat#3866T), IL-1β (CST, United States, cat#12242S), and

tubulin (proteintech, CN, cat#I0004491). The secondary anti-
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mouse (proteintech, CN, cat# SA00001-1) and anti-rabbit

immunoglobulins (proteintech, CN, cat# SA00001-4) were used.

Statistical analysis

All statistical analyses in this study were conducted on R

software (version 4.1.2). The statistical tests were all two sided. A

p value < 0.05 indicated a statistically significant difference. The

statistical significance of two groups was evaluated using the

Student t test and Wilcoxon test. For correlation analysis was

conducted by Spearman and Pearson cor test. Chi-squared test

was used to caculate composition difference.

Results

Identification of differentially expressed
genes between normal and tumor tissues

We found that 21 of the 48 PRGs were differentially

expressed (logFC >0.5, FDR <0.05) in the TCGA dataset

consisting of 59 normal and 535 tumor tissues; 10 genes were

downregulated (IL-1β, NLRC4, CASP5, IRF1, CASP1, NLRP3,

NEK7, P2RX7, MEFV, and IRF1), while the remaining were

upregulated (CASP8, GSDME, CASP3, CASP6, GSDMA,

GSDMB, NLRP7, GSDMC, ZBP1, IFI16, and AIM2). The RNA

levels of these genes are depicted as heatmaps in Figure 2A. The

correlation network containing all PRGs is shown in Figure 2B

(the red line represents positive correlations, while the blue line

represents negative correlations), and most of these genes

displayed a positive relationship. We conducted a PPI analysis

for these genes to further investigate the interactions of these

PRGs. Among these, CASP1, NLRC4, NLRP1, CASP5, NLRP3,

CASP8, and AIM2 were the hub genes, which had the maximum

interactions with other genes. The results are presented in

Figure 2C.

Development of a prognostic gene model
in the TCGA training cohort and validation

A total of 497 samples with complete survival information

were collected for further analysis. Initially, the genes associated

FIGURE 2
Expression of the 48 pyroptosis-related genes and the interactions among them. (A) Heatmap of the pyroptosis-related genes between the
normal (N, brilliant blue) and tumor tissues (T, red). (wilcox.test, p values were as follows: **p < 0.01; ***p < 0.001.) (B) PPI network showing the
interactions of the differentially expressed pyroptosis-related genes (red line: positive correlation; blue line: negative correlation). (C) Correlation
network of all the pyroptosis-related genes. The intensity of the colors reflected the strength of the relevance.
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with survival were evaluated using univariate Cox regression

analysis on the training dataset. We retained the four genes

NLRC4, NOD-like receptor (NLR) family pyrin domain-

containing 1 (NLRP1), Nucleotide-binding oligomerization

domain-containing protein 1 (NOD1), and NLR family

apoptosis inhibitory proteins (NAIP) for risk model

development based on the optimal value from LASSO Cox

regression analysis (Figures 3A–C). The risk score formula

was: Risk score = (−1.01608731367098 × NAIP exp) +

(–0.235231123651649 × NLRC4 exp) +

FIGURE 3
Construction of the prognostic stratification model. (A) LASSO coefficient profiles. (B) Four candidate genes obtained by LASSO regression. (C)
Four optimal genes obtained by multivariable Cox regression analysis. (D) Expression pattern of the four optimal genes between tumor and normal
specimens in the entire dataset. (E) Survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the
right side of the dotted line). (F) Distribution of patients based on the risk score. (G–I) Expression pattern of the four optimal genes; survival
status and distribution of patients based on the risk score between tumor and normal specimens in the testing dataset.
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(–0.169828624865761 × NLRP1 exp) + (–0.246566494613787 ×

NOD1 exp). In addition, patients in various datasets were divided

into low- and high-risk subgroups based on the median risk

score. And the clinical parameters comparisons in the entire

cohort were shown in Table 3. All these genes were relatively

suppressed in the population at high-risk. Patients in the high-

risk group (on the left side of the dashed line) died more often

and lived shorter times than those in the low-risk group (on the

right side of the dashed line). This showed that LUADwith a high

score might have a worse outcome. Additionally, Figures 3D–F

shows the whole dataset, and Figures 3G–I shows the testing

dataset.

