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Purpose: Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) is implicated in several
cancers’ development. However, P4HA3 has not been reported in other cancers,
and the exact mechanism of action is currently unknown.

Materials and methods: First, the expression profile of P4HA3 was analyzed using a
combination of the University of California Santa Cruz (UCSC) database, Cancer
Cell Line Encyclopedia (CCLE) database, and Genotype-Tissue Expression (GTEXx)
database. UniCox and Kaplan-Meier were used to analyze the predictive value of
P4HA3. The expression of P4HA3 was analyzed in clinical staging, immune
subtypes, and Molecular subtypes. Secondly, the correlation of P4HA3 with
immunomodulatory genes, immune checkpoint genes, RNA modification genes,
immune cell infiltration, cancer-related functional status, tumor stemness index,
DNA mismatch repair (MMR) genes and DNA Methyltransferase was examined. The
role of P4HA3 in DNA methylation, copy number variation (CNV), mutational status,
tumor mutational burden (TMB), and microsatellite instability (MSI) was also
analyzed. In addition, gene set enrichment analysis (GSEA) was used to explore
the potential functional mechanisms of P4HA3 in pan-cancer. Finally, P4HA3-
related drugs were searched in CellMiner, Genomics of Drug Sensitivity in Cancer
(GDSCQ), and Cancer Therapeutics Response Portal (CTRP) databases.

Results: P4HAS3 is significantly overexpressed in most cancers and is associated with
poor prognosis. P4HA3 is strongly associated with clinical cancer stage, immune
subtypes, molecular subtypes, immune regulatory genes, immune checkpoint genes,
RNA modifier genes, immune cell infiltration, cancer-related functional status, tumor
stemness index, MMR Gene, DNA Methyltransferase, DNA methylation, CNV,
mutational status, TMB, and MSI are closely related. Available enrichment analysis
revealed that P4HA3 is associated with the epithelial-mesenchymal transition and
immune-related pathways. There are currently 20 drugs associated with P4HAS.

Conclusion: In human pan-cancer, P4HA3 is associated with poor patient
prognosis and multiple immune cells and may be a novel immunotherapeutic
target. It may act on tumor progression through the epithelial-mesenchymal
transition (EMT) pathway.
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Introduction

According to the latest data on cancer from the 2020 statistics, the
worldwide cancer burden is expected to increase by 47% by
2040 compared to 2020 (Sung et al., 2021). Cancer immunotherapy
is a treatment that fights cancer by boosting the patient’s immune
system. Immunotherapy, a vital component of antitumor therapy, is not
meeting the needs of the growing number of cancer patients, despite the
continuous updating of its treatments. Therefore, searching for new and
particular molecular markers of cancer is crucial for developing more
effective anti-cancer drugs. The pan-cancer analysis is known to reveal
the potential molecular mechanisms and functional roles among
cancers systematically and comprehensively (Weinstein et al,, 2013).
In recent years, pan-cancer-based bioinformatics analysis methods have
been highly favored by a wide range of researchers.

The extracellular matrix (ECM), the most abundant component of
the tumor microenvironment (TME), plays a crucial role in tumor
development (Bonnans et al., 2014; Xiong and Xu, 2016). Collagen is one
of the significant components of the ECM and is associated with cancer
progression (Armstrong et al., 2004; Koenig et al., 2006; Shintani et al,,
2008; Gorres and Raines, 2010; Yang et al., 2014; Peng et al,, 2017; Zheng
et al.,, 2017; Yamazaki et al., 2018). It has been shown that cancer cells
produce a type 1 collagen (Col I) that is fundamentally different from
normal collagen in humans, resulting in a unique extracellular matrix
that helps them increase and survive (Chen et al., 2022). Previous studies
have found that Col I promotes cancer progression by facilitating tumor
cell epithelial-mesenchymal transition (EMT) (Yang et al., 2014). Recent
studies have found that loss of Col I in pancreatic cancer enhances T-cell
infiltration, thus making anti-PD-1 immunotherapy more effective
(Chen et al,, 2022). Collagen deposition leads to poor prognosis in
cancer patients (Whatcott et al,, 2015). In addition, it is involved in
tumor fibrosis (Yamauchi et al., 2018). Collagen prolyl 4-hydroxylases
(C-P4H) are critical enzymes in collagen synthesis that maintain the
triple helix structure’s stability by catalyzing the proline’s hydroxylation
(Gjaltema and Bank, 2017). Interfering with prolyl 4-hydroxylase can
regulate the process of collagen biosynthesis (Atkinson et al, 2019;
D’Aniello et al, 2019). Recent studies have revealed that C-P4H is
expressed at elevated levels in several cancers and may be a potential
biomarker (Vasta and Raines, 2018). C-P4H is a tetramer composed of
two a-subunits and two f§-subunits. Among them, the catalytic a-subunit
has three different isozymes such as P4HA1, P4HA2, and P4HA3 (Vuori
et al,, 1992; Helaakoski et al., 1995; Van Den Diepstraten et al., 2003).

