
Mapping quantitative trait loci and
predicting candidate genes for
Striga resistance in maize using
resistance donor line derived from
Zea diploperennis

B. Badu-Apraku*, S. Adewale, A. Paterne, Q. Offornedo and M. Gedil

International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

The parasitic weed, Striga is amajor biological constraint to cereal production in sub-
Saharan Africa (SSA) and threatens food and nutrition security. Two hundred and
twenty-three (223) F2:3 mapping population involving individuals derived from TZdEI
352 x TZEI 916 were phenotyped for four Striga-adaptive traits and genotyped using
the Diversity Arrays Technology (DArT) to determine the genomic regions
responsible for Striga resistance in maize. After removing distorted SNP markers,
a genetic linkage map was constructed using 1,918 DArTseq markers which covered
2092.1 cM. Using the inclusive composite interval mapping method in IciMapping,
twenty-three QTLs influencing Striga resistance traits were identified across four
Striga-infested environments with five stable QTLs (qGY4, qSC2.1, qSC2.2, qSC5, and
qSC6) detected in more than one environment. The variations explained by the QTLs
ranged from4.1% (qSD2.3) to 14.4% (qSC7.1). Six QTLs eachwith significant additive ×
environment interactionswere also identified for grain yield and Striga damage. Gene
annotation revealed candidate genes underlying the QTLs, including the gene
models GRMZM2G077002 and GRMZM2G404973 which encode the GATA
transcription factors, GRMZM2G178998 and GRMZM2G134073 encoding the NAC
transcription factors, GRMZM2G053868 and GRMZM2G157068 which encode the
nitrate transporter protein and GRMZM2G371033 encoding the SBP-transcription
factor. These candidate genes play crucial roles in plant growth and developmental
processes and defense functions. This study provides further insights into the genetic
mechanisms of resistance to Striga parasitism in maize. The QTL detected in more
than one environment would be useful for further fine-mapping andmarker-assisted
selection for the development of Striga resistant and high-yielding maize cultivars.
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Introduction

Maize is one of the world’s most important food and feed crops and plays an important role
in ensuring food security. Striga hermonthica (purple witchweed) is an obligate hemiparasitic
plant that parasitizes the root systems of cereals, causing significant reduction in maize yield in
the savannas of sub-Saharan Africa (SSA). Losses in maize yield due to Striga infestation could
reach as high as 100%, particularly when infestation is severe during the vegetative growth stage
(Akaogu et al., 2019). The severity of infestation is influenced by the type of maize cultivar,
weather conditions, and the severity of infestation. The parasitic weed penetrates the roots of
maize plants with its haustoria cells to derive nutrients, thus depriving host plants of resources
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necessary for growth (Parker and Riches, 1993). The increasing Striga
problems cause an annual loss of US $7–10 billion per annum to the
livelihoods of African farmers, and the elevated levels in vast areas
further worsen food insecurity, hunger, and poverty for millions of
subsistence farmers (Rodenburg et al., 2005; Jamil et al., 2022).
Effective control of S. hermonthica is essential for food security and
poverty alleviation for small-holder subsistence farmers in SSA.
Commonly used control methods include chemical, cultural and
biological measures, which have achieved little or no success.
Under prevailing field conditions in SSA, especially in the
savannas, the use of Striga-resistant maize varieties has been found
to be the most effective, economical, and eco-friendly approach for the
control and prevention of yield losses due to Striga parasitism (Akaogu
et al., 2019). Also, host plant resistance could be deployed as a vital
component of an integrated control strategy for mitigating the menace
of the parasitic weed. In Striga research, a maize plant is characterized
as resistant when the parasite is unable to penetrate through the
endodermis of the host plant, thus disallowing xylem-xylem
connections for continuity after attachment of the plant to the host
(Atera et al., 2015), whereas tolerance refers to the extent to which the
Striga damage effects on the maize plants are mitigated (Rodenburg
et al., 2017; Badu-Apraku et al., 2020b).

Quantitative trait loci (QTL) mapping has become an important
tool for dissecting the genetic architecture of polygenic traits,
facilitating the identification of genomic regions underlying traits
of interest, the distribution of gene effects and the relative
importance of additive, dominance, and epistatic effects
(Vengadessan et al., 2013). With the development of sequencing
technology, high-density SNPs are now used in constructing
genetic maps for increasing precision (Zhang et al., 2022). Several
QTL studies have been conducted to understand the molecular
genetics of complex traits under both biotic and abiotic stresses in
maize, including drought (Tuberosa et al., 2002; Almeida et al., 2013),
low soil nitrogen (Ribeiro et al., 2018), maize grey leaf spot disease
(Berger et al., 2014), Fusarium ear rot (Maschietto et al., 2017), maize
streak virus (Ladejobi et al., 2018), and Striga parasitism (Amusan
et al., 2008; Badu-Apraku et al., 2020a; Badu-Apraku et al., 2020b).
However, information is limited on the molecular genetics of Striga
resistance. The use of marker-assisted selection (MAS) could be a very
effective strategy in breeding for Striga resistance/tolerance (Badu-
Apraku and Fakorede, 2017). Molecular markers associated with
Striga resistance alleles would be invaluable because plant breeders
could use such markers during selection to identify the resistance loci
in existing populations or to pyramid resistance into new populations.
However, the success of MAS depends on the identification of the
accurate locations of the QTL and the identification of tightly linked
molecular markers.

Wild relatives of maize (teosintes and Tripsacum dactyloides) have
been used to develop genetically improved maize with resistance to
Striga species, which are particularly prevalent in Africa (Rich and
Ejeta, 2008). Novel resistance genes identified in the wild perennial
maize relative, teosinte (Zea diploperennis) by International Institute
of Tropical Agriculture (IITA) maize breeders (Kling et al., 2000) have
been introgressed into early and extra-early maturing maize inbred
lines (Amegbor et al., 2017). For example, the early-maturing Striga
resistant and drought-tolerant maize inbred line, TZdEI 352 derived
from a biparental cross involving the normal endosperm white maize
population TZEW Pop DT STR and the Z. diploperennis has displayed
increased grain yield and durable Striga resistance/tolerance (Akaogu