Independent prognostic value of the risk
model and its clinical application

The univariate and multivariable Cox regression analyses

were conducted to determine whether the risk score generated by

the gene signature model could be employed as an independent

prognostic factor. Both the stage and the risk score were found to

be independent predictors of poor survival in the TCGA cohorts

via the univariate Cox regression analysis (p < 0.001,

Figure 4A,B). We also performed PCA based on tumor and

normal specimens and found that the 48 PRGs completely

distinguished LUAD samples (Figure 4C). The area under the

ROC curve was 0.685 for 1-year survival, 0.610 for 3-year

survival, and 0.618 for 5-year survival (Figure 4D). They were

further confirmed in the testing and entire datasets, indicating

that the pyroptosis-associated risk score had a strong and

dependable capacity to predict the prognosis for patients with

LUAD. All three datasets showed poorer OS in the high-risk

group (p < 0.05), as well as the PFS in the entire dataset (p =

0.026). These results demonstrated that patients with a high-risk

score had a worse prognosis (Figure 4G–J). We further examined

the risk model by comparing the OS in patients with different

stages. We discovered that patients in the high-risk group had a

worse prognosis for both early and advanced stages of lung

cancer (Figure 4K,L: p = 0.021 in stages I and II, p < 0.001 in

stages III and IV).

Distinct biological processes, TME, and
treatment decision characteristics in
LUAD were based on the risk model

Further, we identified DEGs to examine the differences in

gene functions and pathways between the subgroups divided by

the risk model. Between these, 508 DEGs were identified in the

total TCGA cohort. The GO enrichment analysis and KEGG

TABLE 3 comparison of clinical features between two-risk groups in entire set. (Chi-squared test).

Parameter Type Total High Low p value

Age <60 133 (27.2%) 77 (29.39%) 56 (24.67%) 0.2856

≥60 356 (72.8%) 185 (70.61%) 171 (75.33%)

Gender FEMALE 265 (54.19%) 133 (50.76%) 132 (58.15%) 0.1226

MALE 224 (45.81%) 129 (49.24%) 95 (41.85%)

Stage Stage I 265 (54.19%) 125 (47.71%) 140 (61.67%) 0.0115

Stage II 118 (24.13%) 68 (25.95%) 50 (22.03%)

Stage III 80 (16.36%) 51 (19.47%) 29 (12.78%)

Stage IV 26 (5.32%) 18 (6.87%) 8 (3.52%)

T T1 167 (34.15%) 73 (27.86%) 94 (41.41%) 0.0154

T2 257 (52.56%) 151 (57.63%) 106 (46.7%)

T3 44 (9%) 27 (10.31%) 17 (7.49%)

T4 18 (3.68%) 10 (3.82%) 8 (3.52%)

unknow 3 (0.61%) 1 (0.38%) 2 (0.88%)

N N0 315 (64.42%) 154 (58.78%) 161 (70.93%) 0.0046

N1 91 (18.61%) 58 (22.14%) 33 (14.54%)

N2 70 (14.31%) 46 (17.56%) 24 (10.57%)

N3 2 (0.41%) 0 (0%) 2 (0.88%)

unknow 11 (2.25%) 4 (1.53%) 7 (3.08%)

M M0 322 (65.85%) 184 (70.23%) 138 (60.79%) 0.2148

M1 25 (5.11%) 18 (6.87%) 7 (3.08%)

unknow 142 (29.04%) 60 (22.9%) 82 (36.12%)
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pathway analyses were performed. The GO enrichment of DEGs

was primarily associated with the immune system, including

cytokine generation, immune response regulation, chemokine

binding, and inflammatory cell chemotaxis (Figure 5A).

Regarding the KEGG pathway, we discovered that it

corresponded with the GO analysis, which included the

chemokine signaling pathway, the B cell receptor signaling

pathway, the cytokine-cytokine receptor interaction, and so on

(Figure 5B). It was obvious that this pyroptosis-related model

might be related to immunity, which could help us differentiate

FIGURE 4
Validation of the prognostic stratification model. (A) Univariate analysis for the entire dataset. (B)Multivariate analysis for the entire dataset. (C)
PCA plot for LUAD in the entire dataset. (D–F) Time-dependent ROC curves for LUAD in the training, testing, and entire datasets. (G–I) K-M survival
analysis of different risk groups in the training, testing, and entire datasets. (J) PFS of the entire dataset. (K,L) K-M survival analysis of patients with
different stages in low- and high-risk groups. (Chi-squared test).
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LUAD with varying immunological status. The ssGSEA was used

to evaluate the enrichment scores of 16 types of immune cells and

the activity of 13 immune-related pathways. The low-risk

subgroup showed higher proportions of CD8+ T cells,

neutrophils, natural killer (NK) cells, T helper (Th) cells

(Th1 and Th2), tumor-infiltrating lymphocytes, and regulatory

T (Treg) cells compared with the high-risk subgroup (Figure 6A).

