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Osteoporosis (OP) is a systemic bone disease caused by various factors, including,
the decrease of bone density and quality, the destruction of bone microstructure,
and the increase of bone fragility. It is a disease with a high incidence in a large
proportion of the world’s elderly population. However, osteoporosis lacks obvious
symptoms and sensitive biomarkers. Therefore, it is extremely urgent to discover and
identify disease-related biomarkers for early clinical diagnosis and effective
intervention for osteoporosis. In our study, the Linear Models for Microarray Data
(LIMMA) tool was used to screen differential expressed genes from transcriptome
sequencing data of OP blood samples downloaded from the GEO database, and
cluster Profiler was used for enriching analysis of differently expressed genes. In
order to analyzed the relevance of gene modules, clinical symptoms, and the most
related module setting genes associated with disease progression, we adapted
Weighted Gene Co-expression Network Analysis (WGCNA) to screen and analyze
the related pathways and relevant molecules. We used the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database to construct protein
interaction network of key modules, and Cytoscape software was used to
complete network visualization and screen of core genes in the network. Various
plug-in algorithms of cytoHubba were used to identify key genes of OP. Finally,
correlation analysis and single-gene gene probe concentration analysis (GSEA)
analysis were performed for each core gene. Results of a total of 8 key genes
that were closely related to the occurrence and development of OP were screened
out, which provided a brand-new idea for the clinical diagnosis and early prevention
of OP. Quantitative real-time PCR (qRT-PCR) was performed for validation, the
expression levels of CUL1, PTEN and STAT1 genes in the OS group were significantly
higher than in the non-OS groups. Receiver operating characteristic analysis
demonstrated that CUL1, PTEN and STAT1 displayed considerable diagnostic
accuracy for OS.
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Introduction

Osteoporosis (OP) is a type of orthopedic disease with bone fragility and fracture risk
increase due to the decrease of bone density (Lane, 2006; Singanayagam et al., 2021).
Statistics demonstrated that the incidence of OP and osteoporotic fractures increased
significantly (Armas and Recker, 2012; Demontiero et al., 2012). The prevalence of
osteoporosis in the world was reported to be 18.3 (95% CI 16.2–20.7) (Salari et al.,
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2021). The parts of bones most commonly affected by osteoporosis
and osteoporotic fractures include the lumbar and thoracic spine,
the distal radius, the proximal femur and the humerus
(Yavropoulou et al., 2019). Additionally, among them, vertebral
fractures are often accompanied by acute or chronic pain, which
lower the quality of life and shorten the lifespan (Marini et al.,
2019). Osteoporotic fractures include hip fractures have the
highest morbidity and mortality out of all osteoporotic
fractures, and they are the most common cause of disability in
the elderly (Chandra et al., 2018; Long et al., 2020). The
assessments of the European Union (EU) illustrated that as life
expectancy increased, the economic burden of osteoporotic
fractures was anticipated to increase by an average of 25% by
2025 (Svedbom et al., 2013). Osteoporosis is normally only
discovered after patients experience a fracture, which is due to
the lack of obvious symptoms and sensitive biomarkers (Sanchez-
Riera et al., 2014; Tarrant and Balogh, 2020). Early diagnosis and
timely intervention are conducive to hindering the malignant
development of OP. Therefore, it is important to find and
identify specific and sensitive biomarkers for diagnosis and
treatments of OP.

In recent years, a variety of bioinformatics methods have been
widely used in the analysis of OP-related potential biomarkers, and
multiple genes related to the occurrence and prognosis of OP have
been discovered, including peptidylprolyl isomerase domain and
WD repeat containing 1 (PPWD1) (Qian et al., 2019) and estrogen
receptor 1 gene (Mondockova et al., 2018), which can be used as
potential markers for OP diagnosis. Weighted correlation network
analysis, also known as weighted gene co-expression network
analysis (WGCNA), has been widely used in genomics and in
interpreting the expression patterns of disease transcriptomes
(Zhao et al., 2010; Pei et al., 2017). Our study collected
transcriptome sequencing data of different OP blood samples
from the GEO database and used WGCNA to screen and enrich
the gene modules that related to the occurrence and development
of OP. The study used the STRING database to analyze the protein
interaction network of key modules. Finally, we screened out 8 core
genes for correlation and single-gene GSEA analysis, which laid the
foundation for the early diagnosis of OP and had certain practical
values.

