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Background: Stroke and depression are the two most common causes of
disability worldwide. Growing evidence suggests a bi-directional relationship
between stroke and depression, whereas the molecular mechanisms
underlying stroke and depression are not well understood. The objectives of
this study were to identify hub genes and biological pathways related to the
pathogenesis of ischemic stroke (IS) and major depressive disorder (MDD) and to
evaluate the infiltration of immune cells in both disorders.

Methods: Participants from the United States National Health and Nutritional
Examination Survey (NHANES) 2005–2018 were included to evaluate the
association between stroke and MDD. Two differentially expressed genes
(DEGs) sets extracted from GSE98793 and GSE16561 datasets were intersected
to generate common DEGs, which were further screened out in cytoHubba to
identify hub genes. GO, KEGG, Metascape, GeneMANIA, NetworkAnalyst, and
DGIdb were used for functional enrichment, pathway analysis, regulatory network
analysis, and candidate drugs analysis. ssGSEA algorithm was used to analyze the
immune infiltration.

Results: Among the 29706 participants from NHANES 2005–2018, stroke was
significantly associated with MDD (OR = 2.79,95% CI:2.26–3.43, p < 0.0001). A
total of 41 common upregulated genes and eight common downregulated genes
were finally identified between IS and MDD. Enrichment analysis revealed that the
shared genes were mainly involved in immune response and immune-related
pathways. A protein-protein interaction (PPI) was constructed, from which ten
(CD163, AEG1, IRAK3, S100A12, HP, PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4)
were screened. In addition, gene-miRNAs, transcription factor-gene interactions,
and protein-drug interactions coregulatory networks with hub genes were also
identified. Finally, we observed that the innate immunity was activated while
acquired immunity was suppressed in both disorders.

Conclusion:We successfully identified the ten hub shared genes linking the IS and
MDD and constructed the regulatory networks for them that could serve as novel
targeted therapy for the comorbidities.
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Introduction

Stroke is the leading cause of death and disability, leading to
significant economic losses as a result of its functional impairments
(Meschia et al., 2014). Every year more than 795,000 people in the
United States (United States) have a stroke, of which 610,000 are
first-time strokes, whereas 185,000 patients have previously had a
stroke. The vast majority of stroke cases occur as a result of two
specific types of stroke (hemorrhagic and ischemic strokes).
United States strokes are dominated by ischemic strokes, which
account for 87% of all strokes (Barthels and Das, 2020). The
prevalence of depression is growing among the general
population, typically characterized by anhedonia and the inability
to experience pleasure. A variety of somatic symptoms
(psychological disturbance, fatigue, and weight fluctuations) as
well as cognitive symptoms (poor concentration and negative
cognitions) can accompany depression (Bucciarelli et al., 2020).
Depression is sub-categorized into major depressive disorder
(MDD) and dysthymia. Epidemiologic data indicates that the
average lifetime and 12-month prevalence estimates of MDD are
14.6% and 5.5% in high-income and 11.1% and 5.9% in the low-to
middle-income countries (Bromet et al., 2011).

Stroke patients aremore likely to suffer from depression than the
general population. Growing evidence suggests a bi-directional
relationship between stroke and depression: 1) depression is
associated with an increased risk of stroke (Pan et al., 2011;
Wassertheil-Smoller et al., 2018; Harshfield et al., 2020), and 2)
depression is particularly prevalent among stroke survivors
(Robinson and Jorge, 2016; Das and Rajanikant, 2018). The
prevalence of post-stroke depression (PSD) is estimated to be
29% at any time point up to 5 years following a stroke (Hackett
and Pickles, 2014). However, the mechanisms underlying the
association between depression and stroke are poorly
investigated. Biological factors such as alterations in ascending
monoamine systems, neuroplasticity, and glutamate
neurotransmission and an increasing of pro-inflammatory
cytokines were proposed to explain the mechanisms of PSD
(Robinson and Jorge, 2016). Moreover, multiple mechanisms
may play roles in depression contributing to stroke. First,
Smoking, obesity (Ho et al., 2008), and poor health behaviors
(i.e., poor diet, physical inactivity, and smoking) (Strine et al.,
2008) may increase stroke risk in depression patients. Second,
other major comorbidities, such as diabetes (Wesołowska et al.,
2018), atherosclerosis (Joynt et al., 2003), and hypertension (Patten
et al., 2009), accompanied by depression, are major risk factors for
stroke. Finally, the use of antidepressant medication may potentially
contribute to the occurrence of stroke events.

Apart from the above-mentioned mechanisms, genetic factors
are likely involved in the pathogenesis of depression and stroke.
Increased risk for depression in first-degree relatives of depression
probands was observed with an estimated odds ratio of 2.84 from a
meta-analysis of the highest-quality family studies (Sullivan et al.,
2000). The heritability of MDD has been found to be greater in
women (42%) than in men (29%) in a Swedish national twin study

(Kendler et al., 2006). There are multiple risk factor genes that were
thought to participate in the pathogenesis of depression with
extremely complex, polygenic, and epistatic inheritance patterns
(Zhao et al., 2019a). There is significant evidence that stroke has a
hereditary component based on studies of twins, siblings, and
families (Humphries and Morgan, 2004). Heritability for all IS is
estimated to be 37.9% (Bevan et al., 2012). The heritability of stroke
subtypes varies markedly, with 40.3% for large vessels and 32.6% for
cardioembolics but lower for cardioembolic small vessels (16.1%).
The genetic involvement in the pathogenesis of both stroke and
depression as well as the comorbidity frequency is not yet fully
established or whether common overlapping genes and biological
mechanisms are subserving both disorders.

