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Introduction: Acute myeloid leukemia (AML) is the most common type of
leukemia in adults. However, there is a gap in understanding the molecular
basis of the disease, partly because key genes associated with AML have not
been extensively explored. In the current study, we aimed to identify genes that
have strong association with AML based on a cross-species integrative approach.

Methods: We used Weighted Gene Co-Expression Network Analysis (WGCNA) to
identify co-expressed genemodules significantly correlated with human AML, and
further selected the genes exhibiting a significant difference in expression
between AML and healthy mouse. Protein-protein interactions, transcription
factors, gene function, genetic regulation, and coding sequence variants were
integrated to identify key hub genes in AML.

Results: The cross-species approach identified a total of 412 genes associated
with both human and mouse AML. Enrichment analysis confirmed an association
of these genes with hematopoietic and immune-related functions, phenotypes,
processes, and pathways. Further, the integrated analysis approach identified a set
of important module genes including Nfe2, Trim27, Mef2c, Ets1, Tal1, Foxo1, and
Gata1 in AML. Six of these genes (except ETS1) showed significant differential
expression between human AML and healthy samples in an independent
microarray dataset. All of these genes are known to be involved in immune/
hematopoietic functions, and in transcriptional regulation. In addition, Nfe2,
Trim27, Mef2c, and Ets1 harbor coding sequence variants, whereas Nfe2 and
Trim27 are cis-regulated, making them attractive candidates for validation.
Furthermore, subtype-specific analysis of the hub genes in human AML
indicated high expression of NFE2 across all the subtypes (M0 through M7) and
enriched expression of ETS1, LEF1, GATA1, and TAL1 in M6 and M7 subtypes. A
significant correlation between methylation status and expression level was
observed for most of these genes in AML patients.

Conclusion: Findings from the current study highlight the importance of our
cross-species approach in the identification of multiple key candidate genes in
AML, which can be further studied to explore their detailed role in leukemia/AML.
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1 Introduction

Leukemia is characterized by the uncontrolled proliferation of
white blood cells, initially occurring in bone marrow, and
subsequently expanding through the blood (Chennamadhavuni
et al., 2022). With a global incidence rate of 2.5% (474,519 cases)
and death rate of 3.1% (311,594 cases), leukemia was the 15th most
commonly diagnosed and 11th leading cause of cancer-related
mortalities worldwide in 2020 (Sung et al., 2021). Furthermore,
accounting for 28% of all cancer-related cases, it is estimated to be
the most common childhood cancer in the United States in 2022
(Siegel et al., 2022). Depending on the rate of spreading, leukemia
can either be classified as acute or chronic, whereas, the myeloid or
lymphoid classification signifies the lineage of the transformed cells
(Chennamadhavuni et al., 2022). There are four predominant
subtypes of leukemia: acute lymphocytic leukemia (ALL), acute
myelogenous leukemia (AML), chronic myelogenous leukemia
(CML), and chronic lymphocytic leukemia (CLL)
(Chennamadhavuni et al., 2022). While ALL is the most
common leukemia in pediatrics, accounting for up to 80% of
cases, AML is most common in adults. CLL occurs due to the
proliferation of monoclonal lymphoid cells and is most common in
people aged 60–70 years (Chennamadhavuni et al., 2022). The
various risk factors for leukemia include age, genetic
predisposition, infections, and environmental exposures (Stieglitz
and Loh, 2013; Thakkar et al., 2014; Bispo et al., 2020). Germline
mutations and chromosomal abnormalities, including
rearrangements, translocations, and deletions are known to be
the most common causes of both acute and chronic forms;
however, the exact cause of most leukemia subtypes is unknown.
Although the last few decades have witnessed great progress in
studying the malignant transformation of hematopoietic cells, there
is still a gap in understanding the underlying mechanisms and
molecular factors.

Large-scale techniques, such as microarray and RNA
sequencing, have made it possible to study the genome-wide
expression of genes associated with a particular physiological or
pathological condition. Furthermore, weighted gene co-expression
network analysis (WGCNA) and similar network-based approaches
are increasingly being used for exploring the correlation patterns
among genes based on their expression. WGCNA can be used for
finding clusters (modules) of highly correlated genes, and hence, for
identifying candidate biomarkers or therapeutic targets (Langfelder
and Horvath, 2008). This approach has been successfully used to
identify hub genes and gene modules in various experimental
(Maertens et al., 2018) and disease conditions (Liu et al., 2019).
Additionally, a few reports have employed WGCNA to identify
prognostic factors in leukemia (Chen et al., 2019; Ye et al., 2019).
Chen et al. (2019) used WGCNA, and identified the long non-
coding RNA, LOC646762 as a potential biomarker for predicting the
survival of adult AML patients, as well as for risk stratification.
Similarly, Ye et al. (2019) identified cysteine-rich intestinal protein 1
(CRIP1) as a potential prognostic biomarker in AML patients using
the WGCNA co-expression network analysis.

In the current study, we combined the correlation network
analysis approach with systems genetics to identify key hub genes
in leukemia. The systems genetics data was generated from the BXD
recombinant inbred (RI) mice, derived from crosses between

C57BL/6J (B6) and DBA/2J (D2) inbred strains (Ashbrook et al.,
2021). The BXD family was started 50 years ago and is now
comprised of ~150 fully sequenced inbred strains. This family
segregates for ~6 million sequence variants scattered across the
genome; exceeding the number of variants segregating in many
human populations. The initial set of 32 BXD RI strains was used to
map Mendelian traits (Taylor et al., 1973; Ashbrook et al., 2021),
however, currently these strains that have been expanded to
152 lines by our group in the last 20 years (Peirce et al., 2004;
Ashbrook et al., 2021), are used for mapping complex traits, such as
behavior (Ashbrook et al., 2018), immune-function (Xu et al.,
2020a), brain structure (Rosen et al., 2009), and various diseases,
including cancer (Zhu et al., 2020; Wang et al., 2022), metabolic and
cardiovascular diseases (Koutnikova et al., 2009; Xu et al., 2020b).
Furthermore, the availability of the large-scale omics data
(i.e., transcriptomic, proteomic, and metabolomic) from multiple
tissues of BXD mice associated with different experimental and
physiological conditions provide a powerful genetic resource to
decode the molecular mechanisms and genetic regulatory
networks. Bystrykh et al. (2005) combined large-scale mRNA
expression analysis and gene mapping to identify genes and loci
that control hematopoietic stem cell (HSC) function. A study by
Henckaerts et al. (2004) used BXD strains to identify genetic
regulators associated with the proliferative capacity of HSCs and
progenitor cells. Cahan and Graubert (2010) integrated genomics
strategies in inbred mice strains to identify novel factors that might
contribute to therapy-related acute myeloid leukemia (t-AML)
susceptibility. Recently, we also (Wang et al., 2022) revealed the
role of Bcl2 in leukemia pathogenesis through systems genetics by
taking advantage of the data generated in BXD RI strains.