Methods

Data collection

The mRNA expression profile microarray data were
obtained from the GEO dataset: GSE7158 series included 12 OP
(low bone density) samples and 14 NC (high bone density)
samples; GSE56814 series included 31 pre-treatment samples
(15 OP and 16 NC) and 43 prognostic samples, and
GSE56815 series included 40 pre-treatment samples (20 OP and
20 NC) and 40 post-treatment samples. For GSE56814 and
GSE56815, sample data before treatment were used for
difference analysis. As this study involves only a
bioinformatics analysis of the GEO data set, no ethical
approval was required. The inclusion criteria included
age >18 years, osteoporosis fractures grades 1–4 according to OF
classification, pathological fractures: osteoporotic fractures,

fracture of at least 1 vertebral body, fractures of thoracic or
lumbar vertebral body. The exclusion criteria included
pathological neoplastic fractures, osteoporosis fractures (OF)
grade 5 according to OF classification and AO type B and C
fractures.

Functional enrichment analysis

We carried out functional enrichment analysis of DEGs by
analyzing Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways by using the cluster profiler
package in R (version 4.2.0) (Yu et al., 2012). (p < 0.05 is considered
statistically significant).

Weighted gene co-expression network
analysis

WGCNA was an algorithm that was used to construct the
gene co-expression network, reveal the correlation patterns
between genes and provide an explanation for the biological
functions of network modules (Langfelder and Horvath,
2008). We screened out the genes that had the significant
differences in GSE7158, GSE56814 and GSE56815, and we
used WGCNA (version 1.60) to construct the co-expression
network.

PPI network construction and identification
of hub genes

We used STRING database (version 11.0) tool to build a
protein–protein interaction (PPI) network (Szklarczyk et al.,
2019). By using WGCNA (version 1.60), we screened out key
module genes and defined them as key genes. After
superposition of DEGs and screening key genes, data were put
into the STRING database (https://string-db.org/) to construct
protein interaction network, and data visualization was
performed using Cytoscape (version 3.7.2) (Shannon et al.,
2003). Finally, 8 core genes were screened out.

Analysis by GSEA

GSEA, a kind of enrichment analysis method based on gene
sets, has been used to analyze the expressions of genes and select
single or multiple MSigDB gene set functions to analyze the
correlation of gene expression data and phenotypic genes. Then,
based on data expressions of genes and the relevance of phenotypic
genes, it was determined which genes in each gene set were
enriched in the upper or lower parts of the gene list after the
sequencing of the gene. It would help to identify the synergistic
changes of effects of genes in this gene set towards phenotypic
changes. Based on the results of correlation analysis, Reactome base
analysis was performed on the 8 single genes screened. GSEA shows
only the top 20 results of each gene (>0, positive correlation
between pathway and gene; <0, pathways are negatively
correlated with genes).
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Quantitativereal-time RT-PCR (qRT-PCR)

Total RNA was extracted from samples from 10 OS patients and
10 healthy controls using phenol-chloroform (TRIzol; Invitrogen;
ThermoFisher Scientific, Inc., Waltham, MA, United States). The
quality of RNA was assessed by capillary electrophoresis (Agilent
Technologies, Inc., Santa Clara, CA, United States). Libraries for small
RNA sequencing were prepared using NEB kits (New England Biolabs,
Inc., Ipswich, MA, United States). qRT-PCR with SYBR-Green
(Takara, Osaka, Japan) to detect CDC5L, CUL1, CXCL10,
EIF2AK2, POLR2B, PTEN, STAT1, and TBP expression levels,
GAPDH was applied as a house keeping gene. The reaction was
performed via 40 amplification cycles using the following protocol:
95°C for 3 min, 95°C for 45 s, 55°C for 15 s, and 72°C for 50 s. Primers
used in PCR were shown in Supplementary Table S1. Samples were
analyzed in triplicate, and gene expression was quantified by
normalizing target gene expression to that of the internal control
using the 2−ΔΔCt formula.

Statistical analysis

Data were analyzed using SPSS 19.0 software. qRT-PCR were
repeated three times, and data were represented as the mean ± SD.
Two-tailed t-tests were performed to compare the difference in plasma

gene expression levels. Student’s t-test was used to determine the
significance of difference between two groups. Receiver Operating
Characteristic (ROC) curves were performed to determine the
diagnostic utility of each selected gene in distinguishing between
healthy subjects and OP cases. Estimates of the corresponding area
under the curve (AUC) were calculated at the 95% confidence interval
(CI). Finally, the cut-off point with the highest specificity and
sensitivity was determined.

