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The prevalence rate of depression is higher in patients with fibromyalgia syndrome,
but this is often unrecognized in patients with chronic pain. Given that depression is a
commonmajor barrier in themanagementof patientswithfibromyalgia syndrome, an
objective tool that reliably predicts depression in patients with fibromyalgia syndrome
could significantly enhance the diagnostic accuracy. Since pain and depression can
cause each other and worsen each other, we wonder if pain-related genes can be
used to differentiate between those with major depression from those without. This
study developed a support vector machine model combined with principal
component analysis to differentiate major depression in fibromyalgia syndrome
patients using a microarray dataset, including 25 fibromyalgia syndrome patients
with major depression, and 36 patients without major depression. Gene co-
expression analysis was used to select gene features to construct support vector
machine model. The principal component analysis can help reduce the number of
data dimensionswithoutmuch loss of information, and identify patterns in data easily.
The61 samples available in thedatabasewerenot enough for learning basedmethods
and cannot represent every possible variation of each patient. To address this issue,
we adopted Gaussian noise to generate a large amount of simulated data for training
and testing of themodel. The ability of support vector machinemodel to differentiate
major depression using microarray data was measured as accuracy. Different
structural co-expression patterns were identified for 114 genes involved in pain
signaling pathway by two-sample KS test (p < 0.001 for the maximum deviation
D = 0.11 > Dcritical = 0.05), indicating the aberrant co-expression patterns in
fibromyalgia syndrome patients. Twenty hub gene features were further selected
based on co-expression analysis to construct the model. The principal component
analysis reduced the dimension of the training samples from 20 to 16, since
16 components were needed to retain more than 90% of the original variance.
The support vector machine model was able to differentiate between those with
major depression from those without in fibromyalgia syndrome patients with an
average accuracy of 93.22% based on the expression levels of the selected hub gene
features. Thesefindingswould contribute key information that can beused todevelop
a clinical decision-making tool for the data-driven, personalized optimization of
diagnosing depression in patients with fibromyalgia syndrome.

KEYWORDS

chronic pain, gene co-expression, depression, fibromyalgia, principal component
analysis, support vector machine

OPEN ACCESS

EDITED BY

Michal Korostynski,
Institute of Pharmacology PAS, Poland

REVIEWED BY

Jakub Nalepa,
Silesian University of Technology, Poland
Roland Goecke,
University of Canberra, Australia

*CORRESPONDENCE

Stanley Sau Ching Wong,
wongstan@hku.hk

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 25 August 2022
ACCEPTED 20 March 2023
PUBLISHED 29 March 2023

CITATION

Wang F, Cheung CW and Wong SSC
(2023), Use of pain-related gene features
to predict depression by support vector
machine model in patients
with fibromyalgia.
Front. Genet. 14:1026672.
doi: 10.3389/fgene.2023.1026672

COPYRIGHT

© 2023 Wang, Cheung and Wong. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 29 March 2023
DOI 10.3389/fgene.2023.1026672

https://www.frontiersin.org/articles/10.3389/fgene.2023.1026672/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1026672/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1026672/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1026672/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1026672&domain=pdf&date_stamp=2023-03-29
mailto:wongstan@hku.hk
mailto:wongstan@hku.hk
https://doi.org/10.3389/fgene.2023.1026672
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1026672