P4HA3 (prolyl 4-hydroxylase subunit alpha 3) is a protein-
coding gene that belongs to the prolyl 4-hydroxylase family
members. A study found that P4HA3 expression is upregulated
in patients with renal cell carcinoma (RCC), promoting cancer
growth, invasion, and metastasis (Zhou et al., 2022a). It has been
reported that in gastric cancer (GC), P4HA3 is significantly
upregulated compared to normal tissue and is associated with
unfavorable overall survival (OS) (Song et al, 2018). P4HA3 is
located upstream of the PI3K/AKT signaling pathway, and type VI
a6 collagen (COL6A6) interacts with P4HA3 to inhibit pituitary
adenoma (PA) growth and metastasis by blocking the PI3K/AKT
signaling pathway (Long et al., 2019). In addition, it was found that
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P4HA3 overexpression on the PI3K/AKT signaling pathway
reversed the inhibitory effect of COL6A6 on EMT (25). P4HA3 is
overexpressed in melanoma and promotes tumor proliferation and
invasion (Atkinson et al., 2019). The above findings suggest that
P4HA3 is overexpressed in various cancers and is involved in cancer
progression. However, its pan-cancer expression level and
functional role have not been explored.

In this study, we evaluated the expression of P4HA3 and its
relationship with the prognosis of cancer patients. In addition, the
P4HA3 and the
microenvironment was further analyzed. Our findings provide

relationship ~ between tumor immune
new insights into the functional role of PAHA3 in human cancer,
highlighting the potential mechanisms by which PAHA3 affects the

tumor microenvironment and cancer immunotherapy.

Materials and methods

Collection and analysis of P4HA3 expression
data

RNA-seq and clinical data of The Cancer Genome Atlas (TCGA)
were downloaded from the UCSC Xena database (https://xenabrowser.
net/datapages/). The UCSC database includes expression matrices and
clinical data of pretreated TCGA tumor patients and normal subjects,
including overall survival (OS), disease-specific survival (DSS), disease-
free interval (DFI), and progression-free interval (PFI), tumor stage, efc.
First, P4HA3 expression data of normal tissues were obtained from the
GenotypeTIssup Expression (GTEx, https://commonfund.nih.gov/
GTEx) database. And P4HA3 expression data of tumor cell lines
were obtained from the Cancer Cell Line Encyclopedia (CCLE,
https://portals.broadinstitute.org/ccle/) database. Second, a uniformly
normalized pan-cancer dataset was obtained from the UCSC Xena
database to analyze the expression levels of P4HA3 in cancer and the
differential expression in cancer and normal samples. Meanwhile, we
analyzed the expression of P4HA3 in male and female tumor tissues and
the corresponding normal tissues using the R package “gganatogram”
(Maag, 2018) and visualized it as BodyMap. We analyzed the protein
expression level of P4HA3 using The Human Protein Atlas (HPA)
database (https://www.proteinatlas.org). Many researchers have used
this database to analyze the expression levels of target genes, such as
Xiong et al., Zhou et al,, Liu et al,, and Xu et al. used this database to
study the expression levels of PIMREG, NAAA, CD2, and TUBA1C
respectively, which tentatively proved their analysis results (Chen et al.,
2021; Huang et al,, 2021; Zhu et al., 2021; Hu et al., 2022).

Survival and prognostic analysis of P4HA3

To understand the impact of P4HA3 on the survival and
prognosis of cancer patients, we used Kaplan-Meier curve
analysis and univariate Cox proportional hazard regression to
explore the relationship between P4HA3 expression levels, and
OS, DSS, DFI, and PFIL. A p-value <0.05 was statistically significant.
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Analysis of P4HA3 expression in tumor
clinical stage, immune subtypes, and
molecular subtype

The expression levels of P4HA3 were assessed in each tumor at
different clinical stages. Next, the immune subtypes of P4HA3 in
33 tumors, including Cl1 (wound healing), C2(IFN-gamma
dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5
(immunologically quiet), and C6 (TGF-b dominant), were
TISIDB database (https://doi.org/10.1093/
bioinformatics/btz210). In addition, the molecular subtype profile

obtained in the

of P4HA3 in 13 tumors was also analyzed. We analyzed the
association between P4HA3, immune, and molecular subtypes
through TISIDB database of pre-processed gene expression data
and phenotypic information of TCGA cancers.

Correlation analysis of P4HA3 with
immunomodulatory genes, immune
checkpoint genes, and RNA-modified genes

The expression data of 150 marker genes for immune regulation
(chemokine (Qiu et al., 2019), receptor (ID’Aniello et al., 2019), MHC
(Helaakoski et al, 1995), Immunoinhibitor (Song et al, 2018),
Immunostimulator (Chae et al, 2019)), 60 marker genes for
immune checkpoint-related genes (Inhibitory (Song et al, 2018),
Stimulatory (Mariathasan et al, 2018)) and 44 marker genes for
RNA modification (m1A (Yamazaki et al, 2018), m5C (Chen et al.,
2022), m6A (Helaakoski et al., 1995)) genes were extracted in each
sample. Then, the correlations between P4HA3 and immune regulatory
genes, immune checkpoint genes, and RNA modification genes were
calculated separately using the spearman algorithm.

Analysis of tumor immune cell infiltration

The correlation between P4HA3 and many different types of
immune cells was analyzed in the TIMER2.0 database (https://
cistrome.shinyapps.io/timer/) using various algorithms such as
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL,
EPIC, and TIDE. The TIMER 2.0 database provides a more reliable
analysis of target gene and immune cell correlations by using state-of-
the-art algorithms to calculate the level of immune infiltration in TCGA
tumor data. The results were visualized using the R package “ggplot2”
(Ito and Murphy, 2013). In addition, we used the ESTIMATE algorithm
to calculate the ESTIMATEScore, ImmuneScore, and StromalScore for
different tumor types and the spearman algorithm to calculate the
correlation coefficient between P4HA3 and the three scores.