A common transcription feature may provide new insights into
the pathogenesis of depression and stroke. This study aims to
identify hub genes and biological pathways related to the
pathogenesis of IS and MDD. Furthermore, as increasing
evidence points to the involvement of an immune response in
both disorders (Beurel et al., 2020; Iadecola et al., 2020), we
evaluate the immune cell infiltration and identify the common
immune cells.

Materials and methods

Dataset collection and processing

The data used in the present work was downloaded from the
National Health and Nutrition Examination Survey (NHANES)
(https://www.cdc.gov/nchs/index.htm) and the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
based on a microarray or RNA-seq dataset of major depressive
disorder (MDD) and ischemic stroke (IS). The NHANES is a
research project aimed to assess the health and nutritional status
of adults and children in the United States, combining interviews
and physical examinations to provide vital and health statistics.
The GSE98793 microarray profile included 128 MDD whole
blood samples and 64 health samples at the platform of
GPL570 Affymetrix U133_Plus2.0 Genechips. The effect of
two batches in the GSE98793 dataset were removed by
applying removed BatchEffect function of the limma package
(Ritchie et al., 2015). The GSE76826 dataset is a microarray
profile at the platform of GPL17077 Agilent-039494 SurePrint
G3 Human GE v2 8 × 60 K Microarray 039381. The
GSE16561 microarray profile contained whole blood from
39 IS patients and was compared with 24 healthy control
subjects, measured using a GPL6883 Illumina HumanRef-8 v3.
0 expression beadchip. The GSE122709 dataset (including
10 peripheral blood mononuclear cells samples of IS patients
and five controls) is a RNA-sequencing dataset and measured at
GPL20795 HiSeq X Ten. When multiple probes were matched
with one gene, the probe with the highest expression values was
annotated in the homologous gene symbol based on the
annotation information on the platform.
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NHANES

Data of 70190 participants were available in NHANES 2005–2018.
Age, sex, race or ethnicity, education level, poverty, marital status,
smoking status, stroke, body mass index (BMI), waist circumference
and diabetes was included as variables in the analysis. Depression was
measured using the Patient Health Questionnaire (PHQ-9). Participants
with PHQ-9 total scores≥10 were considered as having MDD. After
excluding participants with missing data, 29706 participants were
included in our analysis. Continuous variables are presented as the
mean (standard deviation), and categorical variables are presented as the
frequency (percentage). The chi-square test or Student’s t-test were
performed to evaluate the differences between the non-exposure and
exposure condition on stroke andMDD. Logistic regressionmodels were
performed to calculate odds ratios (ORs) for stroke and MDD.

Identification of differentially expressed
genes (DEGs)

After the data standardization and normalization of datasets using
the normalizeBetweenArrays function in the “limma” R package, a
principal component analysis (PCA) was conducted by using the
“factoextra” R package. The DEGs between cases and healthy
controls were analyzed by using the “limma” R package. The criteria
of p-value <0.05 and |log fold change (FC)|> 0.2 were used to screen the
DEGs ofMDD and controls, and |log FC| > 0.5 were regarded as cut-off
criteria for significant DEGs for IS patients and controls. A volcano plot
and a heat map plot were performed by using the R software
ggplot2 package (Ginestet, 2011) and “ComplexHeatmap” (Gu et al.,
2016) to show significant DEGs, respectively.

Screening of communal DEGs ofMDD and IS

After having separately identified the DEGs of MDD and IS, we
intersected their DEGs to screen out the communal DEGs that may
participate in the pathogenesis of the two diseases. Only when the
DEGs had the same expression trends in both diseases were these
common genes kept. The processes were conducted and visualized
using the “ggVennDiagram” package (Gao et al., 2021). The
overlapped genes were further shown in two disorders with a
heat map from the perspective of logFC and p-value.

Function enrichment analysis

The “clusterProfiler” package (Yu et al., 2012) was used to enrich
the biological processes (BP), cellular components (CC), and molecular
function (MF) of Gene Ontology (GO) (Gene Ontology Consortium,
2015) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Kanehisa and Goto, 2000) of common DEGs.

Protein-protein interaction (PPI) network

To detect potential relationships among the DEG-encoded
proteins common to both MDD and IS, a protein-protein

interaction (PPI) network was constructed using the Search Tool
for the Retrieval of Interacting Genes database (STRING, www.
string-db.org) (Szklarczyk et al., 2019). Low confidence of 0.15 was
set to findmore interactions between proteins. The other parameters
were set to the default values (i.e., a full STRING network for
nerwork type; evidence for meaning of network edges; and all
active interaction sources). The contructed network was imported
into Cytoscape to be visualized and further analyzed.

Selection and analysis of hub genes

In this work, we used six common algorithms MCC (Maximal
Clique Centrality), MNC (Maximum neighborhood component),
DMNC (Density of MaximumNeighborhood Component), Degree,
Closeness, and Betweenness) in the cytoHubba plugin of Cytoscape
to evaluate and identify hub genes. The detailed information about
the six algorithms were descripted in previous article (Chin et al.,
2014). The relationships among genes were calculated using
Pearson’s correlation methods. The GSE76826 and
GSE122709 datasets was applied to validate the expression levels
of hub genes.

Subsequently, a co-expression network of these hub genes was
constructed via GeneMANIA (http://www.genemania.org/)
(Warde-Farley et al., 2010), and their potential functional
processes were enriched using the Metascape tool (https://
metascape.org/) (Zhou et al., 2019a).