et al., 2019). Results of genetic studies conducted by Akaogu et al.
(2019) revealed that the additive-dominance model was adequate in
describing observed variations in the number of emerged Striga plants
in a population derived from a cross between TZdEI 352 and the
susceptible inbred TZEEI 11. Hence, the digenic epistatic model was
adopted for the inheritance of resistance to Striga damage (Akaogu
et al., 2019). In contrast, dominance effects were higher than the
additive effects for the number of emerged Striga plants across
locations signifying that non-additive gene action conditioned the
inheritance of Striga resistance. It was proposed that the inbred TZdEI
352 could serve as an invaluable parent for hybrid development in
Striga endemic agro-ecologies of SSA. Furthermore, TZdEI 352 has
significant and positive general combining ability (GCA) effects for
grain yield in Striga, drought and low N environments, significant
negative GCA effects for the stay-green characteristic under drought
and low N, as well as negative and significant GCA effects for Striga
damage and number of emerged Striga plants under Striga-infested
conditions. Inbred TZdEI 352 is presently serving as an invaluable
multiple stress tolerant parent for hybrid development in Striga
endemic agro-ecologies of SSA. This inbred line was therefore an
ideal genotype for QTL discovery for Striga resistance. Application of
molecular markers provides a powerful tool for mapping quantitative
traits loci and improving complex traits through marker-assisted
selection (MAS). QTLs/markers have been identified for Striga
resistance traits by maize breeders at the IITA and the
International Maize and Wheat Improvement Centre (CIMMYT).
However, most of the QTLs/markers have minor effects, though
linked to genes associated with plant defense mechanisms under
Striga infestation (Badu-Apraku et al., 2020a; Adewale et al., 2020;
Badu-Apraku et al., 2020b; Gowda et al., 2021; Stanley et al., 2021).
There is, therefore, the need to identify more Striga resistance QTLs
particularly using germplasm extracted from wild maize sources (Zea
diploperennis) to ensure successful resistance breeding through gene
pyramiding. The objectives of this study were to (i) map QTLs for
Striga resistance using a maize population derived from a cross
involving the Striga resistant early maturing inbred, TZdEI 352,
and the Striga susceptible early maturing line, TZEI 916, (ii)
identify candidate genes associated with the Striga resistance QTLs.

Materials and methods

Plant materials

The contrasting inbred lines used in the present study were
selected based on preliminary evaluation of the lines (Adewale
et al., 2020) and genetic studies involving these inbred lines under
Striga-infested environments at Mokwa, Nigeria in 2017 and 2018.
The two early maturing white maize inbred lines varied significantly in
their responses under artificial Striga infestation. The parental inbred
line TZdEI 352 (TZE-W POP STR 107 S6 24/254-1/2-1/1-1/1-2/2-1/1)
is Striga resistant, while line TZE1 916 ((TZE COMP 5-W DT C7 x
TZEI 31) S6 inb 39-1/1-1/2-2/2-2/2-1/1) is highly susceptible to Striga
parasitism. The inbred TZEI 916 has negative and significant GCA
effect for grain yield, positive and significant GCA effect for Striga
damage as well as positive GCA effect for number of emerged Striga
counts under Striga infestation. The Striga resistant parent TZdEI
352 also possesses drought and low soil N tolerance alleles and it is one
of the parental lines involved in the development of the outstanding
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multiple stress-tolerant hybrid (HAKIMI 3) commercialized in
Nigeria. It is also involved in several other hybrids and open-
pollinated varieties in the pipeline for release in several countries
in West and Central Africa. Crosses were made between TZdEI
352 and TZEI 916 to obtain 223 F2:3 families at the IITA-Ibadan
breeding nursery during the 2018 and 2019 growing seasons. The
inbred TZdEI 352 was crossed to TZEI 916 to obtain F1 progenies. The
F1 progenies derived from the bi-parental cross involving TZdEI
352 and TZEI 916 were screened using SSR molecular markers to
identify true-to-type hybrids for the development of the F2 mapping
population. Thirty-four F1 progenies identified to be true-to-type were
advanced to the F2 stage through selfing. The harvested F2 seeds were
planted for sample collection for genotyping and advancement to the
F2:3 stage for field phenotyping. The F2:3 mapping population was used
to identify QTL/genomic regions responsible for resistance/tolerance
to Striga parasitism.

Field experiment and trait evaluation

A segregating population consisting of 223 F2:3 families and the two
parental lines (TZdEI 352 and TZEI 916) were evaluated at two Striga
endemic locations: Mokwa (9018′N, 504′E, 457 m altitude) and Abuja (90

16′N, 70 20′E, 300 m altitude) in the Southern Guinea savanna zones of
Nigeria. Field trials were conducted during the 2019 and 2020 growing
seasons at each location. The experimental design used in the different
environments was 15 x 15 lattice design. The experimental field atMokwa
has a luvisol soil type, while that at Abuja has a ferric luvisol soil type (Soil
Survey Staff, 1999). The trials were replicated twice for evaluations in each
of the four environments. Each experimental unit consisted of a 1-row
plot 3 m long, with row spacing of .75 m and intra-row spacing of .4 m.
The fields for artificial Striga infestation at Mokwa and Abuja were
injected with ethylene gas about 2 weeks before planting to induce suicidal
germination of Striga seeds in the soil. The artificial Striga infestation was
carried out as proposed by the IITAMaize Program (Kim, 1991). About a
week before inoculation, the Striga seeds were thoroughly mixed with
finely sieved sand at the ratio of 1:99 by weight to ensure rapid and
uniform infestation. A standard scoop calibrated to deliver about
5,000 germinable Striga seeds per hole was used for the artificial
infestation. Three maize seeds were placed in the same hole with the
Striga seeds and thinned to two plants per hill at 2 weeks after emergence
to obtain the target population density of 66,666 plants per ha. Fertilizer
application on themaize plots was delayed till about 30 days after planting

to subject the maize plants to stress, a condition that was expected to
favour the production of strigolactones, which enhances good
germination of Striga seeds and attachment of Striga plants to the
roots of host plants. At this stage of plant growth, 30 kg N/ha, and
30 kg each of P and K were applied as NPK 15-15-15. The reduced rate of
fertilizer application was necessary because Striga emergence decreases at
high N rate (Kim, 1991). Data were recorded on the number of emerged
Striga plants and host plant damage severity at 10 weeks after planting
(Kim, 1991; Badu-Apraku et al., 2020b). The number of ears per plant
(EPP) was computed by dividing the total number of ears harvested per
plot by the number of plants in a plot at harvest. Grain yield (kg ha− 1) was
estimated from field weight of ears harvested per plot, assuming a shelling
percentage of 80% (that is, 800 g grain/kg ear weight), adjusted to
moisture content of 15%. These four traits measured (grain yield, host
plant damage, number of emerged Striga plants and ears per plant) are the
primary traits of interest in selecting for resistance to Striga parasitism in
maize (Menkir and Kling, 2007; Adewale et al., 2020).