1 Introduction

Chronic pain, defined as pain lasting at least 3 months, is a major
clinical and socioeconomic burden to both patients and society
(Queiroz, 2013; Eucker et al., 2022). Fibromyalgia syndrome (FMS)
is a chronic pain condition associated with diffuse musculoskeletal
pain, cognitive dysfunction, sleep disturbance, somatic symptoms,
and psychological distress (Siracusa et al., 2021; Farag et al., 2022;
Kumbhare et al., 2022). FMS affects around 5% of global population,
and is more prevalent in females (Wolfe et al., 1995; Siracusa et al.,
2021). Patients with FMS often suffer from functional disabilities,
including impairment with work and activities of daily living
(Arnold et al., 2008; Clauw et al., 2011). FMS is associated with
psychiatric and psychological disorders, such as depression and
anxiety (Bennett et al., 2007; Clauw et al., 2011). Depression is more
likely to be present in patients with FMS (Santos et al., 2011), with an
incidence ranging from 9.2% to 90% depending on different
screening or diagnostic methods (Wilke et al., 2010; Gota et al.,
2017). It has been reported that more than half of all FMS patients
experienced major depressive disorder during their life-time (Løge-
Hagen et al., 2019). Patients with chronic pain who have co-existing
depression suffer from greater pain intensity and longer duration of
pain, and are less likely to respond to treatment (Bair et al., 2003).
Depression is commonly unrecognized in patients with chronic
pain, and therefore untreated (Lee et al., 2018). Negating depression
in chronic pain patients may increase the chance of treatment
failure. Formal diagnosis usually depends on clinical experience
and subjective evaluation by psychiatrists. However, physicians
managing chronic pain in FMS patients are non-psychiatrists and
often lack the expertise to diagnose major depression with a high
level of certainty. This leads to low consistency and accuracy,
resulting in major depression in FMS patients being missed (Yan
et al., 2022). A personalized tool for differentiating FMS patients
with major depression by identifying biological predictors in
patients with FMS will enhance diagnostic accuracy and improve
clinical outcomes.

Support vector machine (SVM) is one promising technique for
identifying biological markers, which has been widely used to
diagnose and classify various diseases, especially depression.
Researchers have developed an integrated analytical algorithm
consisting of nuclear magnetic resonance-based metabolomics
and least squares-SVM to diagnose depression (Zheng et al.,
2017). SVM was applied to predict the efficacy of escitalopram
from electroencephalography recordings for treatment of depression
(Zhdanov et al., 2020). Furthermore, SVM was used to separate
depressed from healthy individuals based on multiple brain network
properties, such as diffusion-weighted neuroimaging and graph
theory (Sacchet et al., 2015). These studies provide strong
evidence that SVM can be applied to predict depression.
However, they cannot translate these findings into clinical tools,
due to low accuracy of prediction or small sample sizes. To
overcome these limitations, the present study attempted to use
Gaussian noise to generate a large amount of simulated data for
model construction with a high accuracy.

Since pain and depression can cause each other and worsen each
other, we hypothesize that pain-related genes can be used to
differentiate between those with major depression from those
without. In this study, whole genome data analysis was applied

to select gene features to construct SVM model combined with
principal component analysis (PCA) technique for prediction of
depression in patients with FMS. Usually, multiple variables are
included in SVM models, leading to a high-dimension, and it is
difficult to find the patterns in data with high-dimension. PCA can
help reduce the number of data dimensions without much loss of
information, and identify patterns in data easily (Jolliffe, 1986). Our
proposed method could provide useful information for personalized
optimization of diagnosing depression in patients with FMS.

2 Materials and methods

2.1 Microarray expression data and study
subjects

The microarray dataset GSE67311, from publicly available Gene
Expression Omnibus (GEO) repository database, was used for analysis
in this study (Jones et al., 2016). The data were normalized by Robust
Multi-array Average method across the samples. Blood samples were
collected from 70 FMS patients and 70 healthy matched controls. The
subjects were limited to Caucasian females aged 18 and over.
Fibromyalgia patients were diagnosed by a physician with FMS for
at least 6 months or longer (Jones et al., 2016). There were 25 FMS
patients with major depression, and 36 patients without major
depression, which were used to construct the model.

2.2 Co-expression analysis and feature
selection

Usually, pain and depression can cause each other and worsen each
other. The pain signaling system consists of transduction, conduction,
synaptic transmission, and modulation, and 114 pain-related genes
identified from the microarray dataset were summarized for analysis
(Supplementary Table S1) (Julius and Basbaum, 2001; Foulkes and
Wood, 2008). We further extracted the expression profiles of these
114 genes from dataset GSE67311 for co-expression analysis according
to the methods developed in our previous studies (Wang et al., 2014;
Chan et al., 2015; Wang et al., 2015; Wang et al., 2016).

An FMS-specific cutoff point was identified to classify the co-
expressed gene pairs into strong and weak co-expression classes. The
normal-specific strongly co-expressed pairs were the gene pairs
strongly co-expressed only in the healthy individuals, which were
disrupted in the FMS group, called disrupted links. The FMS-
specific strongly co-expressed pairs were the gene pairs strongly
co-expressed only in the FMS group, which were invoked in the FMS
group, called invoked links. There were also common weakly co-
expressed pairs and common strongly co-expressed pairs. The
disrupted links were regarded as the inter-gene linkages
maintaining physiological balance in healthy individuals. The
invoked links represented the characteristics of the disease and
may be the pathogenic alternatives.