DEG-miRNA interaction analysis

NetworkAnalyst (https://www.networkanalyst.ca/) is an online
platform that aimed to provide a wide-range for meta-analyzing gene
expression data and constructing gene regulatory networks in a user-
friendlymanner (Zhou et al., 2019b). ThemiRTarBase database provided
comprehensive information on experimentally validated miRNA-target
interactions and was used to identify regulatory miRNAs that influenced
DEGs at the post-transcriptional level in NetworkAnalyst.

Recognition of transcription factors

Transcription factors influence target genes at a transcriptional
level. Using the Binding and Expression Target Analysis Minus
algorithm, ENCODE targeted the transcription factor of genes
derived from the ChIP-seq data. We adopted the ENCODE to
predict regulatory TFs of our hub genes.

Prediction of potential drugs of hub genes

The Drug–Gene Interaction Database (DGIdb) (http://www.
dgidb.org/) is an online database for identifying drug-gene
interaction by integrating the data from, for examplethe Drug
Target Commons, DrugBank, TTD, PharmGKB, and Chembl
and so on (Wagner et al., 2016). The common hub genes were
imported into the database to search for potential drugs. The drug-
gene interactions were visualized by the “ggalluvial” R package.

Frontiers in Genetics frontiersin.org03

Yang et al. 10.3389/fgene.2023.1004457

http://www.string-db.org/
http://www.string-db.org/
http://www.genemania.org/
https://metascape.org/
https://metascape.org/
https://www.networkanalyst.ca/
http://www.dgidb.org/
http://www.dgidb.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1004457


Immune infiltration analysis

The enrichment for 28 immune infiltrating cells (Bindea et al., 2013)
in the MDD and IS was assessed using a single-sample gene set
enrichment analysis (ssGSEA) by using the “GSVA” R package
(Hänzelmann et al., 2013). The immune cells with the same
enrichment trends for both diseases and significant differences
between diseases and the healthy controls were identified as the
potential immune cells involved in the pathogenesis. The relationships
between hub DEGs and immune cells were also constructed.

Statistical analyses

R software (version R-4.1.0) performed all statistical
analyses. The Wilcoxon test was used for statistical analysis
between two groups. The relationships of genes with genes and
genes with immune cells were constructed by using Pearson’s
correlation method. A p-value less than 0.05 (p < 0.05) was
considered to indicate statistical significance. The significance
level is denoted as follows: *p < 0.05, **p < 0.01, and
***p < 0.001.

TABLE 1 Baseline characteristics and odds ratio of participants by stroke levels in NHANES (2005–2018).

Variables Stroke p-value1 OR 95% CI p-value2

No Yes

MDD <0.0001

No 26,216 (92.69) 916 (81.98) ref ref ref

Yes 2,366 (7.31) 208 (18.02) 2.79 2.79 (2.26,3.43) <0.0001

Age (years) 46.85 (46.37,47.32) 63.46 (62.32,64.59) <0.0001 1.07 1.07 (1.06,1.07) <0.0001

Poverty 3.06 (3.00,3.13) 2.34 (2.21,2.47) <0.0001 0.76 0.76 (0.72,0.80) <0.0001

BMI(kg.m2) 28.99 (28.83,29.16) 30.07 (29.51,30.64) <0.001 1.02 1.02 (1.01,1.03) <0.001

Waist-circumference (cm) 99.17 (98.73, 99.61) 104.53 (103.12,105.94) <0.0001 1.02 1.02 (1.01,1.02) <0.0001

Sex 0.01

Male 14,361 (49.61) 557 (44.51) ref ref ref

Female 14,221 (50.39) 567 (55.49) 1.23 1.23 (1.05,1.43) 0.01

Race <0.0001

Non-Hispanic White 12,584 (69.21) 566 (70.84) ref ref ref

Non-Hispanic Black 5,969 (10.48) 313 (14.75) 1.38 1.38 (1.19,1.59) <0.0001
Mexican American 4,352 (8.03) 103 (4.51) 0.55 0.55 (0.43,0.70) <0.0001
Other Hispanic 2,641 (5.20) 66 (2.83) 0.53 0.53 (0.38,0.74) <0.001
Other 3,036 (7.08) 76 (7.07) 0.98 0.98 (0.69,1.38) 0.89

Education level <0.0001

Less than 9th grade 2,629 (4.57) 148 (8.44) ref ref ref

9–11th grade 3,891 (10.01) 207 (15.23) 0.83 0.83 (0.63,1.09) 0.17

High school graduate 6,569 (23.11) 324 (31.87) 0.75 0.75 (0.60,0.93) 0.01

Some college 8,649 (31.94) 301 (27.00) 0.46 0.46 (0.36,0.58) <0.0001
College graduate 6,844 (30.36) 144 (17.46) 0.31 0.31 (0.24,0.41) <0.0001

Marital status 0.2

Unmarried 13,730 (44.15) 582 (46.82) ref ref ref

Married 14,852 (55.85) 542 (53.18) 0.9 0.90 (0.76,1.06) 0.20

Smoke <0.0001

Never 15,711 (54.93) 415 (38.18) ref ref ref

Former 6,909 (24.78) 417 (35.86) 2.08 2.08 (1.76,2.46) <0.0001
Now 5,962 (20.28) 292 (25.96) 1.84 1.84 (1.52,2.23) <0.0001

Diabetes <0.0001

No 23,538 (86.80) 665 (63.27) ref ref ref

Yes 5,044 (13.20) 459 (36.73) 3.82 3.82 (3.26,4.48) <0.0001

Frontiers in Genetics frontiersin.org04

Yang et al. 10.3389/fgene.2023.1004457

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1004457


Results

Association between stroke and MDD

Baseline characteristics and the results of logistic
regression analysis for stroke and MDD were shown in

Table 1 and Table 2. The results indicated that MDD was
significantly associated with an increased risk of stroke.
Compared with non-exposure condition, the odds ratios
(ORs) with 95% confidence intervals (CIs) for exposure
condition between stroke and MDD was 2.79 (2.26,3.43),
p < 0.0001.