Statistical analysis of phenotypic data

Statistical analysis of the phenotypic data was performed using the
SAS software version 9.3 and R software version 4.0.5. Analysis of
variance (ANOVA) was first carried out for each environment.
Thereafter, combined ANOVA across environments (locations) was
conducted with PROC GLM in SAS using a random statement with
the TEST option (SAS Institute, 2011). The replications and blocks
within replications were considered as random and the F2:3 families as
fixed effects. Correlation analysis among the traits was carried out
using package “corrplot” in the R software. The broad sense
heritability (H2) was estimated using the formula: H2 � σg2/(σg2 +
σf2/r) where σg2 is the genetic variance; σf2 is the residual error and
r = number of replications. The best linear unbiased estimates
(BLUEs) were estimated for each genotype under each and across
environments using the mixed linear model (MLM) in META-R
software (Alvarado et al., 2016).

DNA extraction, genotyping and data filtering
process

Young, healthy leaf tissues were obtained from the F2:3 individuals
and bulk samples from the parental lines. The samples were freeze-dried

TABLE 1 Mean squares of F2:3 mapping population evaluated under artificial Striga infestation across four environments at Abuja and Mokwa in the 2019 and
2020 growing seasons.

Source of variation Df Grain yield Ears per plant Striga damage 2 Striga count 2

Block (Rep*Env) 112 1920007** .09** 2.30** 1.50**

Rep (Env) 4 9991537** .67** 25.08** 8.95**

Env 3 364246330** 14.07** 266.14** 366.92**

Genotype 224 2037509** .09** 1.64** .79**

Genotype x Env 672 823112** .06** .98** .35

Error 784 466939 .05 .67 .34

H2 .60 .33 .42 .52
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and used for genomic DNA extraction following the DArT protocol. The
extracted DNA was tested by electrophoresis in 1% agarose gel and
analyzed on the ND-1000 spectrophotometer platform (NanoDrop,
Wilmington, DE, United States) for concentration and purity. The
mapping population was genotyped using 15,048 DArTseq markers
for the QTL identification. Low-quality data filtering was carried out
by eliminating markers with minor allele frequency of less than 5%,
missing data greater than 10%, and those that were monomorphic for the
parents. Segregation distortion was determined using Chi-square (χ2) test
for goodness-of-fit and an expected ratio of 1:2:1 for the F2:3 mapping
population. Markers significantly deviating (p < .05) from Mendelian
segregation were eliminated. After quality filtering, a total of 1,918 quality
SNP markers were used for the QTL analysis.

Construction of genetic linkage map, QTL
analysis and candidate gene annotation

Recombination fractions and LOD scores were performed using
the R qtl package (http://www.rqtl.org) and the order of the markers
were clustered into bin. The correct order of the markers across each
chromosome was verified through the pairwise marker linkage
analysis using the “est.rf” function. Genetic linkage maps were then
constructed using R/QTL 2. The genetic distances were estimated
using the “est.map” function with “kosambi” distance from the R/qtl
package (Broman et al., 2003; Arends et al., 2010). Quantitative trait
loci analysis was performed using the inclusive composite interval
mapping (ICIM-ADD) method in IciMapping V4.2 (Meng et al.,
2015). The ICIM approach utilizes a strategy in which a stepwise
regression is firstly performed, so markers with significant effect on

QTL are selected. ICIM-ADD method was used with the multi-
environmental model built in QTL IciMapping (Li et al., 2015;
Singhal et al., 2021). The parameters of QTL analysis were set as
follows: logarithm of odds (LOD) = 1,000 permutations, step = 1 cM,
and PIN = .001. The confidence interval of each QTL was determined
by LOD > 3. The software also estimated the proportion of
phenotypic variation, additive and dominance effects explained by
each QTL for a trait. QTL × environment interaction (QEI) mapping
for multi-environmental trials (MET) was carried out using ICIM-
ADD (Meng et al., 2015; Wang et al., 2022). Sources of favourable
alleles were determined depending on signs of the QTL additive
effects and the traits of interest. For instance, positive additive effects
for grain yield and ears per plant and negative additive effects for
Striga damage and Striga emergence counts indicated that the
favourable alleles were derived from the resistant parent and vice
versa. The QTLs detected in more than one environment were
regarded as stable (Shang et al., 2015). QTL were classified as
major when the phenotypic variance was more than 10% and
minor when less than 10% (Collard et al., 2005). QTL detected
under different environments for the same trait were regarded as the
same QTL when the distances of their peaks were less than 10 cM
(Ma et al., 2018; Zhang et al., 2020). QTL naming conventions was
followed as described by McCouch et al. (1997) and Yang et al.
(2020). The name of each QTL was defined starting with a lowercase
‘q’, then the trait name in uppercase, thereafter by the chromosome
number where the QTL was detected. For instance, qSD2 refers to a
QTL identified for Striga damage (SD) on chromosome 2. Candidate
genes within the main additive QTLs confidence intervals and their
corresponding molecular functions were retrieved using the
B73 reference genome (Woodhouse et al., 2021). The candidate

TABLE 2 Summary statistics of the parental lines and F2:3 individuals under artificial Striga infestation.

Trait ENV Parents F2:3 population

TZdEI 352 TZEI 916 Mean SD Min Max CV (%) Skew Kurt H2

Yield AB19 4177.63 1166.19 3,000.63 1115.33 1193.43 5,911.80 17.17 −.15 −.57 .52

AB20 2110.12 420.01 1646.34 900.77 272.13 3,817.00 14.71 .56 −.31 .59

MK19 2430.13 919.98 1675.59 783.52 593.75 3,382.66 16.76 .57 −.22 .37

MK20 3,477.53 1934.08 3,388.88 1245.39 1763.89 6263.58 21.75 .59 −.18 .74

EPP AB19 1.11 .81 1.02 .27 .50 1.70 16.24 .02 .62 .46

AB20 .93 .64 .93 .22 .38 1.50 13.36 −.61 .77 .32

MK19 .83 .23 .74 .30 .12 1.32 20.70 .00 −.31 .30

MK20 1.16 .74 1.17 .27 .69 1.90 15.75 −.12 −.51 .33

RAT AB19 3.34 6.32 4.70 1.03 3.00 6.00 22.03 .10 .24 .38

AB20 3.34 5.61 4.48 1.22 1.00 7.00 17.34 −.59 .57 .33

MK19 4.50 6.45 5.46 1.17 3.00 8.00 21.47 −.12 .36 .48

MK20 3.74 5.61 3.60 .96 1.00 6.00 16.65 −.44 .23 .57

CO AB19 .13 43.48 35.45 25.87 3.00 93.00 22.97 −.19 −.48 .44

AB20 .58 5.88 4.10 4.63 .00 14.00 29.09 .02 −.90 .34

MK19 5.87 31.16 17.99 11.06 2.00 42.00 21.45 −.40 .81 .44

MK20 2.67 15.40 9.87 8.54 1.00 26.00 26.53 −.12 −.51 .42

AB19—Abuja 2019, AB20—Abuja 2020, MK19—Mokwa 2019, MK20—Mokwa 2020.
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TABLE 3 DArT markers linkage map of F2:3 mapping population derived from the cross TZdEI 352 x TZEI 916.