Correlation analysis of P4HA3 with single
cell level, cancer-related functional status,
and tumor stemness index

We obtained 72 single-cell datasets from the CancerSEA database
(https://ngdc.cncb.ac.cn/databasecommons/database/id/6092) as well
as 14 cancer-related functional states (angiogenesis, apoptosis, cell
cycle, cell differentiation, DNA damage, DNA repair, EMT, cellular
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hypoxia, inflammation onset, cancer cell invasion, metastasis,
proliferation cell resting, stem cell properties). The correlation
between P4HA3 and 14 cancer-related functional states in each
tumor was analyzed and visualized using the R package “ggplot2”.
In addition, we obtained DNAss tumor stemness scores calculated
from methylation profiles for each cancer from a previous study
(Malta et al., 2018). The stemness index and P4HA3 expression data of
the samples were first integrated, then the correlation between them
was calculated using the spearman algorithm. To further validate our
results, tumor stemness scores such as EREG-METHss, DMPss, and
ENHss were also performed.

Evaluation of P4HA3 mutation, methylation,
TMB, MSI, MMR gene, DNA
methyltransferase, and CNV in pancreatic
cancer

To understand the mutation characteristics and location of P4HA3
in tumors, we explored using the cBioPortal database (https://www.
cbioportal.org/). Meanwhile, using the TCGA database (https://www.
cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga) we analyzed the relationship between the expression level of
P4HA3 and the methylation level of its promoter region and visualized
it using the R package “ggplot2”. The correlation between P4HA3
expression and tumor mutational burden (TMB) and microsatellite
instability (MSI) in different tumors was analyzed in the TCGA
database using Spearman’s test, and the results were visualized by
the R package “fmsb”. In addition, we also analyzed the correlation
between P4HA3 and five DNA mismatch repair (MMR) genes, MLH1,
MSH2, MSH6, PMS2, and EpCAM. and their expression levels with the
four methyltransferases DNMATI1, DNMT2, DNMT3A, and
DNMT3B. Not only that, but we also analyzed the correlation
between P4HA3 expression and somatic cell copy number variation
(CNV) in pan-cancer.

Enrichment analysis of P4HA3

To further understand the biological functions and potential
molecular mechanisms of P4HA3, we used the R package
“ClusterProfiler” (Yu et al,, 2012) to perform gene set enrichment
analysis (GSEA). We also downloaded from the Molecular Signatures
Database (MSigDB, https://www.gseamsigdb.org/gsea/index.jsp) a
hallmark gene set containing 50 critical pathways affecting cancer.
The Normalized Enrichment Score (NES) and False Discovery Rate
(FDR) of P4HA3 in each path were calculated separately. p-values <0.
05 were considered statistically significant.

Drug sensitivity analysis

To understand the potential drugs targeting P4HA3, we
analyzed the relationship between P4HA3 expression and drug
sensitivity using the CellMiner database (https://ngdc.cncb.ac.cn/
databasecommons/database/id/6092). further
expand our study, we also explored the correlation between

Meanwhile, to

P4HA3 expression and drug sensitivity from the Genomics of
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FIGURE 1

Expression of P4HA3 in normal and tumor tissues. (A) P4HA3 expression across 31 regular tissues and (B) 21 tumor cell lines. The mRNA expression
landscape of P4HA3 in (C) tumor tissue on TCGA database and (D) expression of P4HA3 in normal and tumor tissues (*p < 0.05, **p < 0.01, and ***p <
0.001; ns: no significance). p values were based on the Wilcoxon rank sum test.

Drug Sensitivity in Cancer (GDSC) database (https://www.
cancerrxgene.org) and Cancer Therapeutics Response Portal
(CTRP) database (https://portals.broadinstitute.org/ctrp.v2.1/).

Results
Expression profile of P4HA3

We analyzed the expression levels of P4HA3 in normal tissues
using the GTEx dataset (Figure 1A). The results showed that P4AHA3
expression levels were higher in testis, pituitary, prostate, blood vessels,
and thyroid. Based on the CCLE dataset, the expression levels of
P4HA3 in different tumor cell lines were analyzed (Figure 1B). The
results showed that the expression of P4HA3 was relatively similar in
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various tumor cell lines. In addition, the expression levels of P4HA3 in
different tumors were shown in Figure 1C. Data from the TCGA
database and GTEx database showed that P4HA3 was expressed in
breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large
B (DLBC), (ESCA),
glioblastoma (GBM), head and neck squamous cell carcinoma
(HNSC), lung adenocarcinoma (LUAD), kidney renal clear cell
(KIRC), leukemia (LAML),
squamous cell carcinoma (LUSC), pancreatic adenocarcinoma

cell lymphoma esophageal carcinoma

carcinoma acute myeloid lung
(PAAD), pheochromocytoma and paraganglioma (PCPG), rectum
adenocarcinoma (READ), stomach adenocarcinoma (STAD), and
thymoma (THYM) were expressed at higher levels than normal
tissues in 16 tumors. In contrast, P4HA3 was expressed at lower

levels than normal tissues in eight tumors, including liver
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Liver normal

Protein expression of P4HA3 in normal and tumor tissues. Immunohistochemical staining in normal tissues and tumour tissues from the HPA
database. (A) Colon normal, COAD. (B) Liver normal, LIHC. (C) Lung normal, LUAD. (D) Pancreas normal, GBM. (E) Skin normal, Melanoma. (F) Urinary

bladder normal, BLCA.

hepatocellular carcinoma (LIHC), ovarian serous cystadenocarcinoma
(OV), skin cutaneous melanoma (SKCM), thyroid carcinoma
(THCA), uterine corpus endometrial carcinoma (UCEC), bladder
urothelial carcinoma (BLCA), brain lower grade glioma (LGG), and
testicular germ cell tumors (TGCT) (Figure 1D). Finally, we analyzed
the expression levels of P4HA3 in active body maps using the GEPIA
dataset. The results show that P4HA3 was differentially expressed in
tumor tissues and corresponding normal tissues, especially in the brain,
lung, esophagus, liver, gallbladder, stomach, intestine, thyroid, bladder,
and bone (Supplementary Figures 1A, B). The THC results of COAD,
LIHC, LUAD, PAAD, melanoma, BLCA and normal tissues were
show in Figure 2. More samples and experiments are needed to validate
the expression of PAHA3 in the future. The above results suggest that
P4HA3 is highly expressed in various tumors.