TABLE 2 Baseline characteristics and odds ratio of participants by MDD levels in NHANES (2005–2018).

Variables MDD p-value1 OR 95% CI p-value2

No Yes

Stroke <0.0001

No 26,216 (97.53) 2,366 (93.41) ref ref ref

Yes 916 (2.47) 208 (6.59) 2.79 2.79 (2.26,3.43) <0.0001

Age (years) 47.37 (46.87,47.88) 46.54 (45.71,47.37) 0.08 1 1.00 (0.99,1.00) 0.08

Poverty 3.12 (3.05,3.18) 2.13 (2.02,2.24) <0.0001 0.68 0.68 (0.65,0.71) <0.0001

BMI(kg.m2) 28.90 (28.73,29.06) 30.54 (30.12,30.97) <0.0001 1.03 1.03 (1.02,1.04) <0.0001

Waist-circumference (cm) 99.06 (98.63, 99.49) 102.41 (101.36,103.47) <0.0001 1.01 1.01 (1.01,1.02) <0.0001

Sex <0.0001

Male 13,960 (50.56) 958 (36.20) ref ref ref

Female 13,172 (49.44) 1,616 (63.80) 1.8 1.80 (1.62,2.01) <0.0001

Race <0.0001

Non-Hispanic White 12,019 (69.60) 1,131 (65.15) ref ref ref

Non-Hispanic Black 5,730 (10.41) 552 (12.85) 1.32 1.32 (1.16,1.50) <0.0001

Mexican American 4,075 (7.96) 380 (7.60) 1.02 1.02 (0.85,1.22) 0.83

Other Hispanic 2,390 (4.96) 317 (7.19) 1.55 1.55 (1.27,1.89) <0.0001

Other 2,918 (7.07) 194 (7.21) 1.09 1.09 (0.89,1.33) 0.41

Education level <0.0001

Less than 9th grade 2,428 (4.43) 349 (7.73) ref ref ref

9–11th grade 3,568 (9.61) 530 (16.73) 0.96 0.96 (0.83,1.12) 0.64

High school graduate 6,259 (23.05) 634 (27.07) 0.65 0.65 (0.56,0.76) <0.0001

Some college 8,167 (31.61) 783 (34.22) 0.61 0.61 (0.52,0.72) <0.0001

College graduate 6,710 (31.30) 278 (14.25) 0.25 0.25 (0.20,0.32) <0.0001

Marital status <0.0001

Unmarried 12,644 (42.72) 1,668 (62.43) ref ref ref

Married 14,488 (57.28) 906 (37.57) 0.45 0.45 (0.40,0.50) <0.0001

Smoke <0.0001

never 15,111 (55.83) 1,015 (37.94) ref ref ref

former 6,743 (25.30) 583 (22.54) 1.31 1.31 (1.12,1.54) 0.001

now 5,278 (18.87) 976 (39.53) 3.08 3.08 (2.73,3.49) <0.0001

Diabetes <0.0001

No 22,299 (86.69) 1904 (79.52) ref ref ref

Yes 4,833 (13.31) 670 (20.48) 1.68 1.68 (1.48,1.90) <0.0001
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Identification of DEGs and communal DEGs
between MDD and IS

The flow diagram for this study is shown in Figure 1. To
uncover the interrelationships of IS with MDD, we first
analyzed the human gene expression datasets from the GEO
database to identify the dysregulated genes that stimulate MDD
and IS separate. PCA results showed that there were two
distinctive batches in GSE989793 in Supplementary Figure
S1A, and the batch effect was removed in Supplementary
Figure S1B. A volcano plot showed that a total of 336 DEGs
were identified based on the following criteria: |log2FC|
>0.2 and a p-value <0.05, including 194 that were
upregulated and 142 that were downregulated between MDD
patients and healthy controls in Figure 2A. These deregulated

genes are shown with a heat map in Figure 2B. The
GSE16561 dataset identified 360 upregulated and
295 downregulated genes taken from IS patient peripheral
blood with the cut-off of |log2FC|>0.5 and a p-value <0.05.
The deregulated genes were presented with a volcano and
heat map plot in Figures 2C, D, respectively. The PCA result
for IS patients and controls are shown in Supplementary
Figure S2.

We further overlapped the deregulated genes of MDD and IS
with the same expression trends. The Venn diagram showed that
41 common upregulated genes and eight common downregulated
genes were finally identified in Figures 3A, B. The differential
expression patterns in the two groups were presented with heat
map plots from the perspective of logFC and p-value in Figures 3C,
D, respectively.

FIGURE 1
Workflowof data analysis in our presentwork. MDD,major depressive disorder; DEGs, differentially expressed genes; ssGSEA, single sample gene set
enrichment analysis; TF, transcription factor; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.
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Functional enrichment analysis

The biological processes (BP) results showed that the shared
genes were mainly enriched in neutrophil activation involved in
immune response, defense response to the bacterium, humoral
immune response, and reactive oxygen species metabolic process
(Figure 4A). In Figure 4B, we observed that these genes were
involved in the vesicle lumen, specific granule, and tertiary
granule cell component (CC). The molecular functions (MF)
of these shared DEGs were enriched in protein
heterodimerization activity and serine-related activity in
Figure 4C. The KEGG result showed that the primary
immunodeficiency, T cell receptor signaling pathway, and
antigen processing and presentation pathways were enriched
in Figure 4D.