Here, we used WGCNA to identify co-expression modules that
were significantly correlated with AML. The association of the
module genes with leukemia was further confirmed based on
their differential expression pattern in a mouse model of AML.
Using protein-protein interaction network analysis, we analyzed the
significantly correlated modules, and identified genes that may be
important in leukemia pathogenesis. By incorporating a systems
genetics approach, the module genes were further narrowed down to
identify key hub genes in AML. Our approach not only combines
human and mouse expression data but also integrates network
analysis and systems genetics to shortlist the candidate genes that
may have key roles in leukemia pathogenesis.

2 Materials and methods

2.1 Microarray data analysis

The microarray raw data files (.CEL files) for AML and healthy
controls corresponding to Homo sapiens (accession: GSE9476 and
GSE14924) and Mus musculus (accession: GSE13690) were
downloaded from the GEO database (Barrett et al., 2013). The
dataset GSE9476, corresponding to human was used for WGCNA
analysis. It contained a total of 64 samples (38 healthy and 26 AML)
that were profiled on an Affymetrix Human Genome U133A array.
The mouse dataset containing 34 AML samples from five cohorts of
mice where leukemia was initiated using distinct MLL fusion
oncogenes and four normal bone marrow samples (profiled on
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Affymetrix Mouse Genome 430 2.0 Array) was used for differential
expression analysis. The raw data were background corrected and
normalized using the RMAmethod (Irizarry et al., 2003) in R, which
resulted in log2-transformed signal intensities. Differential
expression of the probe-sets was performed using the limma
package (Ritchie et al., 2015). The probes that did not match to
any gene symbol were excluded. Genes with a fold change ≥1.5 and
Benjamini-Hochberg adjusted p < 0.05 were considered statistically
significant. An independent human microarray dataset, GSE14924
(containing 20 AML and 21 healthy samples) was used for
validation.

2.2 Weighted gene co-expression network
analysis (WGCNA)

WGCNA is a method that is used to construct the co-expression
network of genes and to explore the association between phenotypes
and gene expression levels. We used WGCNA package (Langfelder
and Horvath, 2008) in R to construct a co-expression network and
identify significant modules using the human AML gene expression
dataset, GSE9476. All the samples were used for network analysis
based on the hierarchical clustering result (Supplementary Figure S1).
Briefly, the weighted adjacency matrix was constructed using the soft-
thresholding power (β) of 12 to attain scale-free topology. The
adjacency matrix was converted to topologically overlapping
matrix and then to the dissimilarity matrix. The dissimilarity
matrix was used to hierarchically cluster the genes. The clustered
genes were then assigned to different modules. The modules were
identified by dynamic tree cutting and with a minimum module size
of 30. Further, to quantify co-expression similarity of entire modules,
we calculated their eigengenes and clustered them on their correlation.
A correlation of 75% (distance threshold of 0.25) was used to merge
similar modules. The module eigengenes were then correlated with
AML, and association with a p < 0.05 were considered statistically
significant. The genes corresponding to significantly correlated
modules and with a significant differential expression between
AML and healthy mouse model were considered for further analysis.

2.3 Functional enrichment analysis

The genes corresponding to significantly correlated modules and
with a significant differential expression between AML and healthy
mouse model were considered for functional enrichment analysis
including Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and Mammalian Phenotype Ontology
(MPO) enrichment analyses. The GO and KEGG pathway
enrichment analyses were performed using clusterProfiler R package
(Yu et al., 2012) with default parameters, whereas MPO analysis was
performed using WebGestalt (Liao et al., 2019) with the reference
background as “protein coding genes” and a threshold of minimum
five genes/transcripts per category. Annotations with a p < 0.05 were
considered statistically significant. Benjamini-Hochberg correction was
used for controlling the false discovery rate (FDR). Additionally, the
Mouse Genome Informatics (MGI) database (Law and Shaw, 2018)
(http://www.informatics.jax.org/) was used to retrieve hematopoietic or
immune phenotype related information for the selected genes.

2.4 Protein-protein interaction (PPI) analysis

The significant module genes that were also differentially
expressed between AML and healthy mice were considered for
PPI analysis using the NetworkAnalyst tool (Zhou et al., 2019).
The International Molecular Exchange (IMEx) interactome
database (Breuer et al., 2013) within NetworkAnalyst was used
for obtaining the interactions of queried (or seed) proteins. The
“first-order” PPI network, which includes interactions among the
seed proteins as well as their direct interactors was considered.

2.5 Transcription factor (TF) analysis

The complete list of TFs was downloaded from the TRRUST
database (https://www.grnpedia.org/trrust/) and was matched with
the key module genes to identify possible transcriptional regulators.
TRRUST is a manually curated database containing human and
mouse transcriptional regulatory networks (Han et al., 2018).
Additionally, the TF enrichment analysis was performed using
the Enrichr web tool (https://maayanlab.cloud/Enrichr/) (Chen
et al., 2013), where we used “ChEA 2016” and “TRRUST 2019”
datasets to obtain the significantly enriched TFs with a Fisher’s exact
test p < 0.05. ChEA contains TF-target data from ChIP-seq based
studies (Lachmann et al., 2010). From both these databases, TFs
corresponding to only mouse were considered for further analysis.