In the entire TCGA cohort, the activity of all 13 immunological

pathways was lower in the high-risk group (Figure 6B). The

immune cell infiltration was further investigated using various

techniques. Consistent with previous findings, many immune-

infiltrating cell subpopulations, including effector memory

B cells, CD8+ T cells, CD4+ T cells, and NK cells, were

significantly enriched in the low-risk group (Figure 6C).

We analyzed the correlations between the risk model and TMB.

To highlight the importance of risk score. We compared the most

prevalent mutation genes between the two risk groups by collecting

the LUADmutation data from TCGA.We found that the high-risk

group had a significantly greater mutational rate (p = 0.0003,

Figure 7A–C). The top list included Tumor protein P53 (TP53)

and Kirsten rat sarcoma virus (KRAS). Previous studies found that

the TP53 gene was a suppressor gene, its mutation had a significant

impact on cancer risk, while KRAS mutation correlated with a low

response rate to gefitinib in LUAD (Greathouse, et al., 2018; Reck,

et al., 2021). The mutations of these oncogenes based on the risk

model might indicate some potential relations in the drug resistance

of LUAD. Next, the TMB survival probability was explored. Patients

with a low TMB and a high-risk level had the worst outcome

(Figure 7D,E).

The correlation between risk score and immune checkpoint

expression was further estimated based on the results of GO and

KEGG enrichment. As shown in Figure 8A–H, low-risk LUAD

exhibited higher expression of various molecular markers (PD-L1,

CTLA4, Lymphocyte-activation gene 3: LAG3, CD27, CD80),

indicating a superior immunotherapeutic response. Another

newly identified predictor TIDE is frequently employed and

strongly advised for evaluating the immune response and

immune evasion (Jiang, et al., 2018). However, our study

revealed that the TIDE expression dramatically increased in the

low-risk group, indicating an immune escape phenotype in low-risk

group, which is contradictory to immune checkpoint analysis and

will be discussed in detail below. In addition, we examined the

degree of immune cell infiltration (immune score) and stromal cell

infiltration (stromal score) across three unique patterns. The high-

risk patients had the lowest immune score compared with the low-

risk patients. Also, they had a lower stromal score, indicating that

FIGURE 5
The GO and KEGG analyses between the two risk groups (A) Bar graph for GO enrichment. (B) Bar graph for KEGG pathways (the longer bar
means the enrichment of more genes, and the increasing intensity of red color means more obvious differences; q-value: the adjusted p value).
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high-risk LUADhad fewer nontumor components, such as immune

cells and stromal cells, which might correspond with a poorer

response to immunotherapy (Figure 8I–L). The aforementioned

results demonstrated that the difference in tumor pyroptosis

patterns might play a crucial role in mediating the clinical

response to ICIs treatment through the impact on TMB,

FIGURE 6
(A,B)Comparison of the enrichment scores of 16 types of immune cells and 13 immune-related pathways based on the ssGSEA scores between
low- (green box) and high-risk (red box) groups in the TCGA cohort. (C) Comparison of the high- and low-risk groups using different methods.
(wilcox.test, p values were as follows: *p < 0.05; **p < 0.01; ***p < 0.001).
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immune cell infiltration, immunogenicity, and checkpoint

expression, providing insights into the crucial role of pyroptosis

in the regulation of the immune microenvironment of LUAD.

We investigated common anti-tumor drugs in LUAD to

confirm whether the PRGs-related risk model could provide

treatment suggestions. We discovered that the high-risk group

was more sensitive to erlotinib, gemcitabine, docetaxel, paclitaxel,

and rapamycin than the low-risk group, while patients with low-risk

were more sensitive to gefitinib and crizotinib (Figure 9).