Identification and analysis of hub common
DEGs

The shared genes were imported into the STRING database to
construct a protein-protein network (Supplementary Figure S3).
The network was further visualized in Cytoscape in Figure 5. The red

represents the upregulated DEGs, while the turquoise represents the
downregulated DEGs. The size of the node shows the degree of
interaction with other genes.

Next, we adopted six algorithms in the cytoHubb plugin of
Cytoscape to identify the hub genes. The top 20 genes in each
method were visualized in Supplementary Figure S4 and listed in
Table 3. We then intersected the 20 genes for each method, and ten
overlapped genes (CD163, AEG1, IRAK3, S100A12, HP, PGLYRP1,
CEACAM8, MPO, LCN2, and DEFA4) denominated as hub
communal DEGs were selected in Figure 6A. The detailed
descriptions of the hub genes were listed in Table 4, and that of
other DEGs were in Supplementary Table S1. The locations of the
10 genes in the corresponding chromosome are presented in
Figure 6B. The violin plot showed that the hub shared genes
were significantly expressed in MDD and IS with the same trend
in Figures 6C, D. The relationships among genes show that most
genes were significantly positively related to each other in MDD
(Figure 6E) and stroke (Figure 6F).

The diagnostic ablility of the hub genes inMDD (Figure 7A) and
IS (Figure 7B) were visualized with receiver operating characteristic
curves. The results shows that HP present the greatest diagnostic
value with AUC = 0.671 in MDD, while CD163 display the greatest
diagnostic value with AUC = 0.965 in IS.

FIGURE 2
Landscapes of differentially expressed genes (DEGs) in MDD and IS. A volcano plot (A) and heat map (B) show the DEGs in MDD. A volcano plot (C)
and heat map (D) show the DEGs in IS. MDD, major depressive disorder; IS, ischemic stroke.
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We further validated the epression of the ten hub genes in other
external datasets (Supplementary Figure S5). However, only
S100A12 was validated as the common differentially expressed
gene of the two disorders, which need to be verified by in vivo or
vitro experiments.

In Figure 8A, the co-expression network of hub genes was
constructed using the GeneMANIA website. In the complex PPI
network, the interaction of the co-expression accounted for 74.83%,
physical interactions for 22.14%, and colocalization for 3.04%. In
function analysis, these genes were involved in humoral immune
response, secretory granule lumen, cell killing, and regulation of
inflammatory response, which was almost consistent with the results
from the Metascape analysis (Figure 8B; Supplementary Table S2).
In Figure 8C and Supplementary Table S3, we also predicted the
potential diseases that the hub genes may be involved in through
gene-disease association information collected from the DisGeNET
database (Piñero et al., 2020) in Metascape. The results showed that
these genes participate in intravascular hemolysis, endotoxemia, and
bacterial infections.

Gene regulatory network analysis of Genes-
miRNAs and Genes-TFs

TarBase database was utilized to predict the miRNA of hub
genes. All hub shared genes were predicted for their interacted
miRNA, and a total of 28 miRNA were determined in Figure 9A. In
the gene-miRNA interaction network, LCN2 interacted with the

most miRNAs with 13 predicted, followed by HP and IRAK3 with
6 miRNAs. hsa-mir-27a-3p were located in a conspicuous place due
to interacting with five hub genes.

We also predicted the experimentally validated TFs of hub genes
using ENCODE database in Figure 9B. Only four hub genes
predicted their regulatory TFs. A total of 61 TFs were identified,
and LCN2 also had the most targeting nodes with 45 TFs, followed
by HP with 20 TFs.

The Sankey diagram showed the potential drugs that targeted
the hub genes from the DGIdb database (Figure 9C). A total of
30 drugs were predicted, and the detailed information were listed in
Supplementary Table S4. Of these, 21 drugs targeted MPO; five
drugs targeted S100A12, and 2 drugs each targeted HP and ARG1.
No potential drugs could be identified for LCN2, DEFA4, PGLYRP1,
CEACAM8, CS163, and IRAK3.

Immune cell infiltration analysis

Using the ssGSEA algorithm, we obtained the immune
infiltration of 28 immune cells in the MDD group, IS group, and
control group. The immune cells with significant differences
between cases and the healthy control group and the same trends
were regarded as the potential cells. A total of five immune cells
among these 28 types of cells, including activated B cell, activated
dendritic cell, effector memory CD8 T cell, macrophage, and natural
killer cell were identified, among which active B cell and effector
memory CD8 T cell were downregulated, whereas other cells were

FIGURE 3
Identification of shared DEGs betweenMDD and IS. (A)Overlapping the shared upregulated DEGs. (B)Overlapping the shared downregulated DEGs.
(C) A heat map indicates the shared DEGs from the perspective of log(Fold change). (D) A heat map indicates the shared DEGs from the perspective of the
p-value. MDD, major depressive disorder; IS, ischemic stroke.
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upregulated, implying the innate immunity was activated while
acquired immunity was suppressed in the two diseases (Figures
10A, B). Figures 10C, D also showed the strong relationships
between the hub gene and immune cells.