Survival and prognostic value of P4HA3

Kaplan-Meier survival analysis showed that P4HA3 high
expression in BRCA, CESC, COAD, GBM, HNSC, KIRC, kidney
renal papillary cell carcinoma (KIRP), LGG, LUSC, OV, READ,
STAD, THCA, UCEC, and uveal melanoma (UVM) had a poor
prognosis (Figures 3A-0). Univariate COX regression analysis
assessed the relationship between P4HA3 expression and OS,
DSS, DFI, and PFI. The results showed that P4HA3 was a risk
factor for OS in UVM, UCEC, THCA, STAD, PAAD, KIRP, KIRC,
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kidney chromophobe (KICH), GBM, COAD, cervical squamous cell
carcinoma (CESC), and BLCA (Figure 4A); PAHA3 was a risk factor
for DSS in UVM, PAAD, mesothelioma (MESO), LUAD, LGG,
KIRP, KIRC, KICH, GBM, COAD, CESC, BRCA, BLCA, and
adrenocortical carcinoma (ACC) (Figure 4B); P4HA3 was a risk
factor for DFI in UVM, UCEC, THCA, PAAD, KIRP, KIRC, KICH,
GBM, COAD, CESC, BRCA, and BLCA (Figure 4C); P4HA3 was a
risk for PFI in PAAD, KIRP, and CESC (Figure 4D). The survival
analysis results suggest that overexpression of P4HA3 is associated
with poor prognosis in tumor patients.

Expression of P4HAS3 in different clinical
stages of tumors, immune subtypes, and
molecular subtypes

After analysis and evaluation, we found that, in terms of clinical
staging, P4HA3 was more highly expressed at higher stages of BLCA,
COAD, ESCA, KIRP, READ, STAD, and UVM. In comparison,
lower expression in higher stages of ACC, HNSC, KIRC, and LUAD
(Figure 4E). Regarding immune subtypes, P4HA3 was significantly
expressed in 17 tumors (Figure 5). Regarding the molecular
subtypes, P4HA3 was expressed considerably in 13 tumors
(Figure 6). Thus, the expression level of P4HA3 correlated with
the clinicopathological stage, immune subtypes, and molecular
subtypes of cancer.

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1045061

Wu et al. 10.3389/fgene.2023.1045061

>

Strata «group=Low - group=High B Strata - group=Low - group=High c Strata +group=Low - group=High D Strata -~ group=Low - group=High

8

,
3
5
5

z g \ )
Eors Z076 8075, Ny Lo
3 E] ¥ a
H g s s
0.50 gn-so 80,50, | Sy
. 5 L 3 : 2
] “ S 2 2 " E
g Log-rank " Zo2s| Log-rank 1 2o25| Log-rank 2.
2°%  p=0.00069 g p =0.0014 H p=4e-04 L @
5 a @
@
Y 0.00. 0.00. [
) ° Dflnrgutmn g\%nrall s:l’anrgﬁval (#aoyns) 5000 ° Duranon overall survi‘\?anf(days) 6000 ° Duragnon overa?Psurvwa?n?ays) 4000 ° Durallon overall slasg?lval (ﬂ’angs) 2600
T Number at risk R Number atrisk £ Numberatrisk o Number at risk
=12 1 18 9 =1z 2 E=1 [ = 1
5 Didtion ot&raN suéWal (da?y”%“ e Duration'8vérall survwa“PPSays) w0 O Durdidh overaﬁOE“mval %%%95) e Dugrg‘i.on ngF’Sh surli \98| (da§2?° 750
% , Number of censoring 2, Number of censoring 2 Numberof oensonn g, Number of censoring
'Lyu_lh‘nmuuwu.l_uuu_u_u_n_ 8 oLl g l il il . g 1
2 0 2 : 2 0
L Durstion overal survival (dayd)’ 0 Duration’30grall survivil {ays) ~ ©0° € PSS E Sys) 0 e Durdtion overall survival (dayd) 2
E Strata -+ group=Low - group=High F Strata -+ group=Low - group=High G Strata - group=Low - group=High H Strata - group=Low - group=High
1.00f 1.00] o 100] . 1.00] o
Fors Bors, Bos Sy gors
s 2 2
K H g e 2
e -
5050 y Sos0 Sos0 l 2050 "
z o g T g 4 "\
; Log-rank v H Log-rank T Log-rank g Log-rank g 1
0.26 0.26 0.25/ 0.25)
N p=00074 a p = 0.00069 a p < 0.0001 @ p=0014 L
@ s
0.00 0.00 0.00 0.00,
°  Duration overall survival (days) *"" Duration overall Survival (days) “"" ®  Blfation overall survival (days) " Duration verall survival (days) "
8 Number at risk £ Number atrisk £ Number at risk g Number atrisk
=0 9 s=um % 2 E=m_u 3 1 ] [} E=\z 2 0
- 2000 P 0 w00 000 2000 &ouu W0 0 o S eral Rorvival (000 6000 0 2000 qu 6000
s Duration overall survival (days) ] Duration overall survival (days) g Uration overall survival (Gays 3 Duration overall survival (days)
2, Number of censonn 2, Number of censoring 2, Number of censoring 2, Number of censoring
8 1] bl budwwwn 1y L 8 Lt 8 1L bbb w1 g
o >
S 70 puration BVerall surviviitlaysy 0 = 70 Duréﬂ%‘?—. overall Slrvival (@) ¢ = 7 O Dot lbrait v ??%ays 0B 2 00 o eral sunivl iy O
I Strata+ group=Low - group=High J Strata - group=Low - group=High K Strata - group=Low - group=High L Strata -~ group=Low- group=High
1.00} 1.00, 1.00; 1.00}
z z = z
= Sor G075, 3,
En.w b é g8
2 g 5 H
So.50, Soso S080 B0 .
3 % 3 Y 3 4 %
E rank - 2 %, Log-rank i —rank
o025 Log-rank 3 2o26) Log-rank Sozs) Log-ran Bo2s| Log-ranki
H p=0.015 — @ p =0.046 @ p=0.016 H p<00001 |
0.00] 0,00, i 0.00, 0.00.
000 2000 E 0 T
& O pii%on 3% a siBfval {150s) ©° ®  piation G¥erall stirvival (c? ays) *%° Dur;‘}laonn overallSurvival (days) ***° °  puration overall Survival (days) ***°
Number at risk £ Number at risk g Number at rlsk 8 Number at risk
=l w 5 » s ) A ) il 1 &= 5 2 P E=m % ] 4 9
5 O pufhtlon ovefRil suriVal daydf’  ° 5 O D{fion otetall surival (ciam50 0 i Dura\lon overalf lrvival @398) 0 5 Y uration overall Slirvival (day8) %
2 Number of censoring 2, Number of censoring g 3 Number of censoring £ Number &f sanonng
g5 ‘—KJAMJ-M—LLumuJ—u—A—A—v—uf LL....A._.A..__“_,_“_~—‘_._._ﬁ
2 o § o 100 2000 3000, 400 5000 g ¢ 000 00 4000 § 0% 000, 7000