NLRC4 induced caspase-1-dependent
pyroptosis and could arrest the
progression of LUAD

We extracted NLRC4 for further investigation to find the

potential mechanisms associated with pyroptosis in LUAD. We

compared the expression level of NLRC4 in pan-cancer and

found that it was much lower in LUAD tissues than in normal

tissues (Figure 10). It was validated in the TCGA cohort, where

its expression was inversely linked with the outcome

(Figure 11A–E). It also had a positive relationship with Toll-

like receptor 4 (TLR4), which might promote the synthesis or

release of pro- and anti-inflammatory cytokines and chemokines

via the activation of transcription factors such as NF-κB, as well
as the activation of adaptive immunity (Figure 11F) (Pinto, et al.,

2011). Furthermore, we investigated the relationship between

NLRC4 and immunity. NLRC4 expression negatively correlated

with the proportions of Tregs, naive B cells, and plasma cells, and

positively correlated with the proportions of dendritic cells,

macrophages, and so on (Figure 12A,B). Regarding the tumor

tissues, the higher the level of NLRC4, the higher the immune

score was (Figure 12C). The expression of NLRC4 was also found

to have some correlations with immune checkpoints, especially a

FIGURE 7
(A,B)Mutations in common genes between low- and high-risk groups. (C) Comparison of the tumor mutation burden between low- and high-
risk groups. (Wilcoxon test) (D)Comparison of the survival probability with different levels of tumormutation burden. (E) The survival probability with
different levels of tumor mutation burden and risk score. (Chi-squared test).
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positive correlation with CD40 and CD28, which participated in

T cell activation. However, the correlation between NLRC4 and

TMB was negative (p < 0.01) (Figure 12D,E). The drug sensitivity

analyses revealed that LUAD with a higher level of NLRC4 was

more sensitive to crizotinib (Figure 12F,G), which needs clinical

data for validation. The immunotherapy prediction indicated

that higher expression levels correlated with a better response to

anti-PD-1 and anti-CTLA-4 therapy (Figure 12H–K).

An inflammasome activation system was established in

HEK293T cells to study further the probable mechanism

linking NLRC4, pyroptosis, and LUAD. We found that

overexpressing NLRC4, caspase-1, and IL-1 in

HEK293T cells enhanced the maturation of caspase-1 and

IL-1. As shown in Figure 13, cleaved IL-1, caspase 1, and LDH

levels increased in HEK293T and H1299 cells when

NLRC4 was overexpressed, implying the death of more

cancer cells (Figure 13).

Discussion

As an alternative mode of programmed cell death,

necroptosis can elicit strong adaptive immune responses that

may defend against tumor progression (Salomon, et al., 2018).

Necrosis-induced inflammation facilitates tissue repair responses

(which are largely immunoregulatory) but not effective

anticancer immunity (Tang, et al., 2020). Activation of the

canonical programmed necrosis includes the formation of a

complex containing receptor-interacting protein kinase-1

(RIP1), RIP3 and recruitment of mixed lineage kinase

domain-like protein (MLKL), leading to lytic cell death

accompanied by de novo production of proinflammatory

mediators (Snyder, et al., 2019). Another key mediator in

necroptosis includes cellular inhibitor of apoptosis protein 1

(cIAP1/2), deubiquitinase cylindromatosis (CYLD), and

caspase-8. CYLD deubiquitinates RPK1 and subsequently

FIGURE 8
(A) TIDE score of different risk groups. (B–H) Comparison of immune checkpoint expression between different risk groups. (I–L) Tumor
immune microenvironment of LUAD comparisons between high-risk and low-risk groups. (I) stromal score; (J) ESTIMATE score; (K) tumor purity;
and (L) immune score. (wilcox.test, p values were as follows: *p < 0.05; **p < 0.01; ***p < 0.001).
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limits the sustained activation of NF-κB signaling, while cIAP1/

2 polyubiquitinates RIPK1 to induce it (Gong, et al., 2019).

Although previous studies pointed out its antitumor

immunogenicity through CD8+ T cells, recent research proved

that immune-mediated tumor control by necroptotic fibroblasts

requires nuclear factor κB (NF-κB) activation within dying cells

FIGURE 9
(A–H) Comparison of IC50 between different risk groups. (wilcox.test, p values were as follows: *p < 0.05; **p < 0.01; ***p < 0.001).

FIGURE 10
Expression of NLRC4 in pan-cancer compared with normal samples. Expression of NLRC4 was significantly lower in LUAD samples than in
normal samples.
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but not MLKL-mediated and cell lysis-dependent DAMP release

(Snyder, et al., 2019). And the role of NF-κB activation in

necroptosis-provoked antitumor immunity is controversial

(Yatim, et al., 2015). MLKL translocation to the plasma

membrane is triggered by RIPK3-mediated phosphorylation of

MLKL, which results in membrane damage. Consequently,

potassium ion efflux may further activate NLRP3 via NEK7,

which may constitute a cross-talk with the pyroptosis pathway

(Tang, et al., 2020). Pyroptosis is a new nonapoptotic form of

programmed cell death strongly associated with the

inflammatory response by triggering the production of

cytokines, such as IL-1 and IL-18, playing a crucial role in

modulating the progression of cancer (Hsu, et al., 2021). We

developed a PRGs model to analyze the effect of pyroptosis on

LUAD progression and possible biochemical pathways to

address the potential of integrating these two modalities

comprehensively. We also generated a landscape of the

differences in the LUAD microenvironment based on these

gene signatures to develop personalized anti-cancer

therapeutic strategies. In this study, the mRNA levels of

48 PRGs were measured in LUAD and normal tissues, thus

obtaining DEGs. We constructed a pyroptosis-related gene

model to identify two pyroptosis patterns distinguished by

different biological processes and immunological features.