Discussion

Depression is a global health problem with a high prevalence
and the third leading cause of disability globally (Park and Zarate,
2019). The incidence of suicide associated with depression has been
increasing and is the 10th leading cause of death in the United States
Similarly, stroke, a neurological disorder characterized by blockage
of blood vessels, is a major cause of death and disability worldwide
(Johnston et al., 2009). Early studies indicated that depression
increased the risk of stroke. A prospective longitudinal study
showed that a history of depression was associated with an
increased risk of stroke by over twofold (Jackson and Mishra,
2013). Compared with participants with stable low/no depressive
symptoms, the participants with the stable high and remitted
depressive symptoms had a 2.14 and 1.66 elevated hazard risk of
stroke, respectively (Gilsanz et al., 2015). In addtion, post-stroke
depression (PSD) is one of the common and serious sequelae of
stroke. Folstein et al. (1977) first demonstrated that mood disorder is

FIGURE 5
PPI network showing the protein interaction for shared DEGs
between MDD and IS. The red color represents the commonly
upregulated genes. The blue color represents the common
downregulated genes. The size of the circle indicates the Degree
of the node. The PPI network was generated using STRING and
visualized in Cytoscape.

FIGURE 4
GO and KEGG enrichment analysis for shared DEGs between MDD and IS. (A–C) BP, CC, and MF of GO analysis were enriched for common DEGs.
(D) KEGG pathways of common DEGs. BP, biological processes; CC, cellular components; MF, and molecular functions.
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a more specific complication of stroke. Disability, anxiety, stroke
severity, depression pre-stroke, and cognitive impairment all play an
important role in PSD, according to a meta-analysis (Ayerbe et al.,
2013). Although the bi-directional relationship between stroke and
depression is recognized, the underlying mechanism remains a
provocative and unresolved question. Considering that stroke and
depression have genetic roots, as well as their frequent comorbidity,
we speculate shared genes and biological pathways for both stroke
and depression.

With the rapid development of sequencing technology, for the
first time, we explored the shared gene signatures and molecular
mechanisms between MDD and IS from transcriptome data. In our
study, we observe a total of 41 genes are simultaneously upregulated,
and eight genes are downregulated in both MDD and IS. Biological
enrichment analysis shows that these common genes are involved in
the immune response, cell killing, and defense response to the
bacterium. Moreover, the T cell receptor signaling pathway,
primary immunodeficiency, malaria, IL-17 signaling pathway,
and rap1 signaling pathway are enriched in the KEGG pathway
analysis. Ten overlapped genes (CD163, AEG1, IRAK3, S100A12,
HP, PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4)
denominated as hub communal DEGs are identified. We observe
that the ten hub genes participate in the immune response and cell
killing processes. The gene-diseases analysis reveals that
intravascular hemolysis, endotoxemia, and bacterial infections are

correlated with these genes. Furthermore, we construct gene
regulatory networks with gene-miRNA, gene-TF, and gene-drugs,
which further provide targets for therapeutic interventions. Finally,
we depict the immune landscapes for both disorders and found that
five immune cells, including activated B cell, activated dendritic cell,
effector memory CD8 T cell, macrophage, and natural killer cell,
were significantly different in both diseases. Further analysis
indicates innate immunity may be activated whereas acquired
immunity may be suppressed.

There is consistently and robust evidence supporting the role of
inflammation in depression. The inflammatory response in MDD
patients was characterized by increased production of complement,
chemoattractors, and pro-inflammatory cytokines in peripheral
blood cerebrospinal fluid, and post-mortem brain samples (Miller
and Raison, 2016). Cytokines, which mediate the innate immune
response, including IL-1, tumor necrosis factor (TNF)-alpha,
C-reactive protein (CRP), and IL-6, from peripheral blood are
considered the most reliable biomarkers of inflammation in
patients with depression (Miller et al., 2009). In addition, by
inhibiting pro-inflammatory cytokines or their signaling
pathways, depressed mood can be improved and conventional
antidepressants better tolerated (Kenis and Maes, 2002; Bluthé
et al., 2006). Furthermore, by producing anti-inflammatory
cytokines (IL-2, IL-4, and IL-10) and/or activating T regulatory
(Treg) cells, the effects of immune response were also counter-

TABLE 3 The top20 genes identified by six different methods.

Rank MNC MCC DMNC Degree Closeness Betweenness

1 MMP9 MMP9 BPI MMP9 MMP9 MMP9

2 IL1R2 S100A12 CAMP IL1R2 IL1R2 CD8A

3 CD8A MPO OLFM4 CD8A CD8A IL1R2

4 S100A12 LCN2 LCN2 S100A12 S100A12 ITGA2B

5 MPO CAMP CEACAM8 MPO MPO S100A12

6 LCN2 ARG1 PGLYRP1 LCN2 LCN2 HK2

7 CD163 CD8A TCN1 CD163 CD163 THBS1

8 ARG1 PGLYRP1 IRAK3 ARG1 ARG1 ARG1

9 PGLYRP1 HP HP PGLYRP1 PGLYRP1 DEFA4

10 CEACAM8 IL1R2 MPO DEFA4 DEFA4 IRAK3

11 CAMP CEACAM8 CD163 CEACAM8 CEACAM8 MPO

12 DEFA4 CD163 KLRB1 CAMP CAMP FKBP5

13 HP BPI S100A12 HP HP LCN2

14 GZMA DEFA4 ARG1 IRAK3 IRAK3 CD163

15 IRAK3 IRAK3 DEFA4 GZMA GZMA HP

16 IFIT3 OLFM4 GZMA IFIT3 THBS1 IFIT3

17 THBS1 THBS1 IFI27 THBS1 IFIT3 MCEMP1

18 CEACAM6 GZMA GZMK CEACAM6 CEACAM6 PGLYRP1

19 OLFM4 CEACAM6 CD3G OLFM4 OLFM4 CEACAM8

20 RSAD2 MCEMP1 ITGA2B RSAD2 MCEMP1 ECHDC3
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balanced or compensated in MDD patients (Dowlati et al., 2010).
Growing evidence also revealed an intimate relationship between the
immune system and all stages of the ischemic cascade, from the
acute intravascular events induced by a blockage of the blood supply
to the parenchymal process causing brain damage (Iadecola and
Anrather, 2011; Endres et al., 2022). A recent review summarized
that pro-inflammatory interleukins (IL-1b, IL-6, IL-8, IL-12, IL-15,
IL-16, IL-20, IL-18, and IL-23/IL-17) and anti-inflammatory
interleukins (IL-2, IL-4, IL-10, IL-13, IL-19, and IL-33) were
involved in the pathogenesis of IS (Zhu et al., 2022). As