Linkage group Number of markers Map length (cM) Max gap (cM)

Chr1 306 306.9 22.1

Chr2 303 244.3 8.35

Chr3 212 231.8 31.9

Chr4 198 245.1 11.15

Chr5 117 222 68.1

Chr6 173 172 17.6

Chr7 179 180.7 9.2

Chr8 161 181 25.1

Chr9 119 158.4 24.6

Chr10 150 149.9 15.24

Total 1918 2092.1 233.34

Average per linkage group 191.8 209.21 23.334

FIGURE 1
Frequency distribution of grain yield, number of ears per plant, Striga damage and number of emerged Striga plants among the F2:3 mapping population
individuals, 2019–2020. ABJ—Abuja, MK—Mokwa.
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genes were mined from the sequences of the identifiedQTL related to
the plant defense functions.

Results

Phenotypic evaluation

The analysis of variance showed significant variation among the
223 F2:3 families and their parents for grain yield and all other Striga
adaptive traits across artificial Striga-infested environments
(Table 1). Significant effects of the environment and genotype ×
environment interaction were observed for measured traits except

genotype × environment interaction for Striga emergence counts.
Similarly, the parents and the F2:3 individuals displayed high level of
variability for the Striga resistance adaptive traits in each environment
(Table 2; Figure 1). All the traits followed normal distribution and both
absolute values of skewness and kurtosis were less than 1.0. Transgressive
segregation was observed in both directions of normal distribution for the
studied traits. Among the F2:3 individuals, grain yield varied from 317 kg/
ha to 5,380 kg/ha, with the smallest mean of 1,646, largest mean of
3,388 and largest standard deviation of 1245.39. Ears per plant differed
from .01 to .95 with the smallest mean of .74, largest mean of 1.17 and
largest standard deviation of .30, Striga damage varied from 1 to 9with the
smallest mean of 3.6, largest mean of 5.5 and largest standard deviation of
1.17, while Striga count differed from 0 to 4.96 with the smallest mean of
1.25, largest mean of 3.35 and largest standard deviation of .90. Broad-
sense heritability of the traits ranged from .33 for ears per plant to .60 for
grain yield. Results of correlation analysis among the Striga adaptive traits
across the four research environments revealed strong negative
association of grain yield with Striga damage rating and Striga
emergence counts but significant positive relationship with ears per
plant (Figure 2). Ears per plant displayed negative association with
Striga damage rating and Striga emergence counts. Striga damage
rating also revealed positive association with Striga emergence counts.

Linkage map

The genetic map of the F2:3 population contained
1,918 polymorphic markers distributed across the 10 maize
chromosomes with a total coverage length of 2092.1 cM. The length
of each chromosome varied from 150 cM for chromosome 10–307 cM
for chromosome 1 (Table 3; Figure 3). The highest number of markers
(306) was recorded on chromosome 1, whereas chromosome 5 recorded
the least number of markers (117). The average interval size was
23.3 cM. The mean linkage group length was 209.21 cM with a
mean of 191.9 cM loci. The genetic linkage map of the F2:3 mapping
population displaying stable QTLs as well as QTLs similar to those
reported in previous studies are presented in Supplementary Figure S1.
The order of markers on the genetic map conforms to the physical
position of the marker and is also supported by pairwise marker linkage
analysis (Supplementary Figure S2).

FIGURE 3
Genetic map constructed using DArT markers from the F2:3 mapping population.

FIGURE 2
Relationship among Striga adaptive traits in the F2:3 mapping
population across four Striga-infested environments. YIELD—Grain
yield, EPP—number of ears per plant, STRAT—Striga damage rating,
STCOUNT—Striga emergence counts. Gradient bars represent the
correlation coefficients.
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TABLE 4 Quantitative trait loci identified from F2:3 mapping population derived from TZdEI 352 x TZEI 916 across four artificial Striga infested environments in Nigeria, 2019-2020.

Trait QTL# QTL-IND Chr Peak position LOD PVE (%) Add Dom LeftCI RightCI References QTL-MIa

Grain yield qGY2 MK19 2 23.8 4.03 8.2 −159.29 115.64 22.3 25.3

qGY4 AB19, MK20 4 230.8 5.45 10.8 219.62 −122.50 228.3 232.3

qGY5 MK20 5 76.8 6.15 11.6 235.60 −17.41 72.3 80.3

qGY8 AB20 8 168.1 4.48 8.7 −125.21 234.76 167.6 168.6 Badu-Apraku et al. (2020b) 167.2–176.6

Striga damage qSD2.1 2 172.8 3.35 7.4 .13 −.18 171.3 173.3

qSD2.2 AB20 2 181.2 3.83 8.9 −.17 .04 180.3 186.2

qSD2.3 AB19 2 201.8 2.80 4.1 .11 −.10 199.3 202.3 Stanley et al. (2021) 188.1

qSD3.1 AB19 3 13.9 2.89 5.3 −.09 .16 10.4 15.4

qSD3.2 3 168.9 3.79 6.8 −.17 .00 168.4 169.4

qSD5 5 76.8 3.86 10.2 −.18 .01 70.3 80.3 Stanley et al. (2021) 70.4

qSD8 8 164.1 3.49 8.6 .07 −.23 161.6 164.6

qSD10 10 110.7 2.55 5.9 .17 −.06 109.2 112.2 Adewale et al. (2020); Okunlola et al.
(2022)

112.7

Striga count qSC2.1 AB19, ABJ20, MK19 2 12.8 4.84 8.0 2.89 −2.09 12.3 13.3 Stanley et al. (2021) 13.5

qSC2.2 AB19, MK19 2 215.8 5.40 12.6 −.14 .07 215.3 216.3 Stanley et al. (2021) 209.0

qSC3 MK19 3 11.9 3.36 4.6 −.01 .17 11.4 13.4

qSC5 AB19, MK20 5 212.8 2.96 6.1 −.10 .06 211.3 214.3

qSC6 AB19, MK20 6 110.0 3.26 7.0 2.81 −.12 107.5 110.5

qSC7.1 AB19 7 41.8 3.17 14.4 4.73 −2.59 40.3 42.3

qSC7.2 7 109.8 3.70 7.1 −.14 .02 101.3 111.3

qSC8 AB19 8 166.1 3.65 7.3 .13 −.02 165.6 166.6

qSC9 AB19 9 14.2 5.13 11.3 .17 .04 13.7 16.7

Ears per plant qEPP1 1 46.8 2.72 6.0 −.03 .03 43.3 52.3

qEPP6 6 .96 3.87 8.3 −.04 −.01 .96 1.5

aMarker interval/position of QTLs, in previous studies, QTL#- QTL, detected across four Striga-infested environments; QTL-IND, Individual environments where the QTLs, were also detected, AB19—Environment Abuja 2019, AB20 - Environment Abuja 2020, MK19 -

Environment Mokwa 2019, MK20 - Environment Abuja 2020.
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TABLE 5 Characteristics of QTLs related to Striga adaptive traits detected using QEI mapping.