100( 2000 3000 4000
1 (days)

4
Duration overall suivival Duration overall survival (days Duralioh overall Survival (d4ys)

Duration overall Survival (days)

=
4
o

Strata - group=Low - group=High Strata - group=Low-- group=High Strata - group=Low- group=High

1.00] s 0 stssssin 2.1.00 3‘”’“
g - ] e 2 R
E‘”‘ %u,vs '\“ §n75 "y ;
8 \ 1
g«.ao %n,sq 5 ;:u,sn L,

s s

Zo2s| Log-rank g Log-rank { 4 Log-rank L
@ | p=0.0086 3% p=0.0059 N 3°% p=00036 -

3
8
e

0 2000 300 000 5000
o Duranon overall surv?val (days) 5 9 Duranon °ve,azﬂ gumvaﬁ&,ys) 4000 o N puifftion oV8fail sdidival (&!Vs) 2500,
. N“mber atrisk ) . . ) & Number at risk £ Number at risk

4 1 E=mn 3 2 3 ! E=y 2 5 3
o 1z n
- 20 3000 4000 5000
g Dufaion ovarall survival (days) 5 Duralion overal Slirvival (day8) H x Dufation overall survival (days)®  **
£ ,Number of censoring @, Number of censoring 2 Number of censoring
8 uJ—ﬂ‘'‘''‘'=!'-“~k"-9"‘]-''14‘*J“J44‘’‘'J‘‘‘‘'41—“—“—‘44‘—‘—“—‘—-—L 8 bbb v vyw 1y 18 ul_lL_MlJ_Uﬂ.__LU_Jlﬂ_LM_I—L
' 0 1000 2000 3000 4000 5000 0 4
< Durdtion ovérd surviva (days] S 7 % puralion overalf dlivival @8y8)  °° = °  purdtion ovirall survival (daysf®  °%

The relationship of P4HA3 expression with patients’ overall survival (OS). Kaplan—Meier survival analysis of OS between high- and low-expression
groups of P4HA3 in (A) ACC (B) BRCA, (C) CESC (D) CHOL, (E) GBM (F) HNSC, (G) KICH (H) KIRC, (I) LAML (J) LGG, (K) LIHC (L) LUAD, (M) LUNG (N) MESO,
and (O) LAML.

Correlation analysis of P4HA3 with significantly and positively correlated (Figure 7B). In addition, we

immunomodulatory genes, immune found that P4HA3 was significantly associated with genes related to

checkpoint genes, and RNA-modified genes mlA, m5c, and m6A in most tumors (Figure 7C). In most tumors,
P4HA3 positively correlated with immunomodulatory, immune

It was found that in most tumors, P4HA3 was associated with  checkpoint, and RNA-modified genes.