2.6 Clinicopathological validation and
methylation analysis

We used UALCAN (Chandrashekar et al., 2022) to associate the
expression of the selected hub genes with various clinicopathological
characteristics, such as overall survival, patient gender, subtype of
the disease, and mutation status of FLT3 gene in AML patients. This
database uses gene expression and clinical data from The Cancer
Genome Atlas (TCGA) project (Cancer Genome Atlas Research
Network et al., 2013). Furthermore, the correlation between
methylation and expression profile of the candidate genes was
performed using Shiny Methylation Analysis Resource Tool
(SMART) platform (Li et al., 2019). SMART (http://www.bioinfo-
zs.com/smartapp/) is a user-friendly web application for
comprehensively analyzing the human DNA methylation data
from the TCGA database. The “Correlation” feature performs
pair-wise correlation analysis to explore the relationships between
the gene expression and DNAmethylation using Pearsonmethod. A
total of 170 AML samples with gene expression and methylation
data were included for correlation analysis. The SMART tool uses
the log2-scaled (TPM + 1) value (gene expression) and Beta-value
(methylation) for correlation calculation.

2.7 Expression QTL (eQTL) mapping

eQTL mapping was conducted with WebQTL in GeneNetwork.
The 7,320 informative SNP markers which segregated in BXD RI
strains were used for interval mapping. Likelihood ratio statistics
(LRS) were used to assess the association between differences in gene
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expression and differences in particular genotype markers. Genome-
wide significance (p-value < 0.05) was calculated based on
2000 permutation tests. eQTL mapping in this study was used to
determine whether differently expressed genes between AML and
healthy control are cis-regulated. Cis-regulated genes are located
within 5–10Mb interval of the peak SNP location and are
therefore more likely to be controlled by these variants and have
downstream effects on the expression of other genes and phenotypes.
The transcriptomic data corresponding to myeloid cells of BXD RI
mice used in the current study was generated by our collaborators
earlier and can be accessed through our GeneNetwork website (http://
www.genenetwork.org/) with the identifier “UMCG Myeloid Cells
ILM6v1.1 (Apr09) transformed” under the group name “BXD
Family” and type “Hematopoietic Cells mRNA”. More details on
the dataset can be found here: http://gn1.genenetwork.org/webqtl/
main.py?FormID=sharinginfo&GN_AccessionId=144.

2.8 Whole genome sequencing (WGS) of
DBA/2J mouse

DBA/2J (D2) mouse is one of the parental strains of BXDRI strains.
The WGS of D2 was carried out by our group earlier as described in
previous publication (Sasani et al., 2022). Briefly, D2 mouse were
euthanized using isoflurane. Spleen tissue was collected and placed in
a −80°C freezer for subsequent analysis. All DNA extraction, library
preparations and sequencing were carried out by HudsonAlpha
(Huntsville, AL, United States). The FASTQ files were aligned to the
mm10/GRCm38 C57BL/6J (B6) reference genome using the 10X
LongRanger software (v2.1.6). Variant calling was carried out on
aligned BAM files using GATK version v3.8-1-0. The final variants
were identified by three distinct call sets: 1) variants identified in DBA/2J
in this study, 2) variants identified in DBA/2J in our previous study
(Wang et al., 2016), and 3) variants identified in DBA/2J in the Sanger
Mouse Genomes Project. This generated a set of variants including
3,972,727 SNPs, 404,349 deletions and 365,435 insertions between the
D2 and B6 reference sequences.

3 Results

3.1 Identification of co-expression modules
using human AML gene expression data

The co-expression network construction was performed using the
human AML gene expression data withWGCNA R package by using a
soft thresholding power of 12 (Figure 1A).We used the top 50% (6,200)
genes with highest variance for the co-expression network analysis. As
shown in Figure 1B, the 6,200 genes were clustered into a total of 15 co-
expression modules, each of which contained a different number of
genes: turquoise (n = 1,506), blue (n = 1,210), grey (n = 906), salmon
(n = 787), green (n = 461), lightyellow (n = 296), black (n = 235),
magenta (n = 215), midnightblue (n = 113), lightcyan (n = 112), grey60
(n = 110), lightgreen (n = 105), royalblue (n = 64), darkred (n = 43), and
darkgreen (n = 37). The module represented by turquoise color had the
most genes, whereas that represented by darkgreen color contained the
fewest genes. The greymodule contained the unassigned genes; hence it
was excluded from further analysis.

3.2 Modules significantly correlated with
human AML and their expression in mouse
model

Furthermore, module-trait analysis identified seven co-expression
modules that were significantly correlated with humanAML phenotype
(Figure 1C). These included green (r = −0.27, p = 0.034), lightyellow
(r = −0.53, p = 6.23E-06), magenta (r = −0.44, p = 0.00026),
midnightblue (r = 0.35, p = 0.0046), lightcyan (r = 0.47, p = 7.58E-
05), grey60 (r = −0.38, p = 0.0018), and darkgreen (r = −0.63, p = 2.19E-
08) modules, and contained a total of 1,344 human genes, which
mapped to 1,274 mouse orthologs. Among the 1,274 mouse
ortholog genes that were part of the significant co-expression
modules, 412 were also found to be significantly differentially
expressed between AML and healthy mice (Figure 2A, Figure 3).
Thus, these genes may play an important role in the modulation of
various processes and pathways related to AML in both human and
mouse. Hence, we considered these 412 genes for further analysis.
Among these, a total of 187 geneswere upregulated (log2FC: 0.58–4; adj.
p-value < 0.05) and 225 genes were found to be downregulated in AML
compared to healthy mouse (log2FC: 0.58–8.9; adj. p-value < 0.05).
Interestingly, all the significant co-expression modules contributed to
the list of differentially expressed genes inmouse, and as expected, most
of the differential genes were from the “green” module (n = 113),
followed by “magenta” module (n = 88). Furthermore, 80, 55, 44, 24,
and 8 genes were found to be differentially expressed in mouse from
“lightyellow,” “grey60,” “lightcyan,” “darkgreen,” and “midnightblue”
modules, respectively. Supplementary File S1 lists the significant
module genes in human and their differential expression in mouse.