Results

DEGs between low bone mineral density (OP)
and high bone mineral density (NC)

We used the parameter value of p < 0.05, |log(2)FC|>1.5 to
preprocess data sets GSE7158, GSE56814 and GSE56815. In
GSE7158, we identified 600 up-regulated and 565 down-regulated
genes. The volcano diagram for all genes and the expression heatmap
of the top 10 DEGs were shown in Figures 1A,B. In GSE56814, we
identified 1977 upregulated and 2353 downregulated genes (Figures
1C,D). A total of 875 upregulated genes and 840 downregulated genes
were identified in GSE56815 (Figures 1E,F). Subsequently, we
conducted gene intersection analysis of upregulated or
downregulated genes in different data sets, then screened out genes

FIGURE 1
Identification of differentially expressed genes betweenOP and normal samples. Volcano plots of the differential gene expression data from (A)GSE7158,
(C) GSE56814, and (E) GSE56815. In the volcano plots, the pink points show upregulated genes (adjusted p-value< 0.05), whereas the red points represent
downregulated genes. Heatmap of the top 10 differentially expressed genes based on (B)GSE7158, (D)GSE56814, and (F)GSE56815. The color intensity (from
red to blue) suggests the higher to lower expression. FC fold-change.
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that were simultaneously upregulated or down-regulated in the two
data sets as differential genes for subsequent analysis (Figures 2A,B).

Differential gene enrichment analysis

We conducted enrichment analysis of related molecular functions
(MF) (Supplementary Table S1), biological processes (BP)
(Supplementary Table S2) and cellular components (CC)
(Supplementary Table S3) of genes with stable differences based on
the GO and KEGG databases, in which results of MF analysis were
not significant (Figure 3A). The biological process of enrichment was
mainly related to the immune regulation of the body, and the enrichment

of cell components mainly involved nucleus-related molecules. KEGG
pathway analysis in Figure 3B showed that the Shigellosis and Influenza A
pathways were themost abundant pathways, followed by the Epstein-Barr
virus infection, Diabetic cardiomyopathy, and NOD-like receptor
signaling pathways, respectively (Supplementary Table S4).

Construction of co-expression network and
key modules identification

The WGCNA software package was used to analyze the
intersection genes in the GSE56814 data set, and the clinical shape
distribution tree of samples was obtained (Figure 4A). Then, the power

FIGURE 2
DEGs intersection. (A) Differential analysis upregulated gene intersection, (B) Differential gene downregulated gene intersection, Genes that were
upregulated or downregulated in at least two data sets were selected as differential genes for subsequent analysis.

FIGURE 3
Enrichment analysis of DEGs. (A) Enrichment of DEGs using Gene Ontology (GO) analysis, including terms in biological process (BP) and cellular
component (CC). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) (right) analysis. The larger the circle in the figure, themore genes it contains; lower p
values are indicated with a stronger red color.
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value was checked and the optimal result was obtained when the soft-
thresholding power was 14. The clustering tree was used to
characterize the result (Figures 4B,C).

Using clinical data in the GEO database, we analyzed
co-expression modules that related to specific characteristics
in OP patients and general control group before and after

FIGURE 4
Construction of co-expression network and keymodules identification. (A)Cluster tree of clinical distribution of samples. Analysis of (B) the scale-free fit
index and (C) the mean connectivity for various soft-thresholding powers. The soft-thresholding power of 14 was selected based on the scale-free topology
criterion. (D)Correlation between genemodules and clinical traits. Each row corresponds to amodule eigengene, each column corresponds to a clinical trait.
Each cell contains the corresponding correlation and p-value. The table is color-coded by correlation according to the color legend. (E) Expression
similarity between genes. The higher the similarity, the brighter the color. (F) Enrichment BP of DEGs using Gene Ontology (GO) analysis. (G) Kyoto
Encyclopedia of Genes and Genomes (KEGG) (right) analysis.
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treatment, then we obtained ME turquoise, which was positively
correlated with the occurrence and development of OP
for subsequent analysis (Figure 4D). The heat map showed that
the similarity of expressions for all genes in the analysis: the
higher the intervene similarity, the darker the module
color (Figure 4E). In addition, using the GO and KEGG
databases, we found that the main biological processes of these
genes were concentrated around regulation of innate immune
response. For the defense response to the virus, the relevant
pathways focused on neurodegenerative polypathies
(Figures 4F,G).