CCL13, CCL18, CXCL12, CCL14, CCL21, CCL2, CCL7, CCL11,

CCL26, CXCL3, CXCL8, CCR3, CXCR1, CCR7, CCR1, CXCR4,

CCR4, CCR8, CCR10, HLA -DOA, HLA-DPA1, HLA-DPB1, HLA- ~ Correlation analysis of P4HA3 with tumor

DRA, B2M, TGFBR1, KDR, TGFBR1, IL10, ADORA2A, CD244, immune cell infiltration and cancer-related

IL2RA, 1L,  CD28,  CXCR4, TNFRSF4, and functional status

CXCL12 immunoregulatory genes were significantly and

positively correlated (Figure 7A). It also correlated with immune The results calculated according to the ESTIMATE algorithm

checkpoint TGFB1, Cl0orf54, CD276, VEGFA, EDNRB, CTLA4, showed that P4HA3 in different tumor types such as BLCA,

PDCD1, ENTPD1, TNESF4, SELP, CD28, TNFRSF4, ICAM1, BRCA, COAD, ESCA, GBM, KICH, KIPAN, KIRP, LGG, LIHC,

IL2RE, TNFRSF9, TLR4, IL1B, CX3CL1, and CXCL10 genes were ~ LUSC, OV, PAAD, PCPG, PRAD, READ, STAD, and UVM was
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Correlation between P4HA3 expression with prognosis and clinical stage in cancer patients. Forest plots of hazard ratios of P4HA3 in (A) overall
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clinical stages in ACC, BLCA, COAD, ESCA, HNSC, KIRC, KIRP, LUAD, READ,

associated with significant positive correlations between the
three scores of ESTIMATEScore, ImmuneScore, and
StromalScore (Figure 7D). The study also showed that P4HA3
was significantly negatively correlated with nine different
cancer-related functional statuses in GBM and UM,
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STAD, and UVM.

respectively (Figure 7E). Furthermore, as seen in the
correlation heat map, P4HA3 was closely associated with a
variety of immune cells such as CD8" T cells, CD4" T cells,
B cells, neutrophils, myeloid dendritic cells, macrophages,
cancer-associated fibroblast (CAF), endothelial cells, and
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FIGURE 5

The relationship of P4HA3 expression with immune subtypes in BLCA, BRCA, CHOL, HNSC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV,
PCPG, STAD, THCA, and UCEC. The different colors represent the different immune subtypes.

Hematopoietic stem cells in pan-cancer (Figure 8A). Thus,
P4HA3 is closely associated with tumor-associated immune
cells and functional status.

Correlation analysis of P4HA3 and tumor
stemness index

The analysis showed that P4HA3 was significantly positively
correlated with different tumor stemness indices such as DMPss
(Figure 8B), DNAss (Figure 8C), ENHss (Figure 8D), and EREG-
METHss (Figure 8E) in KIPAN, PRAD, GBM, LGG, LUAD, KIRC,
KIRP, and SARC. And significant negative correlations were found
in LIHC, LUSC, BLCA, STAD, STES, BRCA, COAD, and READ.
The results of this analysis suggest that P4HA3 is associated with
tumor stemness.

Analysis of P4HA3 associated with mutation,
methylation, CNV, TMB, MSI, MMR gene, and
DNA methyltransferase

The mutation sites of P4HA3 are shown in Figure 9A. The
mutation type was predominantly Amplification, with the highest
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mutation frequency of P4HA3 in Esophageal Adenocarcinoma
(Figure 9B). P4HA3 was significantly negatively correlated with
methylation levels in 25 tumors (Figure 9C). P4HA3 had the
highest CNV expression levels in TGCT and OV (Figure 9D).
showed that P4HA3 and CNV
expression levels were positively correlated in 26 tumors and

The correlation analysis

negatively correlated in seven tumors (Figure 9E). As shown in
Figure 9F, P4HA3 was significantly and positively correlated with
TMB in UCS, THYM, PRAD, LUAD, LGG, and LAML. And it was
significantly negatively correlated with TMB in BRCA, BLCA,
UVM, LUSC, LIHC, KIRP, and HNSC. As shown in Figure 9G,
P4HA3 was significantly and positively correlated with MSI in
UCIEC, PRAD, MESO, COAD, and STAD. And it was
significantly negatively correlated with MSI in STAD and LUSC.
In addition, we analyzed the correlation between P4HA3 and the
level of MMR gene mutations. The results showed that the
expression of P4HA3 in KIRC, KIRP, LAML, LIHC, READ,
THCA, and UCEC was significantly correlated with the mutation
levels of five MMR genes (Figure 9H). Finally, we analyzed the
correlation between P4HA3 and the four DNA methyltransferases.
The results showed that the expression level of P4HA3 was
significantly correlated with at least one DNA methyltransferase
in other tumors except for SKCM, STAD, UCEC, UCS, ACC, CESC,
GBM, and PCPG (Figure 91I).
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FIGURE 6

The differences of P4HA3 expression levels among distinctive molecular subtypes in BLCA, COAD, GBM, HNSC, KIRP, LGG, LIHC, LUSC, OV, PCPG,
PRAD, SKCM, and STAD. The different colors represent the different molecular subtypes.

The results of GSEA

The results of the GSEA analysis, as shown in Figure 10, showed
that P4HA3 showed a significant positive correlation with UV response
dn, TNF-alpha signaling via NFkB, myogenesis, KRAS signaling up,
inflammatory response, il6 jak stat3 signaling, hypoxia, epithelial-
mesenchymal transition, apical junction, and angiogenesis in most
tumors. The enrichment analysis results suggest that P4HA3 is
associated with multiple immune-related signaling pathways in tumors.

Sensitivity analysis of P4HA3 and drugs

In the CellMiner database, the expression of P4HA3 was
correlated with  Vincristine, analog, RHI,
Tamoxifen, AT-13387, Panobinostat, Tanespimycin, Crizotinib,

geldanamycin

Vinblastine,  Curcumin  (+)-JQ1l, Acrichine, Lomustine,
Daunorubicin, 6-Mercaptopurine, and Belinostal were
significantly and negatively correlated with 16  drugs

(Figure 11A). In the GDSC database (Figure 11B) and the CTRP
database (Figure 11C), P4HA3 was significantly positively correlated
with various drugs.