3.3 Key module genes are involved in
functions and pathways related to blood and
immune system physiology

The 412 genes that were found to be important in both human
and mouse AML were further explored to understand their
involvement in leukemia pathology through functional and
pathway analyses. The functional analysis indicated enrichment of
various pathways and processes associated with blood physiology. A
total of 166 MPOs were found to be significantly represented by the
key module genes with an adj. p < 0.05. It is noteworthy that most of
these MPOs (approximately >90%) were associated with blood cell
and hematopoietic system-related physiology or were involved in
immune system related functions (Figure 2B). “Abnormal blood cell
morphology/development” was the most significant MPO (adj. p =
2.73E-11) containing a total of 68 genes. The other important MPOs
included “abnormal hematopoietic system physiology” (n = 88; adj.
p = 1.49E-10), “abnormal immune system organ morphology” (n =
72; adj. p = 5.01E-09), “abnormal spleenmorphology” (n = 59; adj. p =
7.04E-09), “abnormal adaptive immunity” (n = 73; adj. p = 7.21E-07).
Additionally, a few of the MPOs were related to apoptosis, abnormal
kidney iron level, and urinary system related functions. A complete list
of significant MPOs is provided in Supplementary File S2.

Similarly, GO analysis indicated the enrichment of several biological
processes (BP) related to immune system and blood cell physiology.
Overall, more than 700 GO-BPs were found to be significantly enriched
by the key module genes with an adj. p < 0.05. The processes, such as
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“homeostasis of number of cells” (n=37; adj. p=1.35E-17), “myeloid cell
differentiation” (n = 36; adj. p = 5.65E-15), “erythrocyte development”
(n = 12; adj. p = 3.40E-10), and “leukocyte proliferation” (n = 27; adj. p =
4.20E-10) were among the highly significant GO annotations
(Figure 2C). Pathway analysis revealed the significant enrichment of
five KEGG pathways with an adjusted p < 0.05. These pathways include
“porphyrin metabolism” (n = 9; adj. p = 0.0002), “biosynthesis of
cofactors” (n = 13; adj. p = 0.007), “hematopoietic cell lineage” (n =
10; adj. p = 0.007), “primary immunodeficiency” (n = 6; adj. p = 0.013),
and “T-cell receptor signalling pathway” (n = 9; adj. p = 0.042). Other
important pathways that were affected by the key module genes were
signalling pathways, such as NF-kappa B, chemokine, and FoxO
signaling, and acute myeloid and chronic myeloid leukemia pathways.
Furthermore, it is noteworthy that the key module genes significantly
represented multiple metabolic pathways. A few of the top pathways
include “Glycolysis/Gluconeogenesis,” “Glycine, serine and threonine

metabolism,” and “Biosynthesis of cofactors” (Figure 2D). A complete list
of significant GO annotations and KEGG pathways is provided in
Supplementary File S2.

3.4 TF analysis reveals factors regulating key
module genes in AML

The TF analysis was performed to a) determine whether there
are any regulatory factors among the key module genes, and b)
identify the key regulators that may be involved in the regulation of
these module genes. Our analysis revealed that among the
412 module genes that were identified based on both human and
mouse expression data, ~9% (36 proteins) were found to act as
transcription factors, based on the manually curated TF-target
relationship from the TRRUST database. Furthermore, to reveal

FIGURE 1
WGCNA analysis of the human AML expression data. (A) Soft-thresholding index R2 or mean connectivity (y-axis) as a function of different β
thresholds (x-axis). A β of 12 was selected for constructing the network (indicated by a red line in the plot). (B) Gene dendrogram obtained by clustering
the dissimilarity based on consensus Topological Overlap. The color rows show the preliminary (module color) and the merged module assignments
(merged module color). A total of 23 preliminary modules were detected by clustering 6,200 genes. Merging the modules with a distance threshold
of 0.25 resulted in 15 modules. (C) Correlation between module eigengenes and the clinical trait of the samples (presence or absence of the disease).
Associations with a p < 0.05 were considered significant. The numbers in the heatmap represent the correlations of the corresponding module
eigengenes and clinical trait, with p-values shown in parentheses. The color intensity indicates the correlation.
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whether any of these TFs control the expression of the 412 module
genes, we performed TF-enrichment analysis using the ChEA and
TRRUST datasets in Enrichr. Our results showed significant
enrichment of 80 TFs (union list of ChEA and TRRUST
enrichment) that may be involved in the regulation of the
412 genes (Supplementary File S3). Interestingly, 12 TFs (MYC,
KLF1, NFE2, GFI1B, FOXO3, TAL1, GATA1, CREM, FOXO1,
NFE2L2, TCF7, and ETS1) were found to be among the 36 TFs
within the key module genes. Furthermore, four TFs (GFI1B, TAL1,
GATA1, and FOXO1) were found to be enriched by both ChEA and
TRRUST datasets. Thus, these TFs may be important in regulating
the expression of the genes associated with immune function and
blood physiology in both human and mouse.

3.5 Identification of important nodes
through PPI analysis of the key module
genes

Protein-interaction analysis of the key module genes was
performed to identify important nodes (proteins) within the
412 module genes. While constructing the PPI network,
interactions between the seed proteins as well as their first

interactors were considered. Thus, the network analysis resulted
in a total of 11 subnetworks (containing at least three nodes), among
which, the first subnetwork had highest number of nodes and edges,
and hence, it was considered for further analysis (Figure 4). The
selected subnetwork (henceforth referred to as “PPI network”)
included 1,095 nodes that were connected with 1,329 edges
(interactions). Of the 1,095 nodes, 150 were seed proteins, and
the remaining were their direct interactors. The average node degree
was 2.4, whereas the average betweenness score of the nodes was
found to be ~1943. The analysis of the PPI network indicated
TAL1 to be the most important node having 251 interacting
partners (degree) and having the highest betweenness score. The
other important nodes in the network were NFE2, LMNA, SP3,
FOXO3, GATA1, IKBKB, FYN, MYC, APP, and NFE2L2, each
having a node degree of at least 25. There were a total of 37 proteins
that had a node degree of at least 10, and interestingly, 33 of these
were seed proteins.