When the risk model was applied in a clinical setting, the

score accurately predicted the prognosis of individual patients

with LUAD. Patients with high scores typically had shorter

survival times. The pyroptosis-related score demonstrated

substantial correlations with PD-L1, CTLA-4, and

immunophenotype, confirming the ability of the risk model to

predict the immunotherapy response. In addition, patients with

different scores had varying sensitivity to target therapy or

chemotherapy, thus providing some suggestions for

individualized anti-cancer therapies. Overall, this study

showed how pyroptosis influenced the microenvironment in

LUAD and highlighted its value in predicting the response to

anti-cancer treatment.

Inflammation by innate immune cells designed to fight

infections and heal wounds can contribute to the initiation

and progression of cancer by secreting growth factors and

reactive oxygen species, which induce genomic alterations,

chronic and uncontrolled inflammation, and proliferation of

malignant cells (Hanahan and Weinberg, 2011). Also,

cytokines, chemokines, and a few other substances may

enhance proliferation, prevent cell death, and facilitate the

migration of cancer through their influence on the TME

(Grivennikov, et al., 2010). The inflammasome is a cytosolic

immunological signaling complex that causes inflammation and

pyroptosis. It is composed of a sensor receptor and an adaptor

protein (apoptosis-associated speck-like protein containing a

FIGURE 11
(A,B) Expression of NLRC4 in TCGA cohort compared with normal samples (wilcox test, ***p < 0.001). (C) K-M survival analyses based on the
expression of NLRC4 in the LUAD-TCGA cohort. (Chi-squared test) (D,E) Univariate and multivariate analyses of different parameters related to
survival. (F) The correlation of NLRC4 with other genes (red line: positive correlation; green line: negative correlation).
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caspase activation and recruitment domains complex). A

functional inflammasome is initiated by pattern recognition

receptors that can detect pathogen-associated molecular

patterns, danger-associated molecular patterns, and

homeostasis-altering molecular processes, including

nucleotide-binding domain-like receptors (NLRs), absent in

melanoma 2-like (AIM2) receptors, and the newly identified

pyrin domain–containing receptors (Xue, et al., 2019). Multiple

inflammasomes, including NLRP3, NLRC4, NLRP1, and AIM2,

may inhibit tumor initiation by influencing innate and adaptive

immunity, apoptosis, and differentiation (Di Virgilio, 2013). A

previous study discovered that NLRP1, NLRP3, NLRC4, and

AIM2 inflammasome complex proteins had pro- or antitumoral

properties, especially in breast cancer (Jin and Kim, 2020).

FIGURE 12
(A) Infiltrating levels of 22 immune cell types between high- and low-expression groups. (B) Correlation coefficient analyses of NLRC4 and
different immune cells. (C) Tumor microenvironment between high- and low-NLRC4-expression groups (wilcox test, ***p < 0.001). (D) Correlation
of NLRC4 and other immune checkpoints (Pearson cor test). (E) Correlation coefficient analyses of NLRC4 and TMB (Spearman cor test). (F,G) Drug
sensitivity for LUADwith different NLRC4 expression levels. (H–K) TCIA analyses of LUADwith different NLRC4 expression levels. (wilcox test, p
values were as follows: *p < 0.05; **p < 0.01; ***p < 0.001).
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Human NLRP1 was identified as the first protein capable

of forming an inflammasome complex. Recent studies

indicated that NLRP1 expression was higher in primary

breast cancer tissue than in adjacent noncancerous tissue

and was associated with lymph node metastasis, tumor-

node-metastasis (TNM) stage, and Ki-67. Moreover,

NLRP1 enhanced breast cancer cell proliferation, migration,

and invasion by inducing epithelial–mesenchymal transition

(EMT) (Wei, et al., 2017). The N-terminal oligomerization

domain (NOD) proteins, NOD1 and NOD2, are members of

the intracellular NOD-like receptor family, which can induce

proinflammatory responses. NOD1 was found to be

constitutively expressed in epithelial cells, helping in

monitoring cytosol integrity and avoiding malignant

transformation (Shin, et al., 2018). The overexpression of

NOD1 significantly inhibited carcinogenesis in vivo and

increased the sensitivity of hepatocellular carcinoma cells to

chemotherapy via blocking the mitogen-activated protein

kinase (MAPK) pathway (Ma, et al., 2020).