The sum of absolute Pearson correlation coefficient (|r|) values
for each gene in the co-expression network was calculated, defined as
Rsum. Genes with the largest Rsum were called hub genes.
Throughout the study, Rsum values were used to select hub
genes for depression prediction. Cytoscape is an open source
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software used to visualize complex (Shannon et al., 2003). ClueGO is
a Cytoscape plug-in to annotate large sets of genes by integrating
Gene Ontology, KEGG/BioCarta pathways and other databases
(Bindea et al., 2009). We applied ClueGO in Cytoscape to
interpret the biological function of selected hub gene features.

2.3 Support vector machine model
construction

After a subset of gene features was selected, SVM was used to
distinguish depressed and non-depressed FMS patients. PCA is a

powerful tool to reduce the number of data dimensions without
much loss of information (Jolliffe, 1986). A classic method taking
advantages of both SVM and PCA techniques was proposed in this
study (Figure 1A). More specifically, the large-scale training and
testing data sets were first available through an additive model, and
then split for training and testing. PCA was subsequently adopted to
reduce the feature vector dimension of the training data preceding
the training process. SVM was employed to learn a base model from
the low dimensional feature space to recognize depression or non-
depression in FMS patients.

2.3.1 Generation of big-simulated gene data
The 61 samples available in the database cannot represent every

possible variation of each patient. One important property of an
SVMmodel to predict depression was the ability to generalize to the
data obtained from a clinical site that was not involved in the
training of the model. We adopted an additive model of embedding
Gaussian noise to improve the capacity for such generalization
(Formula 1). This additive model was controlled under a value of
a high signal-noise-ratio (SNR) to generate a large amount of
simulated data for training and testing (Wong, 2013).

G′
i � Gi +Ni i � 1, 2, . . . (1)

2.3.2 Reducing dimension of data based on PCA
method

In order to reduce dimension of each sample with less loss of
information, PCA technique was applied to obtain the optimal
expression profiles for each sample. The sample can be expressed
as a d-dimensional feature vector (Formula 2).

G � g1 g2 g3 ...gd( )T (2)
where d denoted the feature vector dimension of one sample. For
each sample, we had d observations denoting the expression profiles
of multiple hub genes.

The whole processes for PCA included: i) constructing the
training data set; ii) subtracting the mean from each data
dimension; iii) calculating the covariance matrix; iv) calculating
the eigenvectors and eigenvalues of the covariance matrix; v)
determining the number of principal components; and vi)
forming feature vectors for testing samples. Through PCA
operation, the information redundancy of gene signals can be
removed, making it easier for the model to separate depression
from non-depression.

2.3.3 Differentiating between those with major
depression from those without in patients with
fibromyalgia based on SVM model

The soft-margin SVMwas constructed to differentiate depressed
and non-depressed patients. Let L denoted the set of sample
categories, and L � 1, . . . , l{ } where l denoted the total number of
sample categories (l = 2). This problem was considered as giving n
labeled empirical samples.

X1, y1( ), . . . , Xn, yn( )
where Xi{ }ni�1 was the PCA feature set of input samples in RD (D =
20), and yi denoted the label ofXi. For the classification problem;Xi

FIGURE 1
Overview of study methodology. (A) Flowchart of the proposed
method for differentiating between those with major depression from
those without in FMS patients. (B) Flowchart of SVM model. FMS,
Fibromyalgia syndrome; SVM, support vector machine.
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denoted the feature vector of one sample, an input PCA feature
vector with the dimension of p (p = 20) and Xi was then transformed
to a higher dimensional feature space (Chang and Lin, 2011; Nalepa
and Kawulok, 2019) through a kernel function K (X,Xi) for
classification as shown (Figure 1B).