3.6 Identification of leukemia hub genes

The leukemia hub genes in the current study were identified
based on multiple criteria. We integrated different data types

FIGURE 2
Functional analysis of the module genes that were differentially expressed between AML and healthy mice. (A)Number of mice orthologs that were
part of significant co-expression modules as well as differentially expressed between AML and healthy mouse (a total of 412 genes were found common
between both the lists). Top 20 (B) Mammalian Phenotype Ontologies, (C) Gene Ontology biological processes, and (D) KEGG pathways significantly
enriched by the 412 genes.
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including PPI, mutation, cis-regulation, and functional data to
identify important hub genes in leukemia. First, we focused our
analysis on the seed proteins that were part of the PPI network
(n = 150). Among the seed proteins, a total of 61 genes were
connected to at least five other proteins (node degree ≥5),
33 genes had coding mutations in D2 parental mice strain,
10 genes were cis-regulated, and 107 genes were involved in the
hematopoietic system/immune system phenotypes/diseases or

cancer. We considered the genes having a node degree of ≥5 (n =
61) for further selection. Among these, 13 genes had coding
SNPs (Mef2c, Ctbp2, Kifap3, Trim27, Atrx, Ivns1abp, Gbp2,
Rad21, Nfe2, Cdkn1b, Anxa1, Ets1, and Arrb1), four genes
were cis-regulated (Tia1, Trim27, Nfe2, and Msl1), 20 genes
were mouse TFs, and 51 genes were involved in immune/
hemopoietic-related phenotypes/diseases (Figure 5). Table 1
lists the genes that are involved in immune/hematopoietic-

FIGURE 3
Heatmap showing the differential expression of key module genes (n = 412) in mouse. Each column is a sample, and each row is a gene. The color
intensity indicates the level of expression of a specific gene in a particular sample (red indicates high expression and green indicates low expression).
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related functions and in at least one of the other three
categories.

Our analysis foundNfe2 to be common to all the four categories,
i.e., harbors D2 SNPs, acts as a TF, cis-regulated, and is associated
with immune-related functions (Figure 5A). It interacted with a total
of 66 proteins in the protein interaction network and harbored non-
synonymous mutations. Furthermore, Trim27 and Mef2c were
common to two other categories in addition to being involved in

immune-related functions. Trim27 contained non-synonymous
mutations and was cis-regulated, whereas Mef2c acts as a TF and
had splice-site mutations. Trim27 interacted with seven proteins in
the PPI network, whileMef2c had a node degree of 12 (Table 1). Ets1,
a TF, was another important molecule that not only interacted with
22 proteins, but also harbored frame-shift mutations. A few other
genes, such as Meis1, Myc, Ikbkb, Sp3, Cdkn1b, Lef1, Foxo1, Foxo3,
Gata1, Tal1,Nfe2l2 interact with multiple proteins (at least 20) in the
network, suggesting that they may have important roles in
regulating various immune system-related functions and
processes. Interestingly, most of these proteins with high node
degree act as TFs, which further strengthens their role in
immune-system physiology (Table 1). Furthermore, Myc, Ikbkb,
Lef1 were also found to be involved in the significantly enriched
AML pathway. Figure 5B represents the significance of differential
expression of a few important genes between AML and control
mouse. All the genes were significantly differentially expressed in
mouse with an adjusted p-value < 0.05. In addition, we validated the
differential expression of these genes using an independent human
microarray dataset (GSE14924). Except NFE2L2 and ETS1, all the
genes showed a significant differential expression between human
AML and healthy tissues (Supplementary Figure S2).

3.7 Clinicopathological validation and
methylation analysis of the hub genes

We sought to validate the important candidate genes that we
identified using a combinatorial integrative approach (Figure 5B).
The gene expression values were correlated with various
clinicopathological characteristics of AML patients using the
UALCAN database. The expression values and data related to
various clinicopathological characteristics were obtained from the
TCGA project. The correlation of the expression of the candidate
genes with sex of the patients indicated only TAL1 to be slightly

FIGURE 4
Protein-protein interaction network of the key module genes
differentially expressed between AML and healthy mouse. Brown
nodes with blue borders: module genes (also known as seed proteins).
Green nodes: proteins directly interacting with the seed proteins.
Node size indicates increasing degree.

FIGURE 5
Genes shared across different functional categories. (A)Genes with a node degree of at least 5 (n = 61) are shown in the Venn diagram. Genes were
selected based on the following categories: harbouring coding SNPs, cis-regulated in BXD strains, acting as TFs, and associated with immune/
hematopoietic system related function or phenotype. (B) Statistical significance of selected genes involved in immune functions alongwith at least one of
the other three functional categories (shown in the Venn diagram). −log10 (adj. p-value) in y-axis represents the significant differential expression of
the genes between mouse AML and normal control. A −log10 (adj. p-value) of 1.3 is equal to an actual adjusted p-value of 0.05.
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significantly different between male and female AML patients
(Supplementary Figure S3). Based on French-American-British
classification system, AML is divided into subtypes M0 through
M7, depending upon the type and maturity of leukemia developing
cells. Our analysis showed varying expression of the candidate genes
across different AML subtypes (Supplementary Figure S4). We
observed high expression of NFE2 across all the subtypes
compared to other candidate genes. While the expression of
TRIM27 was consistent across the subtypes, that of ETS1, LEF1,
GATA1, and TAL1 was specifically higher in the M6 (starts in very
immature forms of red blood cells) and M7 (starts in immature
forms of cells that make platelets) AML subtypes (Supplementary
Figure S4). Furthermore, we verified the expression of the candidate

genes between AML patients harboring wild-type or mutated FMS-
like tyrosine kinase 3 (FLT3) sequence. FLT3 is a type III receptor
tyrosine kinase and plays an important role in survival, proliferation,
and differentiation of hematopoietic cells, and is most frequently
mutated and is a poor prognostic factor in AML patients (Kiyoi
et al., 2020). Thus, mutations in this gene may affect the expression
and function of downstream targets. Our analysis showed significant
difference in the expression of nine candidate genes (MEIS1,
MEF2C, NFE2, LEF1, FOXO1, FOXO3, ETS1, GATA1, and
TAL1). While MEIS1 (p = 0.0055), NFE2 (p = 0.041), and
GATA1 (p = 0.0013) significantly increased, MEF2C (p = 0.0064),
LEF1 (p = 2.64E-07), FOXO1 (p = 1.58E-07), FOXO3 (p = 0.0035),
ETS1 (p = 2.04E-06), and TAL1 (p = 1.8E-04) significantly decreased

TABLE 1 Selected key genes with a node degree ≥5 in protein interaction network.