Trait MET-QTL Chr Pos (cM) Left marker Right marker LOD LOD (A) LOD (A x E) PVE PVE(A) PVE (A x E) ADD QTL × environment interaction

A x E1 A x E2 A x E3 A x E4

Yield eqGY-2 2 21.81 Chr2_20.599078 Chr2_21.824408 12.97 6.22 6.76 4.49 4.17 2.32 −152.75 110.72 −63.76 85.95 −132.91

eqGY-3 3 141.85 Chr3_141.751814 Chr3_142.030105 13.32 4.67 8.65 7.32 6.96 3.36 65.41 −156.72 −16.50 −109.38 282.60

eqGY-4 4 240.83 Chr4_238.180488 Chr4_241.595508 10.56 4.70 5.86 3.46 1.63 1.83 −88.53 56.37 −77.27 71.95 −51.04

eqGY-5 5 81.76 Chr5_77.117931 Chr5_82.996929 11.26 6.46 4.80 7.30 6.86 2.44 −166.86 −23.68 −53.14 172.06 −95.23

eqGY-7 7 160.85 Chr7_160.472394 Chr7_161.599627 13.44 6.03 7.41 6.64 5.09 3.55 67.08 −81.83 49.43 −170.57 202.97

eqGY-8 8 171.08 Chr8_170.7423 Chr8_171.423574 10.56 4.70 5.86 3.46 1.63 1.83 −142.40 63.08 −70.91 38.10 −30.27

Striga damage eqSD-2.1 2 176.81 Chr2_176.643883 Chr2_178.099007 6.28 1.38 4.90 4.32 .48 .84 .10 .08 −.17 .22 −.13

eqSD-2.2 2 6.81 Chr2_6.742061 Chr2_7.400568 8.34 3.34 5.00 4.06 3.14 2.92 −.01 .06 .04 .11 −.21

eqSD-3 3 176.85 Chr3_172.349067 Chr3_181.958432 5.16 3.89 1.27 2.39 1.25 1.14 −.11 −.06 −.27 .13 .20

eqSD-5 5 46.76 Chr5_43.565479 Chr5_47.752516 5.50 2.61 2.89 5.23 3.44 1.79 .14 −.12 .02 .03 .07

eqSD-7 7 110.85 Chr7_109.161107 Chr7_111.241692 5.45 2.11 3.34 6.09 4.10 1.99 −.04 −.11 .07 .11 −.08

eqSD-10 10 5.70 Chr10_5.605598 Chr10_5.755017 5.45 2.11 3.34 5.09 3.10 1.99 .08 −.18 .17 −.08 .10

Ears per plant eqEPP-6 6 110.96 Chr6_110.501667 Chr6_112.722037 12.73 .03 7.70 3.08 2.20 .88 .01 −.11 .01 .08 .02
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TABLE 6 Key candidate genes associated with QTLs detected from the F2:3 mapping population evaluated under artificial Striga infestation.

Trait QTL LG:start-end
position

Gene ID Predicted function of candidate gene

Grain yield qGY2 2:21824408-24239657 GRMZM2G475678,ereb61 ethylene-responsive transcription factor ERF061

GRMZM5G805505,ereb87 AP2-EREBP-transcription factor 87

GRMZM2G077002,gata5 gata5—C2C2-GATA-transcription factor 5

GRMZM2G178998,nactf131 nactf131—NAC-transcription factor 131

GRMZM2G055180,ereb198 AP2-EREBP-transcription factor 198

GRMZM2G123387,wrky101 wrky101—WRKY-transcription factor 101

GRMZM2G404973,gata11 gata11—C2C2-GATA-transcription factor 11

GRMZM2G054795,yab1 yab1—C2C2-YABBY-transcription factor 1

qGY4 4:228266384-232427685 GRMZM2G085751,bhlh24 bhlh24—bHLH-transcription factor 24

GRMZM2G164359,c3h43 c3h43—C3H-transcription factor 343—putative RING
zinc finger domain superfamily protein

GRMZM2G052102,bzip120 bzip120—bZIP-transcription factor 120—basic leucine
zipper 19

qGY8 8:167208138-168572930 GRMZM2G030762,bhlh55 bhlh55—bHLH-transcription factor 55

GRMZM2G065971,mgt8 mgt8—magnesium transporter8

Yield; Striga damage qGY5, qSD5 5:68355981-77117931 GRMZM2G053868,
GRMZM2G157068,cdpk22

cdpk22—calcium dependent protein kinase22

GRMZM2G163866,nrt3 nrt3—nitrate transport3

GRMZM2G088189,myb161 myb161—MYB-transcription factor 161

GRMZM5G856837,bhlh129 bhlh129 - bHLH-transcription factor 129

GRMZM2G153144,bzip14 bzip14—bZIP-transcription factor 14

Striga damage rating qSD2 2:201773609–203194405 GRMZM2G050305,
GRMZM5G892094,myb31

myb31—MYB31 transcription factor31

qSD10 10:108463928–113256953 GRMZM2G425798,ereb149 AP2-EREBP-transcription factor 149

GRMZM2G313756,bhlh100 bhlh100—bHLH-transcription factor 100

GRMZM2G023708,ereb125 AP2-EREBP-transcription factor 125

Striga damage, Striga
emergence

qSD3.1,
qSC3

3:11798990–14131442 GRMZM2G052377,myb20 myb20—MYB20 transcription factor20

Striga emergence count qSC2.1 2:12757631–13953770 GRMZM2G024898,wrky70 wrky70—WRKY-transcription factor 70

GRMZM2G038722,myb13 myb13—MYB20 transcription factor13

GRMZM2G014534,mybr36 mybr36—MYB-related-transcription factor 36

GRMZM2G055204,ereb18 ereb18—AP2-EREBP-transcription factor 18

qSC2.2 2:215446898–215960960 GRMZM2G383841,bhlh147 bhlh147—bHLH-transcription factor 147

qSC5 5:211699547–213923453 GRMZM2G130459,ereb187 AP2-EREBP-transcription factor 187