PPI network construction and identification
of hub genes

The PPI network constructed by the ME turquoise module gene,
which was based on the STRING database, was shown in Figure 5A. In
addition, three different algorithms in the cytoHubba plug-in,
Closeness, Radiality and Betweenness, were used to identify Top
12 Hub genes in the interaction network, and eight core genes
(CDC5L, CUL1, CXCL10, EIF2AK2, POLR2B, PTEN, STAT1,
TBP) were screened out by the three algorithms. These genes were
selected to conduct follow-up analysis (Figures 5B–E).

FIGURE 5
PPI network construction and identification of hub genes. (A) The protein–protein interaction network of the overlapped genes. (B) CytoHubba plug-in
Closeness algorithm identified top12 core genes. (C)CytoHubba plug-in Radiality algorithm identified top12 core genes. (D)CytoHubba plug-in Betweenness
algorithm identified top12 core genes. (E) The intersection of core genes screened by three algorithms.
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Correlation analysis and differential
expression verification of hub gene

We conducted correlation analyses of 8 core genes in 74 cases of
GSE56814 and found that all 8 core genes were positively correlated to

OP (Figure 6A). The heat map showed the logFC and p values of the
8 core genes in the three data sets (Figure 6B). In addition, the 74 cases
of GSE56814 were analyzed for correlation between core genes and all
genes, and the top 50 positive correlation genes were obtained as
shown in the (Figures 6C–J).

FIGURE 6
Correlation analysis and differential expression verification of Hub gene. (A) Gene correlation analysis. The red line represents a positive correlation, the
green line represents a negative correlation, and the darker the color, the stronger the correlation. (B) LogFC and p values of core genes in different data sets.
(C–J)Heatmaps of the correlation between core genes and all genes based on data from 74 cases in GSE56814, only the top50 with a positive correlation are
shown.
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Single gene GSEA

Based on the correlation analysis results, we conducted GSEA,
which was based on the Reactome algorithm, and the results of top-20
correlation of each gene were shown in Figure 7. The results showed

that CDC5L and STAT1 were negatively correlated to integrin cell
surface interactions, GPCR ligand binding, and other pathways. The
CUL1 pathway was negatively correlated with GABA receptor
activation. MET Signaling was negatively correlated with cell
motility, and both CXCL10 and PTEN were positively correlated

FIGURE 7
Results of correlation analysis in gene Figure 6 were used for GSEA analysis of single gene. (A) CDC5L, (B) CUL1, (C)CXCL10, (D) EIF2AK2, (E) POLR2B, (F)
PTEN, (G) STAT1, (H) TBP. The top20 results of 8 geneswere presented respectively. The abscissa value represents the NES value analyzed byGSEA. If the value
is greater than 0, the pathway is positively correlated with the gene; if the value is less than 0, the pathway is negatively correlated with the gene.
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with neutrophil degranulation and innate immune system pathways.
EIF2AK2 was inversely related to G alpha(Q) signaling events,
peptide ligand binding receptors, and so on. POLR2B and TBP
were negatively correlated with SLC-mediated transmembrane
transport and Class A/1 (Rhodopsin-like receptors).

qRT-PCR validation results

In the qRT-PCR results, no significant differences were observed
in CDC5L, CXCL10, EIF2AK2, POLR2B, TBP (Figure 8). The
expression levels of.

CUL1, PTEN and STAT1 gene in the non-OS group were
significantly lower than those in the OS group (p < 0.05).

Assessing the diagnostic performances of
genes

To evaluate the diagnostic power of the genes found significantly
dysregulated during the validation phase, ROC analysis (Figure 9,
Panels A–H) was conducted for each subgroup of patients, and the
associated area under the curve (AUC) was calculated. CUL1, PTEN,
STAT1 exhibited high sensitivity and specificity with AUC values
between 0.91 and 0.93 (p < 0.01), indicating them as good diagnostic
biomarker candidates. In particular, more significant values to
distinguish the non-OS group from OS patients were obtained for

PTEN, whereas STAT1 resulted more effective to identify OP patients
with fracture.