inflammation is common after stroke and depression,
immunological processes were proposed as the underlying
mechanism triggering PSD (Pascoe et al., 2011). Inflammatory
markers such as CRP, ferritin, and neopterin have been linked to
PSD development later in life (Becker, 2016). Our GO and KEGG
analysis demonstrates that the immune response is enriched in the
common DEGs and the ten hub genes of MDD and IS. Moreover, in
our immune infiltration analysis, the abundance of active B cells and
effector memory CD8 T cell decreases, while that of activated
dendritic cell, macrophage, and natural killer cell increases in

FIGURE 6
Identification of hub genes from PPI network. (A) A Venn diagram shows ten overlapped genes that were screened out by the six methods from the
top 20 genes of six methods in Cytohubba plug in Cytoscape. (B) The gene locations of the ten hub genes. (C) and (D) shows the expression levels of the
ten hub genes in MDD and IS, respectively. (E) and (F) depicted the correlations of the ten genes with each other in MDD and IS, respectively. Significance
level was denoted by *p-value <.05, **p-value <.01, ***p-value <.001.
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TABLE 4 The detailed information and descriptions of hub genes.

Gene name Ensembl id Gene description Chromosome Change

CD163 ENSG00000177575 CD163 molecule 12 UP

ARG1 ENSG00000118520 arginase 1 6 UP

IRAK3 ENSG00000090376 interleukin 1 receptor associated kinase 3 12 UP

S100A12 ENSG00000163221 S100 calcium binding protein A12 1 UP

HP ENSG00000257017 haptoglobin 16 UP

PGLYRP1 ENSG00000008438 peptidoglycan recognition protein 1 19 UP

CEACAM8 ENSG00000124469 CEA cell adhesion molecule 8 19 UP

MPO ENSG00000005381 myeloperoxidase 17 UP

LCN2 ENSG00000148346 lipocalin 2 9 UP

DEFA4 ENSG00000285318 defensin alpha 4 8 UP

FIGURE 7
The diagnostic abilities of the ten hub genes in MDD (A) and IS (B) with ROC curve. ROC, receiver operating characteristic.
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both disorders, which may provide new insight into the common
pathogenesis and immunotherapy for both diseases. Specifically, the
IL-17 signaling pathway was also observed in our biological function
annotation of shared genes. The IL-17 family is an evolutionarily old
cytokine family consisting of six members (IL-17A-F), dominantly
produced by immune cells of the adaptive and innate lymphocyte
lineages, including CD4+ Th17 cells, CD8+ Tc17 cells, γδT17 cells,
MAIT cells, and innate lymphoid cells ILC3 (Majumder and
McGeachy, 2021). It has been observed that IL-17 levels are high
in the central nervous system (CNS) during inflammatory
responses, including IS and MDD. Peripheral blood samples
from patients with IS show an increased expression of IL-17
compared with healthy individuals (Kostulas et al., 1999). High
plasma levels of IL-17 were also detected in MDD patients
(Waisman et al., 2015). Combined with our results, we speculate
that the IL-17 signaling pathway plays an important role in the
shared mechanisms of MDD and IS.

A PPI network analysis was conducted among the proteins
derived from shared DEGs to depict functional and physical
interactions between IS and MDD. By integrating with six

algorithms (MCC, MNC, DMNC, Degree, Closeness, and
Betweenness) in the cytoHubba plugin of Cytoscape, we identify
ten hub communal DEGs (CD163, AEG1, IRAK3, S100A12, HP,
PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4), whichmay serve
as potential interventional targets.

CD163, the hemoglobin scavenger receptor, is a macrophage-
specific protein of the “alternative activation” phenotype and played
a major role in dampening the inflammatory response (Moestrup
and Møller, 2004). The upregulation of CD163 in monocytes was
observed in MDD patients compared with healthy controls (Simon
et al., 2021). However, in MDD in vitro experiments, sub-anesthetic
doses of ketamine, an antidepressant (Murrough et al., 2013),
program human monocytes into M2c-like macrophages (anti-
inflammatory phenotype) by inducing high levels of CD163 and
MERTK (Nowak et al., 2019). Compared with the CD14+ classical
subtype, CD163 expression was more pronounced in CD16+ non-
classical and intermediate monocytes after IS and may serve as a
potential biomarker of monocyte activation (Greco et al., 2021).
Moreover, the percentage of CD163+/CD16+ events 24 h after IS
was positively associated with stroke severity and disability. In our

FIGURE 8
The co-expression network and biological functions of hub genes. (A)Hub genes and their co-expression genes were analyzed viaGeneMANIA. (B)
The biological pathways were enriched for hub genes viaMetascape. (C) The potential diseases were participated by these hub genes from the DisGeNET
database.
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analysis, in comparison with the controls, the higher expression of
CD163 in both MDD and IS is observed, which may act as a shared
risk gene for IS and MDD.