GRMZM2G036092,bhlh30 bhlh30—bHLH-transcription factor 30

qSC7 7:39974564–43809836 GRMZM2G075715,arftf37 arftf37—ARF-transcription factor 37

qSC8 8:165139590–166861798 GRMZM2G134073,nactf9 nactf9—NAC-transcription factor 9

GRMZM2G371033,sbp18 sbp18—SBP-transcription factor 18

qSC9 9:13152043–14927006 GRMZM2G156006,ereb207 ereb207—AP2-EREBP-transcription factor 207

GRMZM2G402156,mybr19 mybr19—MYB-related-transcription factor 19

Ears per plant qEPP1 1:43333475–46957478 GRMZM2G021095,lbd4 lbd4—LBD-transcription factor 4
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QTL identification for Striga resistance
adaptive traits

QTL mapping was carried out using the inclusive composite
interval mapping method to identify QTLs for Striga resistance traits
and phenotypic BLUE values across environments were used to
reduce the variation effects of the environments. A total of 23 QTLs
were detected for the Striga adaptive traits in the F2:3 population
across four environments (that is, Abuja in 2019 and 2020; Mokwa
in 2019 and 2020) (Table 4). Five stable QTLs including one for grain
yield (qGY4), and four for Striga emergence counts (qSC2.1, qSC2.2,
qSC5 and qSC6), were detected in more than one environment. For
grain yield, four QTLs qGY2, qGY4, qGY5 and qGY8 were detected
on chromosomes 2, 4, 5, and 8, respectively. The LOD scores of these
QTLs ranged from 4.0 to 6.2, and the proportion of phenotypic
variance explained (PVE) ranged from 8.2% to 11.6%. The highest
PVE of 11.6% was recorded by qGY5. The QTLs qGY2 and
qGY8 displayed negative additive effects, whereas qGY4 and
qGY5 displayed positive additive effects for grain yield. Most of
the QTLs identified across environments were also found in
individual environments. For instance, the QTL qGY2 was also
detected in MK19, qGY4 both in AB19 and MK20, qGY5 in
MK20 and qGY8 in AB20. Eight QTLs qSD2.1, qSD2.2, qSD2.3,
qSD3.1, qSD3.2, qSD5, qSD8 and qSD10 were identified for Striga
damage on chromosomes 2, 3, 5, 8 and 10 across the four
environments. These QTLs individually explained 4.1%–10.2%
phenotypic variation, with LOD scores ranging from 2.6 to 3.9.
The highest PVE of 10.2% was recorded by qSD5. Of the eight QTLs
identified for Striga damage across environments, only qSD2.2,
qSD3.1, qSD3.2, and qSD5 displayed negative additive effects. The
QTL qSD2.2 was also found in individual environment AB20;
qSD2.3 and qSD3.1 were also identified in AB19. Nine QTLs
qSC2.1, qSC2.2, qSC3, qSC5, qSC6, qSC7.1, qSC7.2, qSC8 and
qSC9 were identified for number of emerged Striga counts on
chromosomes 2, 3, 5, 6, 7, 8, and 9 across environments. The
LOD scores of the identified QTLs varied from 3.0 to 5.4, with
PVE ranging from 4.6% to 14.4%. The QTL qSC7.1 recorded the
highest PVE of 14.4%. Of the nine QTLs, only qSC2.2, qSC3, qSC5,
and qSC7.2 displayed negative additive effects. The QTLs qSC2.1,
qSC2.2, qSC5, qSC7.1, qSC8 and qSC9 were also identified in AB19,
qSC2.1, qSC2.2 and qSC3 were identified in MK19, and qSC2.1 in
MK20. Two QTLs qEP1 and qEP6 were identified on chromosomes
1 and 6 for number of ears per plant. LOD score of 2.7 and PVE of
7.0% were obtained for qEP1, while qEP7 recorded LOD score of
3.9 and PVE of 10.3%. Pleiotropic effects were observed for
qGY5 and qSD5 located on the same position on chromosome
5 as well as qSD3 and qSC3 found within the same confidence
interval on chromosome 3. Significant G × E interaction effects were
identified for all studied traits except Striga emergence counts. Using
the MET functionality of the Ici-QTL mapping software, six MET-
QTLs each were identified for grain yield and Striga damage as well
as one for ears per plant (Table 5). Three MET-QTLs (eqGY-2,
eqGY-5 and eqGY-8) detected for grain yield were located close to
the main additive effects QTLs (qGY-2, qGY-5 and qGY-8).
Similarly, the MET-QTLs (eqSD2.1) is closely located to the main
additive effects QTL (qSD2.1) for Striga damage. These MET-QTLs
displayed the same signs of additive effects as the main effects QTLs.