Now, the goal was to find the optimal separating hyperplane that
can maximize the distance between it and the nearest data points in
different categories (Formula 3).

f x( ) � w · x + b (3)
The nearest points to the hyperplane were called support

vectors. To find the optimal hyperplane f (x,w), only support
vectors were considered in SVM. For two linearly separated
classes, the training data must satisfy the following two constraints:

wTxi + b≥ 1 if yi � 1

wTxi + b≤ − 1 if yi � −1 (4)
The margin of separation between two classes was thereby

calculated as follows:

ρ � 2
w‖ ‖

To separate depression from non-depression, the problem was to
maximize the margin ρ under the constraints (Formula 4). This can be
obtained by solving the optimization problem during the training
process (Cortes and Vapnik, 1995). By introducing Lagrange
multipliers αi{ }Ni�1 and dual transformation (Scholkopf et al., 1997;
Duan and Keerthi, 2005; Chang and Lin, 2011), the category of hub
genes in the test set was predicted as follows (Formula 5):

di � sign wTxi( ) � sign ∑
j∈SV

αjdjxjxi( )
� sign ∑

j∈SV
αjdjk xj, xi( )( ) (5)

where SV denoted the set of support vectors, k(xj, xi) was a kernel
function, and it was the inner product of two feature vectors. By using
this kernel function, the training samples can bemapped from an input
space to another feature space, which increased separation of the
samples. There are two commonly used kernels for SVM in real
applications, namely, linear, and radial basis function (RBF)
(Apostolidis-Afentoulis and Lioufi, 2015). Generally, in the case of
linearly separable data, linear kernels and RBF kernels can show similar
performance, while in the case of linearly non-separable data, RBF
kernels can give better prediction. Note that the dataset GSE67311 was
linear non-separable data, and the number (p) of feature vector was
also smaller than the number (n) of training data. For the linearly non-
separable data, SVM with RBF kernels had better performance in our
study. The experimental results also illustrated that themodel with RBF
kernels presented the better accuracy than that with linear kernels.

To obtain a more robust model with RBF kernels for the
prediction of depression, K-fold cross-validation and grid search
were implemented to obtain the optimal values of gamma and the
penalty parameter (C). In the implementation, the precision was
observed for 6 splits and 6 repeats. For each iteration, the training
dataset (trainSetAll) was split into 6 folds, where 5 sets were served as
the trainSet, and the remaining 1-fold was served as the testSet. The
prediction accuracy of the model was calculated on the testSet in

each iteration. Finally, gamma and C were obtained with the highest
cross-validation accuracy. The best gamma and C were then used to
train the whole training set, and the final model was generated to
predict the whole testing set.

Input: trainSetAll, type, kernel, m1, m2
Output: bestC and bestGam
begin
(trainSet, testSet) <- KfoldSplit (trainSetAll);
bestAccuracy = 0;
bestC = 0;
bestGam = 0;
for c= 2̂(-m1):2̂(m1)

for s = 2̂(-m2):2̂(m2)
model<- SVMtrain (kernel, trainSet, bestC,bestGam);
acc<- SVMtest (model, testSet);

if (acc>bestAccuracy)
bestAccuracy = acc; bestC = c; bestGam = s;

end
end
end
end

2.4 Statistical analysis

The co-expression analysis and SVM model construction were
conducted using MATLAB R2022a. The statistical analysis was
performed by IBM SPSS Statistics 27.0 software. Chi-square test was
used to determine if genes were more disrupted or invoked in FMS
patients. The normality of the data was checked first. The independent
sample t-test was applied to exam the statistical significance for Rsum
values. Significant differences were found at p-value < 0.05.

3 Results

3.1 Structural Co-expression pattern and
galaxy

We calculated the correlation coefficients of 114 pain pathway
genes in the FMS and healthy individuals, respectively. Two-sample
KS test identified the significant difference in these two cumulative
distributions with p-value < 0.001 for the maximum deviation D =
0.11 > Dcritical = 0.05. The FMS-specific cutoff point, 0.366, was
identified at the maximum deviation (Figure 2A). The co-expression
galaxy was plotted and partitioned into four regions: i) Disrupted
links; ii) Common strongly co-expressed pairs; iii) Invoked links;
and iv) Common weakly co-expressed pairs (Figure 2B). From the
results, we observed that links were more likely to be invoked than
disrupted in FMS group, Chi-square test, p < 0.001.