As with NLRC4, the inflammasome regulated the expression

of adipocyte-mediated vascular endothelial growth factor A and

angiogenesis, which accelerates breast cancer progression (Kolb,

et al., 2016). A previous study showed that NAIP could form an

inflammasome with NLRC4, which was related to protection

against colitis-associated cancer (Allam, et al., 2015). It was also

found to inhibit the hyperactivation of the transcription factor

STAT3 as well as the generation of anti-apoptotic and

proliferation-related enzymes (Allam, et al., 2015).

NLRC4 was demonstrated to be essential for cytokine and

chemokine production in macrophages associated with

tumors, as well as the generation of IFN-producing CD4+ and

CD8+ T cells that reduced the growth of melanoma tumors in

mice (Janowski, et al., 2016). In the 293T inflammatory

experiment, we discovered that NLRC4 contributed to the

cleavage of pro-IL-1, resulting in pyroptosis. The activation of

pro-caspase-1 was responsible for the cleavage of pro-IL-1 and

pro-IL-18 proteins into mature active forms and the generation

of cytokines in response to pathogen-associated molecular

patterns and damage-associated molecular patterns (Rathinam

and Fitzgerald, 2016). Moreover, the K-M survival curve showed

that a higher level of NLRC4 expression in LUAD was associated

with a more favorable prognosis.

FIGURE 13
Experimental validation of NLRC4 in pyroptosis and lung adenocarcinoma. (A,B) LDH assay. NLRC4 was overexpressed in H1299 and
HEK293T cells. We collected the supernatant in each group to test the level of LDH at the absorbance of 495 nm. (C) Comparison of mRNA levels of
downstream related genes when NLRC4 was overexpressed, the difference of caspase 1 was not very obvious, but a higher level of IL-1β in
NLRC4 overexpression group. (D) Activation of inflammasome in HEK293T cells by overexpressing NLRC4, pro-caspase 1, ASC and pro-IL-1β.
We found that NLRC4 responded to the expression andmaturation of caspase-1 and IL-1β. (t-test, p values were as follows: **p < 0.01; ***p < 0.001).
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And from the risk model, we found that all of these factors

were up-expressed in low-risk group, particularly, the level of

NLRC4 in lung cancer was also significantly lower in the tumor

sample. To investigate its value as a prognostic factor, we

compared the survival differences in the two risk groups

divided by our model. In clinical practice, we observed that

the risk score was an independent factor related to prognosis,

with a correlation between increased risk and a worse prognosis,

as measured by OS and PFS. It was also effective when we applied

it to patients with different stages; high-risk patients had a low

probability of survival in both early and advanced stages. Patients

with a low-risk score had significantly longer longevity,

suggesting that those with a high-risk score should receive

more frequent clinical surveillance and appropriate treatment

to avoid disease recurrence and progression.

As we discussed above, pyroptosis can trigger crosstalk

between innate and adaptive immunity, modulating the cancer

microenvironment to induce an immunostimulatory response

(Hsu, et al., 2021). As the previous study demonstrated that the

context of TME was critical to tumor development and treatment

(Thorsson, et al., 2018). Our risk model had numerous

similarities with a recent study in which the high-risk group

displayed an immune desert and a reduced degree of immune

checkpoint expression. Consistent with previous findings, the

low-risk group possessed a highly active immune status,

including cytokine production, immune receptor activation,

and the phosphatidyl-inositol 3-kinase/serine-threonine kinase

(PI3K-Akt) signaling pathway, all of which corresponded to a hot

tumor phenotype. In the high-risk group, the number of essential

anti-tumor-infiltrating immune cells was low, indicating an

overall decrease in immune activity. Moreover, the immune

microenvironment analyses indicated a global enhancement of

immune cell infiltration as well as immune score in low-risk

group. These findings indicated that the low-risk group might

have a better immune environment.