Gene symbol Node degree D2 SNP Cis-regulated TF Immune function

Meis1 22 -- × ✓ ✓

Mef2c 12 Splice site × ✓ ✓

Tia1 5 -- ✓ × ✓

Atrx 6 Non-synonymous × × ✓

Ivns1abp 6 Non-synonymous × × ✓

Satb2 5 -- × ✓ ✓

Nfe2l2 25 -- × ✓ ✓

Myc 36 -- × ✓ ✓

Ikbkb 42 -- × ✓ ✓

Trim27 7 Non-synonymous ✓ × ✓

Sin3b 13 -- × ✓ ✓

Ddit3 5 -- × ✓ ✓

Gbp2 7 Non-synonymous × × ✓

Rad21 7 Non-synonymous × × ✓

Nfe2 66 Non-synonymous ✓ ✓ ✓

Sp3 52 -- × ✓ ✓

Cdkn1b 21 Non-synonymous × × ✓

Xrcc5 8 -- × ✓ ✓

Lef1 23 -- × ✓ ✓

Foxo1 21 -- × ✓ ✓

Anxa1 5 Non-synonymous × × ✓

Foxo3 46 -- × ✓ ✓

Ets1 22 Frame shift × ✓ ✓

Gfi1b 13 -- × ✓ ✓

Arrb1 17 Non-synonymous × × ✓

Gata1 42 -- × ✓ ✓

Tal1 251 -- × ✓ ✓

Note: Important genes based on different categories have been highlighted in bold font. The significance of differential expression of these genes between mouse AML and normal control is

shown in Figure 5B, whereas that of human is shown in Supplementary Figure S2.
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in patients with FLT3-mutation (Supplementary Figure S5). The
survival analysis revealed that high expression of most of the hub
genes decreased the overall survival of AML patients, however, the
results were not statistically significant (Supplementary Figure S6).
Thus, the clinicopathological analysis suggested that the hub genes
identified in the current study may have important roles in the
development and progression rather than in the detection or
prognosis of AML, however it warrants further investigation.

Next, we performed correlation analysis between the
methylation levels and expression of the hub genes to understand
their regulation in AML patients. Our results revealed that the
expression of approximately 50% of the 15 hub genes (MEIS1,
NFE2, LEF1, FOXO1, FOXO3, ETS1, and GATA1) was
significantly correlated with their methylation levels (Table 2,
Supplementary Figures S7−S13). Interestingly, all the genes
except ETS1 were found to be negatively correlated. Furthermore,
MEIS1 (r = −0.58; p < 2.2e-16) followed by GATA1 (r = −0.54; p =
1.8e-14) were the most significantly correlated genes. Thus, our
results demonstrated that many of the hub genes identified by us
may be regulated through methylation of their promoter regions
in AML.

4 Discussion

AML is the most common type of leukemia in adults, with a
mean age at diagnosis of 68 (https://seer.cancer.gov/statfacts/html/
amyl.html). Despite decades of research, there is still a gap in

understanding the molecular mechanisms associated with
leukemia and AML in general. In the current study, we used a
combined approach of systems genetics and co-expression network
analysis to identify key hub genes associated with AML.

WGCNA analysis of human AML expression data resulted in a
total of 15 co-expression modules with genes ranging from 37 to
1,500 across different modules. Further, correlation of these modules
with AML helped us in narrowing down to seven co-expression
modules that were significantly associated with the disease.
However, together these seven modules contained a total of
1,344 genes, a large number to perform a focused analysis.
Transgenic mouse models of AML have been extensively used to
study the molecular mechanisms associated with leukemia
(Almosailleakh and Schwaller, 2019). Hence, we sought to use
the expression data from an AML mouse model to further
shortlist important leukemia-related genes from the co-expression
modules. A combined approach of using cross-species data also
ensures greater reproducibility of the findings and has been
employed in various conditions, including cancer, aging,
neurodegenerative disorder, and osteoarthritis (Miller et al., 2010;
Mueller et al., 2017; Jin et al., 2019; Podder et al., 2021). While the
analysis by Podder et al. (2021) used experimentally verified protein-
protein interaction networks and highly enriched conserved
biological pathways across four species, the other three studies
(Miller et al., 2010; Mueller et al., 2017; Jin et al., 2019) used
“modulePreservation” method (Langfelder et al., 2011) in
WGCNA to identify the conserved modules across species. This
function assesses how well network properties of a module in a

TABLE 2 Correlation between gene expression and methylation level of candidate genes in AML patients.

Hub gene name Candidate gene description Pearson correlation R Correlation coefficient p-value

MEIS1 Meis homeobox 1 −0.58 <2.2e-16

MEF2C myocyte enhancer factor 2C −0.025 0.75

NFE2L2 nuclear factor, erythroid derived 2, like 2 −0.12 0.13

MYC myelocytomatosis oncogene 0.012 0.88

IKBKB inhibitor of kappaB kinase beta 0.11 0.15

TRIM27 tripartite motif-containing 27 0.073 0.35

NFE2 nuclear factor, erythroid derived 2 −0.43 6.1e-09

SP3 trans-acting transcription factor 3 −0.073 0.35

CDKN1B cyclin-dependent kinase inhibitor 1B 0.02 0.8

LEF1 lymphoid enhancer binding factor 1 −0.19 0.014

FOXO1 forkhead box O1 −0.34 7e-06

FOXO3 forkhead box O3 −0.25 0.00099

ETS1 E26 avian leukemia oncogene 1, 5′ domain 0.35 3.6e-06

GATA1 GATA binding protein 1 −0.54 1.8e-14

TAL1 T cell acute lymphocytic leukemia 1 −0.089 0.25

Note: The correlation analysis between methylation and gene expression was performed using SMART web-application (http://www.bioinfo-zs.com/smartapp/). The “Correlation” feature

performs pair-wise correlation analysis to explore the relationship between the expression and DNAmethylation, using Pearson method. A total of 170 AML samples with gene expression and

methylation data were included for the correlation analysis. SMART uses the log2-scaled (TPM + 1) value (gene expression) and Beta-value (methylation) for correlation calculation. Plots for

the significant genes are shown as Supplementary Figures S7–S13.
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reference dataset are preserved in a test dataset based on a number of
variables, such as module size, network size and connectivity. The
“modulePreservation” function is particularly useful for exploring
the conserved pathways or processes across different species
(Langfelder et al., 2011). We used differential expression along
with WGCNA network analysis to identify hub genes in the
current study. Our approach utilized the strength of each of the
methods to prioritize the hub genes. While coexpression is an
important criterion for selecting the functionally similar genes,
differential expression between disease and heathy condition
indicates the causal significance of a particular gene. Hence, the
genes identified based on such an approach would have higher
reliability and confidence of association with AML. Finally, we
identified a set of 412 genes that were significantly correlated
with human AML based on module-trait relationship as well as
exhibited a significant differential expression between AML and
healthy mouse model. It should be noted that each of the seven
significantly correlated modules contributed to the differentially
expressed genes in mouse, further corroborating the module-trait
correlation significance, and confirming the importance of the genes
in both the species as well as establishing the validity of our
approach.