3.2 Identification and annotation of hub
gene features

There were 328 disrupted and 1,054 invoked links, of which
involved genes were strongly co-expressed in the healthy individuals
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or FMS group (Figure 2B). We further explored the hub genes with
the highest degree of connectivity in each group. The most
important features contributing to the model were selected based
on the Rsum values, including top 10 invoked and top 10 disrupted
hub genes (Figure 3A). The Rsum values were significantly larger for
invoked links than disrupted links (t-test, p < 0.001), indicating the
important role of invoked hub genes in the development of FMS
(Figure 3B).

Four major significant biological function groups were found to
annotate the selected hub gene features by ClueGO in Cytoscape
(Table 1; Supplementary Figure S1A): i) Ion channel complex,
adjusted p-value < 0.001, 13 involved genes; ii) TRPs channels,
adjusted p-value < 0.001, 3 involved genes; iii) Sodium channel
activity, adjusted p-value < 0.001, 5 involved genes; and iv)
Transmitter-gated ion channel activity involved in regulation of

postsynaptic membrane potential, adjusted p-value < 0.001,
9 involved genes. Each major group was composed of one or several
terms/pathways. The group of transmitter-gated ion channel activity
involved in regulation of postsynaptic membrane potential had the
most terms/pathways, and the percentage was the highest, 86.05%
(Supplementary Figure S1B). The results demonstrated that these pain-
related hub genes had important biological functions.

3.3 Differentiating between thosewithmajor
depression from those without using SVM
model

In this simulation, PCA was applied to 20 hub genes with
expression measurements for original training samples. To get a

FIGURE 2
Co-expression patterns for genes involved in pain signaling pathway. (A) Cumulative distribution plots in the FMS and healthy individuals. The FMS-
specific cutoff point 0.366 was identified. (B) Co-expression galaxy (left) and four regions (right) partitioned by the cutoff point. Each absolute correlation
coefficient (|r|) was represented by one white dot in the galaxy. More dots demonstrated that more correlation coefficients located in that region. FMS,
Fibromyalgia syndrome.
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view for the dimension of the data, the proportion of the variance
within each principal component was shown (Figure 4). The results
demonstrated that 16 components were needed to retain more than
90% of the original variance. In such a way, PCA reduced the
dimension of the training samples from 20 to 16. The similarities
and differences of the feature vectors in terms of the PCA

representation could be easily highlighted due to the
orthogonality properties of PCA eigenvectors. In this simulation,
the trained model with the dimension of feature vector (dFV) of
16 was chosen automatically (Figure 4). We also plotted the

FIGURE 3
Twenty hub gene features. (A) Feature importance of selected 20 hub genes based on Rsum values. The blue bar referred to the hub genes from
disrupted links. The orange bar referred to the hub genes from invoked links. (B) Rsum values for hub genes. The bar chart presents the results as themean
of 10 disrupted and 10 invoked genes. ***p < 0.001, independent sample t-test. Rsum, sum of |r| values.

TABLE 1 Functional annotation for the selected 20 hub genes.

Biological function Adjusted
p-value

Involved genes

Ion channel complex 2.87E-25 CACNA1H, GABRA2, GABRA5, GABRB2, GABRP, GABRR1, GRIA1, GRIK2,
KCNQ2, PKD2L1, SCN10A, TRPC1, TRPC7

TRPs channels 9.46E-8 TRPC1, TRPC7, TRPV4

Sodium channel activity 5.44E-10 CACNA1H, GRIK1, GRIK2, PKD2L1, SCN10A

Transmitter-gated ion channel activity involved in regulation of
postsynaptic membrane potential

3.06E-12 GABRA2, GABRA5, GABRB2, GABRP, GABRR1, GRIA1, GRIK1, GRIK2, NGF

FIGURE 4
The explained variance of principal components for original
training samples. The sum of the first 16 principal components for
variance explained could achieve more than 90%.