Candidate gene prediction

Based on the 23 main additive effect QTLs detected for four Striga
adaptive traits using the QTL mapping, a total of 279 protein coding genes
were identifiedwithin the confidence interval of each of the identifiedQTLs
(Supplementary Table S3), according to the maize gene annotation
database accessible at Maize GDB (https://www.maizegdb.org). Of these,
36 candidate genes were functionally annotated to be associated with the
Striga resistance QTLs detected (Table 6). Inside the putative QTL qGY2 is
enclosed the gene GRMZM2G475678, ereb61 (locus–2:21824408-
24239657) which encodes the ethylene-responsive transcription factor
61. Other genes enclosed in this QTL include GRMZM5G805505,
GRMZM2G077002, GRMZM2G178998, GRMZM2G055180,
GRMZM2G123387, GRMZM2G404973, and GRMZM2G054795 which
encode AP2-EREBP-transcription factor 87, C2C2-GATA-transcription
factor 5, NAC-transcription factor 131, EREBP-transcription factor 198,
WRKY-transcription factor 101, C2C2-GATA-transcription factor 11 and
C2C2-YABBY-transcription factor 1 respectively. On chromosome 4, one
putative QTL qGY4 (locus - 4:228266384-232427685) contained three
genes GRMZM2G085751, GRMZM2G164359 and
GRMZM2G052102 which encodes the bHLH-transcription factor 24,
C3H-transcription factor 343 - putative RING zinc finger domain
superfamily protein and bZIP-transcription factor 120 - basic leucine
zipper 19, respectively. Similarly, the QTL qGY8 (locus - 8:167208138-
168572930) located .47Mb upstream of the QTL peak possesses the gene
models GRMZM2G030762, GRMZM2G065971 which encodes the
bHLH-transcription factor 55 and magnesium transporter 8.
Inside the pleiotropic QTLs qGY 5 and qSD 5 (locus 5:
68355981-77117931) located on chromosome 5, are five genes
cdpk22, nrt3, myb161, bhlh129 and bzip14. These genes encode
calcium-dependent kinase, nitrate transporter, MYB, bHLH as
well as the bZIP-transcription factors, respectively. The QTLs
qSD3.1 and qSC3 (locus 3:11798990-14131442) as well as qSD2
(locus 2:201773609-203194405) were associated with the MYB
transcription factors. On chromosome 10, QTL qSD10 located 2.
2 Mb downstream of the QTL peak contains the genes
GRMZM2G425798, GRMZM2G313756 and
GRMZM2G023708 encoding the AP2-EREBP-transcription
factor 149, bhlh100 - bHLH-transcription factor 100 and AP2-
EREBP-transcription factor 125. The QTL qSC2 (locus 2:
12757631–13953770) which encodes the genes
GRMZM2G024898, GRMZM2G038722, GRMZM2G014534 and
GRMZM2G055204 were associated with WRKY-transcription
factor 70, MYB20 transcription factor 13, MYB-related-
transcription factor 36 and AP2-EREBP-transcription factor 18,
respectively. Similarly, QTLs qSC2 (locus 2:215446898-
2159609600), qSC7 (locus 7:39974564-43809836) and qEPP1
(locus 1:43333475–46957478) which houses the genes
GRMZM2G383841, GRMZM2G075715 and
GRMZM2G021095 encodes the bHLH-transcription factor 147,
ARF-transcription factor 37 as well as LBD-transcription factor 4,
respectively. On chromosome 5, qSC5 (locus 5:
211699547–213923453) contains genes GRMZM2G130459 and
GRMZM2G036092 encoding the AP2-EREBP-transcription
factor 187 and bHLH-transcription factor 30. The QTL qSC8
(locus 8:165139590–166861798), around .76 Mb upstream region
of the QTL peak contains the genes GRMZM2G134073 and
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GRMZM2G371033 encodes the NAC and SBP transcription
factors, respectively. On chromosome 9, QTL qSC9 (locus 9 9:
13152043–14927006) contains genes GRMZM2G156006 and
GRMZM2G402156 which encode the AP2-EREBP-transcription
factor 207 and MYB-related-transcription factor 19, respectively.

Discussion

The introgression of novel genes for Striga resistance from wild
relative of maize, Zea diploperennis L. into other genetic backgrounds
using molecular markers has great potential for the development of
high-yielding and Striga resistant maize genotypes. The significant
differences observed among individuals of the F2:3 mapping
population for measured traits revealed high level of variability and
the suitability for QTL mapping analysis. Frequency distribution and
box plot analysis revealed that the studied traits were normally
distributed in the F2:3 mapping population. Skewness and kurtosis
for the four measured traits were less than 1.0 indicating normal
distribution of traits and the suitability of the data for QTL analysis.
Some of the F2:3 individuals displayed phenotypes which were beyond
the parental limits indicating the possible role of transgressive
segregation and additive genes from the two parental lines
(Mondal and Badigannavar, 2019). Transgressive segregation was
observed in both directions of normal distribution for the studied
traits. The presence of transgressive segregation suggested genetic
recombination, implying that both favourable and unfavourable alleles
for the traits were distributed between the parents. Transgressive
segregation observed for measured traits also suggested the possible
existence of multiple QTLs and QTL × QTL interaction or epistatic
interaction (Chattopadhyay et al., 2019).

In bi-parental mapping, the detection of robust QTLs for traits of
interest requires significant differences between the two parents. The
Striga resistant parent TZdEI 352 and the Striga susceptible parent
TZEI 916 used in our study varied significantly in terms of grain yield,
Striga damage, Striga emergence count and number of ears per plant.
The wide range of variation in the present population revealed the
possibility for selection of lines with resistance to Striga and increased
grain yield in maize. The genetic map of the F2:3 population contained
1,918 polymorphic markers distributed across the 10 maize
chromosomes with a total coverage length of 2092.1 cM. The
overall coverage length reported in the present study are similar to
those reported by Badu-Apraku et al. (2020a) and Badu-Apraku et al.
(2020b), who found total coverage lengths of 2016 cM and 2076 cM,
respectively, in studies focusing on the identification of QTLs for
Striga resistance in two extra-early maturing maize mapping
populations. Similarly, Yang et al. (2020) reported total genome
coverage length of 2,315 cM across the 10 maize chromosomes
using 119 polymorphic simple sequence repeats pairs.

The results of QTL mapping rely on the type of population, nature
of traits, number of samples, marker density and QTL mapping
techniques used. Good understanding of these factors is important
in designing QTL mapping experiments and determining optimal
procedures for data analysis especially when dealing with highly
polygenic traits such as Striga resistance (Su et al., 2017). In the
present study, we identified a total of 23 QTLs for grain yield, number
of ears per plant, number of emerged Striga plants and Striga damage
ratings in a population involving 223 F2:3 families derived from the
maize biparental cross TZdEI 352 x TZEI 916 across four artificial

Striga-infested environments. The QTLs qGY5 and qSD5 showed co-
localization of pleiotropic effects. These QTLs accounted for
phenotypic variations ranging from 4.1% (qSD2.3) to 14.4%
(qSC7.1), indicating the complex nature of the Striga resistance
traits studied. Five (qGY4, qSC2.1, qSC2.2, qSC5 and qSC6) of these
QTLs were detected in more than one environment. The QTL
identified in more than one environment would be useful for
further fine-mapping and marker assisted selection. Some of the
QTLs identified in this study have been reported in previous
studies. For example, QTLs qSD2.3 and qSD5 detected for Striga
damage, qSC2.1 and qSC2.2 for Striga emergence counts in this study
have been previously reported by Stanley et al. (2021). The authors
identified significant SNPmarkers S5_70442824 and S2_188120710 to
be associated with Striga damage ratings as well as S2_135038935 and
S2_208978140 associated with number of emerged Striga plants in a
genome-wide association study to detect SNP markers linked with
Striga resistance traits in late maturing maize germplasm. Similarly,
the QTL qGY-8 has been previously reported by Badu-Apraku et al.
(2020a); qSD-10 by Adewale et al. (2020) and Okunlola et al. (2022).
Six major effect QTLs qGY4, qGY5, qSD5, qSC2.2, qsc7.1 and
qsc9 were identified on chromosomes 2, 4, 5, 7, and 9, explaining
phenotypic variance varying from 10.2% to 14.4%. These QTLs are
promising for the introgression of favorable alleles to improve Striga
resistance in maize throughmarker-assisted selection. Identification of
stable genomic regions inside QTLs will serve as guides in the selection
of traits more efficiently. However, genotype × environment
interaction QTLs are also important as they significantly influence
the total phenotypic variance and additive effect of the main effect
QTL located inside or close to them. In our study we detected
significant genotype × environment interaction for grain yield,
Striga damage and number of ears per plant. Similar signs of
additive effects observed for some of the MET-QTLs and main
effect QTLs revealed that these MET-QTLs had positive effects on
the total additive value of the Striga resistance adaptive traits. This
implied that these MET-QTLs had positive effect on the Striga
resistance alleles which improved the phenotypic expression
resulting in increased grain yield and reduced Striga damage under
Striga infestation.