However, whether it meant a better response to

immunotherapy needed further clinical investigation. Since

not all patients benefit from immunotherapy, a considerable

amount of research has been devoted to the selection of the

potentially beneficial population for immunotherapy. From the

mechanism of immunotherapy, we can see that T cells are the

soldiers of the immune response, while the activation of it

requires two kinds of signals: TCR engagement with the

MHC–peptide antigen complex (MHC-Ag) on an APC or a

target cell, and interaction of the costimulatory receptor CD28 on

the T cell with costimulatory B7 molecules (CD80/CD86).

However, in response to T-cell activation, the immune

checkpoints CTLA4 and PD-1 are upregulated on the T cell

and bind to B7 and PD-L1/L2, respectively, to inhibit T-cell

activation (Sharma, et al., 2021). Thus, PD-L1 expression is

associated with an increased likelihood of response to PD-1

pathway blockade, but responses to ICIs can also be seen in

patients with no tumor PD-L1 expression. Moreover, a minority

of somatic mutations in tumor DNA can give rise to neoantigens,

mutation-derived antigens that are recognized and targeted by

the immune system. And TMB can represent a useful estimation

of tumor neo-antigenic load, evolving as a relevant tool for the

identification of patients likely to respond to immunotherapy

(Chan, et al., 2019). Recent investigations pointed out that TMB

failed to show predictive accuracy for ICIs response due to a lack

of broad ICIs approval. And based on these, we wanted to find if

these biomarkers could be improved combined with our risk

model. According to the model, we found that patients in

different risk groups showed significantly different

characteristics, both in terms of TMB and immune

checkpoints. The TMB was relatively high in the high-risk

group, while the expression of their immune checkpoints was

generally low. And the expression of TP53 was relatively higher

in the high-risk group. Combined with the risk model, we find

that high-risk level with lower TMB has a significantly worst

survival probability, which might be an amplification effect of

these two parameters. Moreover, the mutation rate of KRAS was

also higher in patients with high-risk. Previous research showed

that the mutation of KRAS correlated with a low response rate to

gefitinib in LUAD, which was consistent with the result of drug

sensitivity based on the risk model. For the potential relationship

among pyroptosis, TMB and anti-cancer immunity, we need

further experimental validation, but for its application in

prognosis, it works well. As for these immune checkpoints,

take PD-L1 for example, the high-risk group showed relatively

low expression. However, from the analysis, we cannot judge the

intrinsic mechanism, as the analyses of ESTIMATE showed there

were more stromal components and less tumor cells. We

assumed that LUAD with higher expression of particular

PRGs (genes constructed the risk model) may have a higher

infiltration of immune cells, which stimulated the expression of

immune related markers, including PD-L1, CD80, LAG3, and so

on. The expression of immune checkpoints differed significantly

between the high- and low-risk groups, indicating that patients in the

low-risk group may benefit more from immune checkpoint

inhibitors. However, it is not simply a cause-and-effect

relationship, but a mixture with predictive value. As the risk

model showed, all of these PRGs’ coefficients were negative, and

we could not simply conclude whether the cancer immunity was

induced by pyroptosis, or the pyroptosis was facilitated by anti-cancer

immunity. For example, paclitaxel, a microtubule-stabilizing agent

used in cancer therapy, has been demonstrated to enhance innate

immunity by activating the NLRP3 inflammasome in macrophages

(Zeng, et al., 2019). From the mechanism we can conclude that

cancer immunity is a complex network, while the activation of T cells

may be one of the key points. The expression of immune checkpoints

showed significant differences between the high and low risk groups,

suggesting the potential relationship between pyroptosis and cancer

immunity, especially the function and activation of T cells. However,

the result from TIDE reflected the profiles at the late stage of T cell

dysfunction. The higher score in low-risk group indicated the
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signatures of tumor immune evasion, whichmeans a worse response

to immunotherapy. This has been contradicted by the expression

level of PD-L1. As we have discussed, there was no perfect biomarker

for predicting the efficacy of immunotherapy. A previous study

revealed that immunophenoscore claimed to have good ICIs

response in melanoma but worse in TIDE. The reliable TIDE

signatures were computed in five cancer types without lung

cancer, and only melanoma has publicly available data on tumor

expression and clinical outcome of patients treated with anti-PD1 or

anti-CTLA4. The mouse tumor models revealed two stages of T cell

dysfunction; anti-PD1 treatment can revive the early-stage

dysfunctional T cells, and the late-stage dysfunctional T cells are

resistant to ICIs reprogramming. Apart from mutation or neo-

antigen load, multiple factors could affect immune checkpoint

inhibitors’ effectiveness, such as PD-L1 level, degree of cytotoxic

T cell infiltration, antigen presentation defects, interferon signaling,

mismatch repair deficiency, tumor aneuploidy, intestinal microbiota,

and so on. A previous study revealed that uncontrolled activation of

the PI3K-Akt pathway at the cellular level might create an

immunologically tolerant TME and alter the response to ICIs

(Giannone, et al., 2020). Other biomarker types can also predict

T cell infiltration and ICIs response, it might achieve higher

predictive performance if the risk model could be applied jointly

with them.