Discussion

According to theWorldHealthOrganization (WHO) reports, OP has
become one of the most common diseases in the world, with 30%–50% of
women worldwide suffering from fracture due to OP in their lifetime
(Rachner et al., 2011). Since OP doesn’t have any obvious clinical
symptoms before the occurrence of the first fracture, early diagnosis is
key to timely intervention and to alleviating the pain of patients (Dera
et al., 2019; Yong and Logan, 2021). Compared to previous studies (Chen
et al., 2021), our studies not only screened genes related to OP occurrence
and development in the GSE database, but also verified the correlation
and differential expressions between core genes and the data set.
Furthermore, additional facts confirmed that CDC5L, CUL1, CXCL10,
EIF2AK2, POLR2B, PTEN, STAT1, TBP and other 8 genes play an
important role in the occurrence of OP. The genes themselves and the
signaling pathway marker molecules enriched among them may be
potential signal molecules for the early diagnosis of OP. In this study,
transcriptome sequencing data of OP blood samples from GEO database
were analyzed by using LIMMA algorithm to obtain more than
5,000 groups of differential genes between OP and the control
group. After enrichment analysis of differential genes, the WGCNA
method was used to screen the gene set modules most related to
disease progression, and enrichment was conducted. The results

FIGURE 8
qRT-PCR validation results. (A) CDC5L, (B) CUL1, (C) CXCL10, (D) EIF2AK2, (E) POLR2B, (F) PTEN, (G) STAT1, (H) TBP. RNA expression of 8 genes were
measured in OS and healthy samples. p-values were calculated using a two-sided unpaired Student’s t-test. **p < 0.01; ***p < 0.00 1; ****p < 0.000 1.

Frontiers in Genetics frontiersin.org09

Deng et al. 10.3389/fgene.2023.1028681

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1028681


showed that the biological processes that were mainly related to the
regulation of innate immune response, response to virus, response to
lipopolysaccharide and so on, which indicated that immune regulation
plays an important role in osteoporosis development. GO analysis of cell
components showed that nuclear speck, nuclear transcription factor
complex, RNA polymerase II transcription factor complex were the
key components in OP. KEGG pathway analysis showed that
Shigellosis, Influenza A and Epstein-Barr virus infection were the
significantly changed pathways between the two groups. All the above
results of GO analysis and KEGG analysis indicated that immune system
dysregulation was found inOP patients. In previous studies, dysregulation
of the immune system had been shown to adversely affect bone integrity
(McInnes and Schett, 2007). Our results were consistent with results in
previous study, andwe confirmed that these biological processes related to
immune regulation and cellularmolecules were closely associated with the
occurrence and development of OP.

In our constructed PPI network, cytoHubba analysis was used
to obtain 8 key genes related to OP development: CDC5L, CUL1,
CXCL10, EIF2AK2, POLR2B, PTEN, STAT1, and TBP. Recent
studies had reported the role of CDC5L in bone development.
CDC5L was expressed in chondrocytes proliferating from mouse
embryonic bone growth plates, and CDC5L mediates the
promotion or inhibition of pre-mRNA splicing of early cartilage
genes (Sox9 and Col2a1) or Wee1, respectively (Jokoji et al., 2021).
CUL1 and CXCL10 were also frequently reported in immune
regulation (Sorrentino et al., 2021). Although the functions of
other genes had not been confirmed and reported in OP, their
roles in other diseases have been demonstrated. For example,
STAT1 can affect the development of cervical cancer by
regulating the expression of PARP1 (Raspaglio et al., 2021). The

studies demonstrated that the 8 genes might be involved in the
progression and development of human diseases including OP.
Along with the correlation between core genes and the data set, the
reverse verification of differential expression, and single-gene
GSEA analysis, the studies further confirmed our hypotheses.

Our subsequent research will focus on establishing a clinical
diagnostic model based on these 8 keys genes, then on evaluating
the usefulness and reliability of the model. Additionally, the
unreported role of several other core genes in OP also deserves our
attention. However, there was still weakness of our study. For example,
the sample size in this study was limited and animal experiments to
validate the function of these differential genes are lacking.

In summary, we identified 8 key genes that could be used to
establish an early diagnostic model of OP: CDC5L, CUL1, CXCL10,
EIF2AK2, POLR2B, PTEN, STAT1, and TBP. The discovery of these
genes provided potential molecular targets for the clinical diagnosis
and treatment of OP.
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