The QTL qGY2 associated with grain yield is linked to genemodels
GRMZM2G077002 and GRMZM2G404973, C2C2-GATA-
transcription factors. The GATA transcription factors are widely
involved in the regulation of plant developmental and growth
processes, including seed germination, development, light-mediated
signalling, and regulation of plant nitrogen metabolism (An et al.,
2020). GATAmotifs have been detected in regulatory regions of many
genes involved in nitrogen assimilation, such as nitrate reductase,
nitrite reductase, and glutamine synthetase (Hudson et al., 2011).
Therefore, GATA transcription factors play a potential role in
coordinating nutrient assimilation and vegetative growth. Similarly,
the QTLs qGY2 and qSC8 were identified to be linked with the gene
models GRMZM2G178998 and GRMZM2G134073, respectively
(NAC transcription factors). The NAC transcription factors play
important roles in the regulation of transcriptional reprogramming
associated with plant stress responses (Nuruzzaman et al., 2013).
Genes in the NAC family regulate a wide range of developmental
processes, including seed development, embryo development, shoot
apical meristem formation, fiber development, and cell division. The
NAC transcription proteins participate in the regulation of immune
signalling pathways to execute critical functions in plant immunity

Frontiers in Genetics frontiersin.org11

Badu-Apraku et al. 10.3389/fgene.2023.1012460

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1012460


(Yuan et al., 2019). When plants are attacked by pathogens, they
perceive the pathogen-derived signals and often activate an efficient
and complicated but fine-tuned network of defense hormone-
mediated signalling pathways (Peng et al., 2018; Yuan et al., 2019).

The QTLs qGY5 and qSD5 found to be associated with the gene
models GRMZM2G053868 and GRMZM2G157068 both encode the
nitrate transporter protein. Nitrate is a major source of N in higher
plants. A large proportion of NO3 acquired by plants from the soil is
actively transported through NO3 transporters (NRTs) (Bai et al.,
2013). To cope with low or high nitrate concentrations in the soil,
plant roots have developed high-affinity and low-affinity nitrate
uptake systems involving certain nitrate transporter genes. The
nitrate transporter (NRT3) proteins are partner proteins that
interact with most NRT2 proteins and contribute to high-affinity
nitrate uptake (Guo et al., 2020). Thus, the NRT2 genes combine with
the NRT3 genes to enable plants to cope with variable nitrate supplies,
thereby improving nitrogen use efficiency. Adewale et al. (2020) in a
genome-wide association study to identify markers linked to Striga
resistance in early maturing tropical maize, found marker SNP S10_
133224759 close to the functional gene GRMZM2G164743 (bin
10.05), which encodes an ammonium transporter protein (amt5).
Further studies on the nitrate transporter candidate genes could help
to understand the regulatory mechanism of Striga resistance in the
roots of maize plants and determine their usefulness in selecting
genotypes with resistance to Striga parasitism.

TheQTL qSC8 associated with Striga emergence count was found to
be linked with the gene model, GRMZM2G371033, SBP-transcription
factor. The SBP-transcription factors are very important for plant
growth, development, and defense response as they regulate the
specific downstream gene expression, such as the phase transition
from vegetative to reproductive stage, leaf development, plant
hormone signaling, toxin resistance, copper deficiency response,
temperature, and drought stress tolerance (Jiang et al., 2021). The
gene model GRMZM2G075715, ARF-transcription factor was
associated with the QTL qSC7 identified for Striga emergence count.
Auxin response transcription factors play key roles in plant
development, particularly in the regulation of gene expression (Saidi
and Hajibarat, 2020; Pratt and Zhang, 2021). Auxin is a plant hormone
involved in various stages of plant growth and development, such as
apical dominance, tropisms, and vascular patterning. Auxin plays key
roles in cell division and cell expansion during the developmental stages
and in regulation of a variety of physiological processes including lateral
root initiation and shoot elongation (Di et al., 2016). The QTL
qEPP1 associated with ears per plant was found to be linked with
the candidate gene GRMZM2G021095, LBD-transcription factor. The
lateral organ boundaries domain (LBD) genes, are plant-specific
transcription factor family which play crucial roles in controlling
plant architecture, regulating lateral organ development,
morphogenesis, and stress tolerance in plants (Majer and
Hochholdinger, 2011; Wang et al., 2021). The LBD genes are
expressed in a band of cells at the adaxial base of all lateral organs
formed from the shoot apical meristem and at the base of lateral roots.
The LBD genes also regulate plant cell wall thickening and secondary
growth (Chen et al., 2017).

Several well-studied plant transcription factor families, including
ethylene response factor (ERF), basic-domain leucine-zipper protein
(bZIP), MYB, WRKY, NAC, and members of the basic helix-loop-
helix (bHLH) transcription factors associated with defense responses
in plants were identified in our study to be associated with Striga

resistance adaptive traits. Stanley et al. (2021) identified the bHLH
transcription factors, putative leucine-rich repeat protein and bZIP
transcription factors in a GWAS to identify Striga resistance linked
markers using the IITA intermediate and late maturing maize inbred
lines under artificial Striga infestation. Similarly; Gowda et al. (2021)
found the bHLH transcription factors to be associated with Striga
resistance traits in maize. These transcription factor families regulate
gene expression in response to a range of biotic stimuli, including
microbes (fungi, oomycetes, bacteria) and insects, and downstream
defense signalling hormones such as salicylic acid, jasmonic acid, and
ethylene (Thatcher et al., 2012). The key candidate genes identified in
our study should be further validated to ascertain their influence in
improving resistance to Striga parasitism in tropical maize germplasm.

Conclusion

The results of this study further elucidated the understanding and
deployment of molecular markers in Striga resistance breeding.
Twenty-three QTLs were detected for four traits associated with
Striga resistance across four different environments at two
locations over 2 years using the F2:3 mapping population. The
phenotypic variance explained by each QTL ranged from 4.1% to
14.4%. The QTL qSC2.1 was consistently detected in three individual
environments and across environments. Our results further revealed
the genetic basis of Striga resistance traits in maize and will be useful
for the marker-assisted selection of Striga-resistant maize genotypes,
laying the foundation for the fine mapping and cloning of the gene
underlying the stable QTLs identified in more than one environment
in this study.
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