Discussion

Pan-cancer bioinformatics analysis can help us to understand
the gene expression profile and its correlation with genetic
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mutations, clinicopathology, and prognosis (Ju et al, 2020).
Besides, we can also use it to explore the potential mechanisms
of gene roles in tumor immunology. Therefore, in this study, we
systematically analyzed the expression of P4HA3 in various cancers.
We found that P4HA3 was highly expressed in 16 tumors, including
BRCA, CHOL, COAD, DLBC, ESCA, GBM, HNSC, LUAD, KIRC,
LAML, LUSC, PAAD, PCPG, READ, STAD, and THYM. Combined
with the Kaplan-Meier survival analysis results, we found that
overexpression of P4HA3 in BRCA, COAD, GBM, HNSC, KIRC,
LUSC, READ, and STAD was associated with poor prognosis in
patients with these cancers. P4HA3 may serve as a promising
biomarker for diagnosing and treating BRCA, COAD, GBM,
HNSC, KIRC, LUSC READ, and STAD. Also, we found that the
expression level of PAHA3 was closely associated with OS, DSS, DF],
and PFI in patients with multiple cancers, especially in PAAD, KIRP,
and CESC. In addition, we analyzed the relationship between the
expression of P4HA3 and the clinicopathological stage of cancer. It
was found that the level of P4HA3 expression was higher in stage IV
than in phase I in BLCA, COAD, ESCA, KIRP, READ, and STAD.
This result suggests that the high level of P4HA3 expression
correlates with the malignancy of these cancers.

Previous studies have found that collagen increases anti-
programmed cell death protein 1 (PD-1)/PD-L1 resistance by
depleting CD8" T cells, which is associated with tumor
immunosuppression and drug resistance (Chakravarthy et al,
2018; Mariathasan et al., 2018; Peng et al., 2020). Because of the
above findings, we analyzed the relationship between P4HA3 and
immune regulatory genes and checkpoint genes. We found that
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P4HA3 expression levels positively correlated with immune
regulatory genes and checkpoint genes in most tumors. In
addition, there is growing evidence that understanding tumor

immune cell infiltration may assist in optimizing antitumor
immunotherapy (Bai et al., 2020; Guo et al., 2020). Therefore, in
this study, we also evaluated the correlation between P4HA3
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FIGURE 8

The correlations of P4HA3 expression and the infiltration levels of CD4* T cells, cancer-associated fibroblast, macrophages, and many other
immune cells in cancers (A). Positive correlation in red and negative correlation in blue. The Relationship of P4HA3 expression with tumor stemness index

from (B) DMPss (C) DNAss, (D) ENHss, and (E) EREG-METHSss algorithm.

expression and tumor immune cell infiltration levels. The results
suggest that P4HA3 is associated with multiple immune cells in most
cancers. Among them, the CD8" T cell infiltration level was
negatively correlated with the level of P4HA3 expression in most
tumors. In addition, we found that macrophage expression in
various tumors showed the strongest positive correlation with
P4HA3 expression. A series of previous studies have also
demonstrated that tumor-associated macrophages (TAMs) play
an immunosuppressive role in tumor development and are
2022).
TAMs can promote tumor growth through the production of

associated with poor tumor prognosis (Kersten et al,
collagen (Qiu et al.,, 2019). Notably, in this study, we also found

a significant positive correlation between the degree of CAFs
infiltration and P4HA3 expression in pan-cancer. CAFs are a
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central component of TME and significantly affect cancer
progression, metastasis, treatment, and prognosis (Lavie et al,
2022). They are involved in carcinogenesis as an essential cell
type in the ECM that allows collagen deposition and even leads
to tumor fibrosis (Lambrechts et al., 2018). These results suggest that
P4HA3 may play an essential role in the tumor immune
microenvironment.

It is understood that the effectiveness of ICIs is mainly
influenced by TMB and MSI (Postow et al., 2015; Dudley
et al.,, 2016). Moreover, many studies also suggest that TMB
and MSI may be potential predictive markers associated with
tumor immunotherapy response and drug resistance (Yarchoan
et al., 2017; Hellmann et al., 2018; Chae et al., 2019; Zhao et al.,
2019). MMR Gene mutation

status can predict tumor
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FIGURE 9

(A) Mutation sites of P4HA3 and (B) The mutation frequency and corresponding mutation types of P4HA3 in different cancers. (C) The Relationship of
P4HA3 expression with methylation. (D) CNV expression of P4HA3 in human pan-cancer. (E) Correlation analysis of P4HA3 CNV expression with P4HA3
MRNA expression. The Relationship of P4HA3 expression with (F) TMB and (G) MSI. Figure 10: Correlation analysis of P4HA3 expression with (H) MMR
genes in human pan-cancer (*p < 0.05, **p < 0.01, ***p < 0.001) and (I) DNA methyltransferases (Red represents DNMATY, blue represents DNMT2,

green represents DNMT3A, and purple represents DNMT3B).