FIGURE 5
The predicted accuracy of the trained classifier based on SVM
with RBF kernels for dFV values of 2 and 16. The blue curve was the
accuracy for dFV = 2, and the orange curve represented the accuracy
for dFV = 16. SVM, support vector machine; RBF, radial basis
function; dFV, dimension of feature vector.
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FIGURE 6
The generated gene expression data and distributions in 2D PCA space with different values of SNR based on the additive model. (A), (B), and (C) The
representative simulated expression profiles with SNR values of 26, 32 and 38, respectively. The blue lines referred to the original expression profiles from
microarray datasets. The red lines were the simulated expression profiles. (D), (E), and (F) The representative distributions with SNR values of 26, 32 and 38,
respectively. The blue and red dots represented the original data frommicroarray datasets. The green and purple dots were the simulated data. 2D,
2-dimension; PCA, principal component analysis; SNR, signal-noise-ratio.
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prediction accuracy when dFV was set to 2, and the accuracy was
very low due to more information lost. By contrast, the best model
with dFV of 16 achieved superior performance with the average
accuracy of 93.22% to differentiate between those with major
depression from those without (Figure 5).

The simulated expression profiles and their distributions in 2D
PCA space with different values of SNR were shown (Figure 6). The
fluctuation of gene expression profile was quite large with a small
value of SNR when compared to a large value. The data were
dispersed randomly due to the large noises introduced. By
contrast, the generated expression profiles had small fluctuation
and regular distribution when a higher value of SNR was used.
Usually, the larger the SNR is, the smaller the noise mixed in the
signal is. However, if SNR is too large, the generated data are quite
close to the original data, and difficult to simulate more possibilities.
According to our simulated data, the quality of the generated data
was better with SNR value of 30 dB–40 dB compared to the value of
SNR between 20 dB and 30 dB. To strike the balance between the
fidelity and generalizability, the SNR was set to 32 in our proposed
method.

The relationship among gamma, C and accuracy was visualized
(Figure 7A). It can be observed that the value of gamma was larger,
and the training accuracy can be higher. However, it would influence
the generalization performance of each RBF kernel with the
corresponding support vectors (SVs), and lead to overfitting for
the training data. For unknown samples, the classification
performance would be poor. By contrast, if the value of gamma
was smaller, the smoothing effect of RBF was larger. It was difficult
to obtain higher classification accuracy as shown (Figure 7A). Note
that the penalty parameter C denoted the error intolerable of the
model. The smaller the C was, the less fitting it was. By contrast, if C
was too large, it was easy to make the model overfitting. Therefore,
the generalization performance was poor if C was too large or too
small as shown (Figure 7A). The relationship among gamma, C and
the number of SVs was shown (Figure 7B). The smaller the gamma
was, the number of SVs was larger, while the number of SVs would
influence the time of SVM model training and testing.

The performance for SVM with RBF kernels and linear kernels
was evaluated. Random Field based method was also applied for the

prediction of depression in patients with Fibromyalgia (Criminisi
et al., 2011; Karpathy, 2011). The results illustrated that the model
with RBF kernels presented the optimal performance among the
three algorithms (Figure 8A). For the SVMmodel with RBF kernels,
two multifold cross-validation schemes were designed. In Scheme 1,
all samples including original and synthesized data were split
randomly for training and testing. In Scheme 2, synthesized data
were used for training the SVM model, and original data were
adopted for testing. The prediction accuracy was presented
(Figure 8B). From the results, we can see that the trained model
had a robust and consistent performance. The optimal values of
gamma and C for the 6-fold cross-validation were obtained
(Figure 8C). The consuming time during the training and testing
processes for the 6-fold cross-validation was shown (Figure 8D). The
simulation results demonstrated that the prediction was very fast,
and the 172 samples only took 0.002 s for prediction.

4 Discussion

In this study, we investigated the feasibility of differentiating
FMS patients with major depression from those without depression
using microarray data by applying the support vector machine
model. Of importance, the differentiation was based on gene
expression levels. This is distinct from conventional clinical
practice, where major depression is identified clinically without
the aid of objective biological markers.