We performed functional and pathway enrichment analysis of
the 412 genes to explore their possible roles in leukemia pathology.
Our analysis revealed that these genes are associated with various
functions and pathways related to hematopoietic and immune
system physiology. The annotations, such as “abnormal blood
cell morphology/development,” “abnormal hematopoietic system
physiology,” and “abnormal immune system organ morphology”
were among the top significantly represented MPOs by the module
genes. These annotations have been reported to be enriched by the
genes modulated in leukemia (Wang et al., 2022), primary human
megakaryocytes (Tijssen et al., 2011) or myeloproliferative
neoplasms (Contreras Castillo et al., 2021). Furthermore, the GO
and KEGG pathway analyses resulted in the enrichment of similar
annotations. The GO biological processes, such as “myeloid cell
differentiation,” “erythrocyte development,” and “leukocyte
proliferation” were significantly enriched by the key module
genes, which was in agreement with the results reported in
literature in the context of leukemia/AML (Chen et al., 2020;
Schieber et al., 2020). Additionally, the pathway analysis revealed
enrichment of several leukemia or hematopoiesis related pathways.
“Porphyrin metabolism” was found to be the most significantly
enriched KEGG pathway and involved 9 of the 412 module genes.
Porphyrins, the ring-shaped molecules undergo a series of chemical
changes to produce heme, an important component of hemoglobin.
Thus, changes in the metabolism of porphyrin by the module genes
may affect the production and maturation of erythrocytes. This
pathway has been reported to be affected by the deregulated genes in
different hematopoietic cancers, including leukemia (Li et al., 2021).
The top 20 enriched pathways also included pathways related to
immune system, such as hematopoietic cell lineage, and primary
immunodeficiency. As expected, “AML pathway” was also in the list
of top 20 significant pathways and contained five of the 412 module
genes. Additionally, several signaling pathways were found to be
associated with the key module genes, most significant ones being
“T cell receptor signaling,” “chemokine signaling” and “NF-kappa B
signaling” pathways. While the first two are primarily immune

response pathways (Gorentla and Zhong, 2012; Sokol and Luster,
2015), NF-kappa B signaling affects the immune system via
activating a plethora of downstream target genes. In AML,
constitutive NF-κB has been observed in 40% of cases and
enables leukemia cells to stimulate proliferation and evade
apoptosis (Zhou et al., 2015). Because of the large body of
evidence supporting its role in malignant transformation, NFκB
has been a promising target for various inhibitors in clinical trials for
the treatment of AML (Zhou et al., 2015). In the current analysis,
eight genes were found to be involved in NFκB signaling, including
Ikbkb, one of the important molecules in the NFκB signaling
pathway (Schmid and Birbach, 2008). Interestingly, Ikbkb was
also found to be involved in “T cell receptor signaling,” and
“chemokine signaling” pathways. Furthermore, multiple
biosynthesis/metabolic pathways were represented by the list of
key module genes, with seven pathways being in the top 20. Among
these, “Biosynthesis of cofactors” was the most significant pathway
followed by “Glycine, serine and threonine metabolism.” A
significant increase in fructose intake by the cancer cells has been
shown to be important for their proliferation and metastasis, in
various tissues (Bu et al., 2018; Weng et al., 2018). A recent study by
Jeong et al. (2021) explored the mechanisms underlying fructose
metabolism in AML cells in glucose-limited conditions and
suggested that the de novo serine synthesis pathway could be a
promising therapeutic target for leukemia. In the current analysis,
five module genes (Alas2, Bpgm, Alas1, Pgam1, and Psat1) were
associated with the “Glycine, serine and threonine metabolism”

pathway. The “Warburg Effect,” production of energy through a less
efficient aerobic glycolysis process (Warburg et al., 1927) is a well-
known phenomenon in cancer cells including leukemic blasts, and is
correlated with worse prognosis of AML (Herst et al., 2011).
Furthermore, a study by Khan et al. (2020) has shown that
transport of pyruvate into the mitochondria through MTCH2 has
been linked to the survival and differentiation of AML leukemia
stem cells (LSCs), and inhibition of MTCH2 results in the
differentiation of LSCs and reduced survival of cancer cells (de
Beauchamp et al., 2022). Thus, the leukemic cells rewire the
metabolic pathways, especially energy metabolism for their
growth and survival, supporting the enrichment of various
metabolic pathways, especially glucose metabolism by our
module genes in the current study.

Our TF analysis provided insights into the regulation of the key
module genes correlated with AML. The results revealed GFI1B,
TAL1, GATA1, and FOXO1 to be important regulators as they were
enriched by two different TF resources. Furthermore,
TAL1 interacted with most of the proteins in the protein
interaction network. TAL1 is known to be involved in DNA-
binding, E-box binding, and histone deacetylase binding. Our
differential analysis results indicated it to be significantly
downregulated in both mouse and human AML. The role of Tal1
in leukemia has been reported previously by multiple studies (Li
et al., 2012; Thoms et al., 2021). A review by Tan et al. (2019)
discusses in detail the regulatory network and downstream target
genes controlled by Tal1 during hematopoiesis and leukemia. Tal1 is
essential for maintaining the multipotency of hematopoietic stem
cells (HSCs) and keeping them in quiescence stage. Our functional
analysis confirmed the involvement of Tal1 in various
hematopoiesis-related processes and functions, and in
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homeostasis of a number of immune cells. The other two important
TFs were GATA1 and FOXO1. Gata1 is known to be involved in
several processes, including platelet aggregation, regulation of
biosynthetic process, and erythrocyte differentiation. Our
functional analysis also indicated its involvement in apoptosis.
The role of Gata1 in deregulation of hematopoiesis has been well
established (Sportoletti et al., 2019; Goemans et al., 2021), whereas,
the role of Foxo1 in hematopoiesis has only been recently reported
(Gurnari et al., 2019; Zheng et al., 2020). Our results revealed the
association of Foxo1 with several signaling pathways, cellular
response to oxidative stress, insulin stimulus and carbohydrate
metabolism. Thus, Foxo1 may be involved in AML via regulating
signaling pathways, such asWNT and NF-kappa B as well as glucose
metabolic pathways.