The interleukin receptor-associated kinase (IRAK) family
[including IRAK-1, IRAK-2, IRAK-M (IRAK-3), and IRAK-4]
are involved in regulating Toll-like receptor (TLR) and
interleukin-1 (IL-1) signaling pathways. Interleukin one
receptor-associated kinase 3 (IRAK3) is a protein of 596 amino
acids with a molecular mass of 68 kDa and is limited to monocytes
and macrophages (Wesche et al., 1999). A recent genome-wide
association study (GWAS) identified a genome-wide significant
locus (rs11465988) in IRAK3 for esketamine efficacy of anti-
depression (i.e., percentage change in symptom severity score
compared with baseline). The potential roles of IRAK3 in IS
have also been discovered recently. The expression levels of
IRAK3 that may link natural killer cells to apoptosis were
upregulated in IS through bioinformatics analysis (Feng et al.,
2022). In experimental stroke mice, IRAK3 has neuroprotective
effects, and its deletion can exacerbate neurovascular damages
(Lyu et al., 2018). However, our results identify the enhanced
expression in both IS and MDD.

Myeloperoxidase (MPO) is a member of the superfamily of
heme peroxidases, that is, mainly found in neutrophils and
monocytes. High levels of MPO have been detected in the serum
of depressive patients in a twin study (Vaccarino et al., 2008).
Inhibiting MPO activity and serotonin reuptake may be a
potential new approach to MDD with inflammatory syndrome
(Soubhye et al., 2014). Moreover, a significant increase in MPO
mRNA expression was observed in peripheral blood cells from
patients with recurrent depressive disorder (rDD) compared to
controls (Gałecki et al., 2012; Talarowska et al., 2015). The
expression of MPO was also associated with the risk of IS
(Wright et al., 2009). Concentrations of serum MPO are
increased after IS and was associated with stroke severity (Palm
et al., 2018; Orion et al., 2020). InhibitingMPO activity increased cell
proliferation and improved neurogenesis after IS (Kim et al., 2016;
Kim et al., 2019). Although MPO contributes to both IS and MDD,
few studies were conducted to explore the potential mechanism of IS
complicated with MDD. Our result may provide a bridge linking the
two disorders.

Lipocalin-2 (LCN2) is a member of the highly heterogeneous
lipocalin family of secretory proteins. The roles of LCN2 in IS and

FIGURE 9
Construction of the regulatory network for hub genes. (A) gene-miRNAs interactions. (B) gene-TFs interactions. (C) A Sankey diagram indicating the
potential drugs for hub genes. The circle nodes represent the hub genes. The square nodes represent miRNAs. The diamond nodes represent TFs. TF,
transcription factor.
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FIGURE 10
Identification of common immune cells between MDD and IS. (A) The abundance of the immune cell in MDD using the ssGSEA method. (B) The
abundance of the immune cell in IS using the ssGSEA method. The immune cells with red color indicate the significantly common immune cells. (C) and
(D) A heat map visualized the correlations between common immune cells and shared hub genes. Significance level was denoted by *p-value <.05, **p-
value <.01, ***p-value <.001.
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depression have been proved recently (Zhao et al., 2019b; Vichaya
et al., 2019). A study demonstrated that the relationship between
LCN2 and the process of PSD may be mediated via the P38 MAPK
pathway (Wei et al., 2021). Our study provides potential association
for LCN2 and comorbidity between depression and IS.

Haptoglobin encoded by HP participates in the process of
depression and stroke from the perspective of genetic and
proteomic levels (Maes et al., 1993; Kiga et al., 2008; Ijäs et al.,
2013). Considering few studies focusing on the intermediate role of
haptoglobin between depression and stroke, this study provides new
insight and reference for investigating its potential roles in the
comorbidity, such as PSD.

Regulatory biomolecules may serve as potential
interventional targets in multiple complex illnesses. TFs play a
key role in regulating the ratio of transcription, and miRNAs
handle gene regulation and RNA silencing at the post-
transcription level. Given the crucial roles of the ten hub
common genes, we also analyze the TFs–gene, miRNAs-gene,
and drugs-gene interaction to find transcriptional, post-
transcriptional, and therapeutic regulators. mir-27a-3p, mir-
146a-5p, mir-335-5p, and let-7b-5p are identified to be
interacting with at least three hub genes. Furthermore, we
discovered that TFs (such as ZNF197, KLF9, KLF11, RERE,
ARID4B, TFE3, and FOSL1) target LCN2 and HP
simultaneously. Finally, 31 candidate drugs were predicted,
among which 21 drugs target MPO. Combined with the
above-mentioned roles of MPO in both depression and stroke,
these drugs may serve as potential theraputics to treat the
comorbidities.

Some limitations should be noted in our work. First, although
the gene expression profiling from both diseases are derived from
the same tissues, there is inadequate information regarding the
blood sample collection time for the studies. The disease course
of depression and stroke are different. Second, in this study, all
the results were acquired by bioinformatic analysis, and we have
not conducted any in vivo or in vitro experiments to verify the
different expression levels. Hence, the findings should be
interpreted with caution.

Conclusion

We performed a bioinformatic analysis to identify overlapping
DEGs subserving both MDD and IS. The communal DEGs
participate in the immune response and cell killing processes.
Furthermore, ten hub DEGs (CD163, AEG1, IRAK3, S100A12,
HP, PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4) were
screened out based on six algorithms (MCC, MNC, DMNC,
Degree, Closeness, and Betweenness). Immune infiltration
analysis shows that the innate immunity was activated whereas
acquired immunity was suppressed in both diseases. These findings
increase our understating of the association of IS with depression at
a transcriptional level. The final gene regulatory network may shed
light on novel therapeutic targets for both disorders.
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