The functional annotation showed that the pain-related hub
genes had important biological functions. Thirteen hub genes were
involved in ion channel complex: CACNA1H, GABRA2, GABRA5,
GABRB2, GABRP, GABRR1, GRIA1, GRIK2, KCNQ2, PKD2L1,
SCN10A, TRPC1, and TRPC7 (Table 1). Dysfunction in the
excitation/inhibition balance could lead to the major depression
(Fee et al., 2017). Ion channels play a vital role in regulating the
excitability, network activity and plasticity, which can alter the
GABAergic and glutamatergic neuron excitability and firing, to
change the excitation/inhibition balance in microcircuits (Eren-
Koçak and Dalkara, 2021). Drugs targeting ion channels,
including voltage-gated Na+ (VGSCs) and Ca2+ channels

FIGURE 7
Relationship among parameters, predicted accuracy and support vectors for the depression prediction. (A) Relationship among gamma, C and
predicted accuracy. (B) Relationship among gamma, C and number of SVs. SVs, support vectors.
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(VGCCs), are the major treatment for chronic neuropathic pain
(Markman and Dworkin, 2006). Hub genes of TRPC1, TRPC7 and
TRPV4 were found to be involved in TRPs transport extracellular
Ca2+ to cytosol process (Table 1). Transient receptor potential (TRP)
is a kind of cation channels expressed in non-excitable and excitable
cells (Duitama et al., 2020). TRPs located in plasmamembrane could
help Na+, K+, Ca2+, and Mg2+ ions, and trace metal ions into the cells
(Nilius and Owsianik, 2011). Some subfamily members that highly
expressed in neurons and microglia could mediate the neuropathic
pain (Haraguchi et al., 2012). As TRP channels are related to
intracellular calcium regulation, signaling and painful stimuli
transduction, they are regarded as promising targets to treat
neurodegenerative diseases and pain (Duitama et al., 2020). TRP
channels play a vital role in nociceptive, neuropathic, and
inflammatory pain, owing to various family members participated
in pain pathways (Hung and Tan, 2018). Another five hub genes,
including CACNA1H, GRIK1, GRIK2, PKD2L1, and SCN10A, were
associated with sodium channel activity (Table 1). Sodium channel

is one of Voltage-gated ion channels that are very important in the
electrical signaling of cells (Kandel et al., 2000; de Lera Ruiz and
Kraus, 2015). Genetic and functional studies found that peripheral
sensory neurons expressed sodium channels were related to human
pain disorders, which can be regarded as targets for the development
of new analgesics (Dib-Hajj et al., 2017). Nine genes of GABRA2,
GABRA5, GABRB2, GABRP, GABRR1, GRIA1, GRIK1, GRIK2,
and NGF were related to Transmitter-gated ion channel activity
involved in regulation of postsynaptic membrane potential
(Table 1). The transmitter-gated ion channels consist of multiple
subunits of membrane-spanning receptors responsible for rapid
signal transduction (Barnard, 1992). These important hub genes
were selected for SVM model construction to predict depression in
FMS patients.

Depression is a serious mental disorder characterized by severe
and persistent low mood, negative cognitive effects and behavioral
symptoms (Costi et al., 2021). FMS and depression have a
bidirectional relationship, where worsening of one condition

FIGURE 8
The performance of the model. (A) Predicted accuracy of the model with different kernels. (B) Predicted accuracy with different cross-validation
schemes. (C) The optimal gamma and C in the 6-fold cross-validation. (D) Consuming time for training and testing processes. SVM, support vector
machine; RBF, radial basis function.
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exacerbates the other, and vice versa (Chang et al., 2015). A number
of the selected hub genes in our study have been previously reported
to be related to FMS or depression, including GRIK1&2, NGF,
KCNQ2, GRIA1, TRPV4, IL1A, and GABAA receptors. The hub
gene was defined as the gene with the highest degree of connectivity
in the co-expression network, which may play important roles in the
development and characteristics of diseases, e.g., pain and
depression. The expression levels of GRIK1 and GRIK2 were
reported to be higher in the female patients with major
depressive disorder (Gray et al., 2015). The upregulation of
brain-derived neurotrophic factor mediated by NGF participates
in the pathophysiological processes, leading to long-term
neuroplastic changes in persistent chronic pains, e.g.,
fibromyalgia (Sarchielli et al., 2007). The KCNQ2/3 potassium
channel is regarded as a novel treatment target for depression
from preclinical studies (Costi et al., 2021). It was reported that
glutamate receptors, e.g., GRIA1, may be deregulated in
fibromyalgia patients (Garcia-Quintanilla and Miranzo-Navarro,
2016). TRPV4 is a kind of calcium-permeable non-selective
cation channel mediating various disease states, and animals
lacking TRPV4 had the decreased depression-like behavior
(White et al., 2016). It was reported that significantly decreased
IL1A expression was identified in depression cases compared to
controls (Morrison et al., 2019). The increased GABAA receptor
concentration was found in FMS compared with controls, which
may lead to pain symptoms and imbalance between neuronal
excitation and inhibition in FMS (Pomares et al., 2020). Our
study also identified additional hub genes that have not been
previously reported, such as CACNA1H and SCN10A. This
discovery of hub genes that could differentiate between those
with major depression from those without was based on the
method that utilized both SVM and PCA techniques with a
relatively high average accuracy.