Furthermore, we employed an integrative approach by including
systems genetics, protein interaction, and functional information to
shortlist the key hub genes in AML. We used BXD mice and their
parental strains to perform systems genetics analysis and identify
genes associated with molecular mechanisms underlying myeloid
cells, and thus, delineate their possible roles in AML pathogenesis.
The cis-regulated genes exhibit downstream effects on the
expression of other genes and phenotypes, acting as important
regulators compared to those that are trans-regulated. Hence,
using myeloid expression data in combination with sequence
variants in BXDs, we identified cis-eQTLs for the identified AML
genes. Similarly, the presence of non-synonymous-variants in the
gene sequence between B6 and D2 parents predicts their protein-
coding potential in BXDmice. The BXD strains carrying the mutant
variant of the gene may have different molecular and/or phenotypic
traits than those carrying the wild-type gene. Hence, these strains
can be used for exploring the molecular mechanisms associated with
the mutant variant of the genes in myeloid cells, and in turn aid in
revealing possible pathological mechanisms underlying AML.
Although the systems genetics approach does not directly link
the genes to AML, it helps in inferring the possible roles of these
genes in AML pathogenesis using an isogenic genetic reference
population. Furthermore, we validated the hub genes in AML
patients by correlating their expression with various
clinicopathological characteristics and methylation levels. Our
analysis led to the identification of multiple hub genes, including
NFE2, TRIM27, MEF2C, and ETS1 as important candidates. All of
these were found to be involved in immune-related functions and
harbored deleterious mutations in D2 mice. While Mef2c and
Trim27 were significantly upregulated, Nfe2 and Ets1 were
downregulated in AML versus healthy mice. In addition, Nfe2
and Trim27 were found to be cis-regulated according to the
GeneNetwork database, making them attractive candidates for
further study in AML. While the role of NFE2 transcription
factor in hematopoiesis has been well-known for a long time
(Shivdasani et al., 1995; Catani et al., 2002), its importance in the
malignant transformation of blood cells has been relatively ignored.
Only recently, a few reports have studied its importance in leukemia
(Jutzi et al., 2019; Marcault et al., 2021). Jutzi et al. (2019) used a
mouse model to show that mutations in Nfe2 promotes the
development of myelosarcoma and/or AML. Furthermore, Nfe2
may act by enhancing the expression of hematopoietic master
regulators, such as SCL/TAL1 and GATA2 (Siegwart et al., 2020),
both of which were found to be important module genes in the

current study. Furthermore, we showedNFE2 to be highly expressed
across all AML subtypes and its expression significantly correlated
with methylation levels in AML patients. Trim27 encodes a member
of the tripartite motif (TRIM) family and is localized in the nuclear
matrix. In addition, it represses gene transcription by interacting
with the enhancer of polycomb protein. A recent article has shown
that USP7 and TRIM27 are integral components of PRC1.1 and
USP7-TRIM27 axis is a druggable target in leukemia (Maat et al.,
2021). A study by Ma et al. (2019) revealed that overexpression of
TRIM27 suppresses apoptosis of esophagus cancer cells and
increased their glucose uptake. Transcriptome analysis of
Trim27-overexpressing myeloid progenitor cells indicated that it
increased the expression of myelopoiesis regulators, myeloid
proliferation-related signaling genes, and myeloid maturation-
related genes (Wang et al., 2018). MEF2C, a TF, is encoded by
the member of the MADS box transcription enhancer factor 2
(MEF2) family of proteins and is known to play a role in
myogenesis. High expression of MEF2C has been shown to be
associated with adverse-risk features and poor outcome in
pediatric and adult AML (Cante-Barrett et al., 2014; Laszlo et al.,
2015; Xu et al., 2020c). In the current study, we also observed the
upregulation ofMef2c in both mouse and human AML compared to
healthy control. Aberrant phosphorylation of MEF2C has been
reported to induce chemotherapy resistance in AML (Brown
et al., 2018). Ets1 encodes a member of the ETS family of
transcription factors, which are defined by the presence of a
conserved ETS DNA-binding domain. In hematopoietic cells,
Ets1 regulates cellular differentiation, and in other cells, such as
endothelial, vascular smooth muscle and epithelial cancer cells, it
promotes invasive behavior (Dittmer, 2003). Our study showed that
Ets1 is downregulated in both human and mouse AML and harbors
a frame-shift mutation in D2 mice. The ETS family of proteins
function either as transcriptional activators or repressors. A study by
Fu et al. (2019) has demonstrated that Ets1 plays a crucial role in
MLL/EB1-mediated leukemic transformation in a mouse bone
marrow transplantation model. Moreover, the expression of ETS1
was found to be significantly correlated with its methylation levels in
AML patients in the current study. Our study has a few limitations.
While we identified important hub genes in leukemia based on
various analyses and established their functional and
clinicopathological importance in AML, their expression and the
underlying mechanisms need to be experimentally verified.

We used a cross-species integrative approach to identify the key hub
genes in AML. The co-expression network constructed using human
expression data and differential analysis using mouse expression data
identified a total of 412 genes that were found to be involved in functions
and pathways related to hematopoiesis, immune-system physiology, and
leukemia. The integration of protein interaction information, gene
functions, regulatory, and mutation data identified multiple key hub
genes, particularly Nfe2, Trim27,Mef2c, Ets1, Tal1, Foxo1, and Gata1 in
AML. These genes can be further explored to understand their detailed
mechanisms of function in AML.
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the GeneNetwork with the accession GN144 (http://gn1.genenetwork.
org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=144),
and NCBI-GEO database (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE9476; https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE13690; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE14924).
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