In addition, the result of TMB revealed a substantial

correlation between risk score and TMB. The combination of

risk score and TMB could be used as a tool for prognostic

stratification. Our study found a higher rate of mutations in

high-risk patients, including TP53 and KRAS, suggesting that

patients with high-risk scores may activate potentially oncogenic

pathways that promote tumor initiation and proliferation. And

we also evaluated the chemotherapy as well as target therapy.

From the gene mutation, we found that some oncogenes

mutation rates were different in the two risk groups. The drug

sensitivity revealed that the sensitivity to chemotherapy and

targeted therapy differed in different risk groups. Low-risk

patients were more sensitive to gefitinib and crizotinib than

erlotinib, gemcitabine, docetaxel, and paclitaxel.

To better understand the potential mechanism of pyroptosis

in LUAD, we chose NLRC4 for validation. We discovered that its

expression in the survival database was negatively connected with

survival, corresponding with the negative coefficient in our

construction model. NLRC4 is expressed in immune and non-

immune cells, including monocytes, macrophages, and

neutrophils; nevertheless, differential expression of NLRC4 has

been reported in many types of tumor tissue. Studies have shown

normal levels in lung cancers, but our findings based on TCGA

reveal that it was significantly lower in LUAD and that its

expression was associated with prognosis. And our

experimental data from H1299 (lung adenocarcinoma cell

line) showed that overexpression of NLRC4 could promote

pyroptosis by measuring LDH released from dead cells. And

the inflammasome activation assay initially validated that

NLRC4 could promote IL-1β maturation, which leads to

pyroptosis of lung cancer. IL-1β is a key pro-inflammatory

cytokine that regulates the expression of several genes

involved in the inflammatory process. Besides, previous

studies showed that many clinical drugs stimulated and

modulated pyroptotic pathways to inhibit tumor growth.

Erlotinib decreased the phosphorylation of extracellular signal-

regulated kinase (ERK) 1/2 through the PI3K–Akt signaling

pathway after lipopolysaccharide treatment and downregulated

the expression of TLR4 on macrophages, thereby regulating the

microenvironment or systemic anti-tumor immunity (Xue, et al.,

2021). Animal models of colorectal cancer have shown that

Nlrc4−/− mice displayed increased tumor formation, reduced

apoptosis in tumors, and increased proliferation of colonic

epithelial cells during the early-stage (Kay, et al., 2020).

Consequently, comprehensive studies of pyroptosis and the

characteristics of TME in each patient could help us identify

the tumor immunological characteristic and guide a more

accurate treatment strategy.

Despite providing some novel insights into the immune-

oncology correlations of pyroptosis in LUAD, our study had

several limitations. First, our pyroptosis signature was derived

from public datasets; however, its prognostic value in patients

with LUAD receiving immunotherapy requires more

validation. Second, the TIDE score was significantly higher

in the low-risk group, indicating a poor immunotherapy

response based on a previous study. Also, it appeared to be

contradictory with other results, such as the PD-L1 expression

and the immune score. We wondered whether TIDE or

immune checkpoints alone could accurately predict the

immunological efficacy of LUAD. The TIDE score

combined T cell dysfunction and elimination characteristics

to simulate tumor immune escape with varying proportions of

tumor-infiltrating cytotoxic T cells. However, abnormalities

in antigen presentation, interferon signaling, and mismatch

repair can compromise the efficacy of immune checkpoint

inhibition therapy, and hence combining them with other

immune cells or factors may be preferable.

Conclusion

The current understanding of pyroptosis, particularly its

mechanism in LUAD, is limited. In this study, we investigated

the predictive value of PRGs in LUAD. Numerous PRGs were

differentially expressed in normal and LUAD tissues, showing a

direct correlation between pyroptosis and LUAD. Moreover, the

risk score derived from our risk signature was identified as an

independent risk factor for LUAD prognosis. The pyroptosis-

related risk model outlined the crosstalk and regulatory roles in

tumor immunity, as well as their application in cancer treatment.

Our model might help in developing personalized cancer

treatments for patients with LUAD.
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