The SVM studies using microarray data to select features for
differentiating between those with major depression from those
without are scarce. An SVM algorithm based on nuclear magnetic
resonance metabolomics was developed to diagnose depression
(Zheng et al., 2017). Electroencephalography recordings were
applied to construct SVM classifier to predict escitalopram
treatment outcome in depressed patients with the accuracy
from 79.2% to 82.4% (Zhdanov et al., 2020). Moreover,
diffusion-weighted neuroimaging and graph theory were used
for SVM model construction to separate depressed from healthy
individuals with 71.88% general accuracy (Sacchet et al., 2015).
Compared to the above-mentioned methods, our current
approach has the following potential advantages: i) based on
the expression profiles of selected hub genes that are related to
FMS or depression, making the features in SVM model more
relevant to depression diagnosis in FMS patients; and ii)
combination of SVM and PCA techniques to construct the
model, achieving a higher accuracy of 93.22% to differentiate
between those with major depression from those without.

This study has several limitations. One of these was the
relatively small sample size. However, a number of other
published studies using SVM for clinical medicine had even
smaller sample sizes, e.g., 55 participants (Wu et al., 2018),

and 32 participants (Sacchet et al., 2015). In order to address
this problem, we added Gaussian noises in each gene profile of
one patient by controlling SNR (Wong, 2013) to obtain some
simulated data in order to represent every possible variation of
each patient. A second limitation was that although we applied
various measures to control the overfitting during machine
learning, such as Gaussian noise and hub gene features
selection techniques, our model was not perfectly unbiased. A
third possible limitation was that although this study generated a
large amount of simulated data for training and testing, only one
data set was used, and may need a strictly independent data set to
validate the model. In a study using SVM classifier to predict
escitalopram treatment outcome in depressed patients, also only
one dataset was applied to construct the model (Zhdanov et al.,
2020). Compared to their method, our model can achieve a
higher accuracy to predict depression. To polish the predictive
performance of our model, future studies should validate it with
an independent data set that was not used in the process of model
construction. Moreover, all the depressed patients belong to
major depression in the dataset used in our study, however, it
was no explicitly stated on the detailed diagnostic methods in the
source article. Although this was most probably corresponded to
major depressive disorder in the DSM V criteria. In addition, the
prediction model demonstrated in this study has yet to be proven
to be generalizable to other control groups, including depressed
patients without FMS or with other kinds of pain. Model
evaluation should be conducted independently with some
other pain conditions to exam the generalizability. This
evaluation may also help to identify whether the selected hub
gene features in this study were specific to depressed FMS
patients or whether they can be applied to other pain conditions.

The current model provides a base which can be further
polished and improved by inputting additional information from
patient blood samples. A computer-based interface system using
single drop blood samples can be developed to help differentiate
between those with major depression from those without in FMS
patients based on the expression levels of the 20 hub genes. The
aim of the proposed method was to help non-psychiatrists
identify FMS patients with depression that is potentially
clinically significant (e.g., those with major depression). These
patients should then be referred to a clinical psychiatrist for
formal diagnosis (e.g., different subtypes of depressive disorders)
and subsequent management for their psychiatric condition.
Given that depression is a common major barrier in the
management of patients with FMS, and is also often clinically
unrecognized, such computer-based interface systems could
become very useful in aiding clinical diagnosis and management.

In conclusion, we have demonstrated a proof-of-concept
pipeline for differentiating between those with major
depression from those without among FMS patients. When
developed into a proper clinical application, it may contribute
to the diagnosis and clinical management for patients with co-
existing FMS and depression. These findings would help to
develop a clinical decision-making tool for data-driven,
personalized optimization of diagnosing depression in patients
with FMS.
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