development (Cerretelli et al., 2020). CNA has been recognized
as an essential source of genetic variation. In addition, both TMB
and CNA are good predictors of the efficacy of ICIs, and the
higher the predictive accuracy of the two combined (Liu et al,,
2019). Here, we will evaluate the correlation of P4HA3
expression with tumor TMB, MSI, MMR Gene, CNA, and
mutational status. Among them, elevated P4HA3 expression
levels upregulated TMB of UCS, THYM, PRAD, LUAD, LGG,
and LAML, as well as MSI of UCEC, PRAD, MESO, COAD, and
STAD. In human cancers, P4HA3 expression was significantly
associated with five MMR genes, especially in LAML and THCA.
We found a P4HA3 gene variation rate of 2.6% in all TCGA
tumors, dominated by missense mutations. In addition,
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epigenetic modifications are one of the main reasons affecting
the effectiveness of various tumor immunotherapies, such as
ICIs and immune cell therapies (Zebley et al., 2020). DNA
methylation modifications are known to be one of the most
important and  well-studied  epigenetic = modifications
(Skvortsova et al., 2019). DNA methyltransferases (DNMT)
catalyze DNA methylation and are key epigenetic targets for
new drug development (Lyko and Brown, 2005). After analysis,
P4HA3 expression was positively correlated with DNA
methyltransferases in most tumors, especially in LAML.
Downregulation of C-P4H in lymphoma is associated with
DNA methylation (Hatzimichael et al., 2012). In addition to
the studied DNA methylation, RNA

most intensively
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The hallmarks gene set enrichment analysis (GSEA) of P4HA3 in pan-cancer. The circle size represents each cancer enrichment item'’s false
discovery rate (FDR) value, and the color represents the normalized enrichment score (NES) of each enrichment item.

methylation modifications have been increasingly recognized as
an essential element of epigenetics in recent years (Roundtree
et al, 2017). RNA modifications are widely present in the

fundamental biological processes required for cancer
development and are closely associated with tumor
progression, including Nl1-methyladenosine (MI1A), 5-
methylcytosine (M5C), and N6-methyladenosine (M6A)

(Zhao et al,, 2017). We found that P4HA3 was significantly
associated with mI1A, m5c, and m6A-related genes in most
tumors, especially m6A-related genes. For example, P4HA3
expression was positively correlated with the expression of
more than 20 m6A RNA modification regulators in LUAD,
BRCA, COADREAD, PAAD, LIHC, OV, THCA, UCEC,
KIPAN, UVM, KICH, and LAML. Many previous studies
have shown that m6A-related genes are promising targets for
cancer immunotherapy (Han et al., 2019; Guo et al., 2021; Zhao
et al., 2021). In addition, abnormal m6A methylation can affect
the expression levels of tumor target genes (Guo et al., 2021). In
summary, P4HA3 may be involved in tumor development by
regulating genetic mutation status or epigenetic modifications.
Its expression level can be used as a potential predictor to assess
the efficacy of immunotherapy in cancer patients.

The ability of human stem cells (SCs) to self-renew and
differentiate into mature cells is called stemness (Phi et al.,
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2018). Many studies have found that cancer stem cells (CSCs)
are associated with tumor proliferation, metastasis, recurrence,
and drug resistance (Ayob and Ramasamy, 2018; Kusoglu and
Biray, 2019). Here, we found that P4HA3 was correlated with the
dryness index. These findings may help us identify new
biomarkers that can predict tumor progression, guide more
targeted treatment strategies, and predict prognosis. We
performed functional enrichment analysis to understand the
potential molecular functions of PAHA3 and related signaling
pathways. The results suggest that P4HA3 is closely associated
with various biological processes. Among them, P4HA3 was
most significantly correlated with epithelial-mesenchymal
transition. Many previous studies have shown that P4HA3
promotes tumor cell growth, proliferation, and metastasis in
HNSC by activating the EMT process (Wang et al., 2020).
Targeting P4HA3 inhibits EMT in colon cancer (Zhou et al,
2022a). TGF-B enables cancer cell invasion and metastasis and
inhibits the anti-tumor activity of immune cells (Derynck et al.,
2021). TGF- stimulation increases P4HA3 expression, which is
associated with EMT in non-small cell lung cancer (Nakasuka
etal., 2021). P4HA3 reverses the inhibitory effect of COL6A6 on
EMT in pituitary adenoma (PA) (Long et al., 2019). Reduced
levels of P4HA3 expression significantly inhibited the EMT
process in colon cancer (Zhou et al., 2022b). Numerous
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Drug sensitivity analysis. (A) In the CellMiner database, P4HA3 was shown
between P4HA3 and 30 drugs was performed in the GDSC database. (C) A
CTRP database.

studies have confirmed that EMT is closely related to tumor
metastasis (Zhang et al., 2019; Gaballa et al., 2020; Cai et al,,
2021). This evidence, combined with our current findings,
further demonstrates that P4HA3 may be involved in tumor
progression in pan-cancer through multiple biological processes
with EMT as the primary role. Finally, we also analyzed the
relationship between P4HA3 and drug sensitivity. Twenty drugs
were found to be associated with P4HA3.

Our findings suggest that P4HA3 is expressed at high
levels in most cancers, which correlates with the spite of
cancers and poor prognosis. We can also assess the effect of
tumor immunotherapy, tumor immunosuppression, and
drug resistance based on the expression of P4HA3. In
addition, P4HA3 can affect the
immune cells and is likely to promote cancer progression
through EMT. Therefore, P4HA3 may serve as a promising
and

infiltration of tumor

biomarker for human cancer diagnosis, treatment,
prognosis and may predict the efficacy of anti-tumor
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to be closely associated with 20 drugs. (B) A Spearman association
Spearman association between P4HA3 and 30 drugs was performed in the

immunotherapy response. This study may provide ideas
for future researchers to study the role of P4HA3 in
human cancers.

Of course, there are some limitations to this study. For
example, our study was limited to bioinformatics analysis,
which remains to be further validated by basic experiments or
clinical trials. In addition, although the present study identified
that P4HA3 might affect cancer by participating in some potential
signaling pathways, the specific molecular biology of the
mechanism of action is not yet clear. These need to be further
investigated in depth in the future.
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