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The pathogenesis of Chronic Obstructive Pulmonary Disease (COPD) is implicated in
airway inflammation, oxidative stress, protease/anti-protease and emphysema.
Abnormally expressed non-coding RNAs (ncRNAs) play a vital role in regulation of
COPD occurrence and progression. The regulatory mechanisms of the circRNA/
lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) networks might
facilitate our cognition of RNA interactions in COPD. This study aimed to
identified novel RNA transcripts and constructed the potential ceRNA networks of
COPD patients. Total transcriptome sequencing of the tissues from patients with
COPD (COPD) (n = 7) and non-COPD control subjects (Normal) (n = 6) was
performed, and the expression profiles of differentially expressed genes (DEGs),
including mRNAs, lncRNAs, circRNAs, and miRNAs, were analyzed. The ceRNA
network was established based on the miRcode and miRanda databases. Kyoto
Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Gene Set
Enrichment Analysis (GSEA), and Gene set variation analysis (GSVA) were
implemented for functional enrichment analysis of DEGs. Finally, CIBERSORTx
was extracted to analyze the relevance between hub genes and various immune
cells.The Starbase and JASPAR databases were used to construct hub-RNA binding
proteins (RBPs) and lncRNA-transcription factor (TF) interaction networks. A total of
1,796 mRNAs, 2,207 lncRNAs, and 11 miRNAs showed differentially expression
between the lung tissue samples from the normal and COPD groups. Based on
these DEGs, lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed
respectively. In addition, ten hub genes were identified. Among them, RPS11,
RPL32, RPL5, and RPL27A were associated with the proliferation, differentiation,
and apoptosis of the lung tissue. The biological function revealed that TNF–α via
NF–kB and IL6/JAK/STAT3 signaling pathways were involved in COPD. Our research
constructed the lncRNA/circRNA-miRNA-mRNA ceRNA networks, filtrated ten hub
genes may regulate the TNF-α/NF-κB, IL6/JAK/STAT3 signally pathways, which
indirectly elucidated the post-transcriptional regulation mechanism of COPD and
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lay the foundation for excavating the novel targets of diagnosis and treatment in COPD.
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chronic obstructive pulmonary disease (COPD), circular RNA (circRNA), long non-coding RNA
(IncRNA), MicroRNA (miRNA), messenger RNA (mRNA), competing endogenous RNAs (ceRNA)
network

Introduction

Chronic obstructive pulmonary disease (COPD) is a public health
challenge related to disability and mortality worldwide (Niu et al.,
2022). According to the report of World Health Organization, COPD
affects approximately 400 million people and has become the third
main cause of mortality in the world (Lozano et al., 2012; Labaki and
Rosenberg, 2020). COPD is characterized by an abnormal airway in
chronic bronchitis and a substantial reduction in solid lung texture in
emphysema (Rabe and Watz, 2017), eventually leading to irreversible
airflow limitation and persistent respiratory symptoms (Labaki and
Rosenberg, 2020). According to previous studies (Yuan et al., 2017;
Hikichi et al., 2019), COPD is associated with various risk factors,
including environmental deterioration, genetic factors and airway
inflammation. Cigarette smoke (CS) has long been recognized as
the main risk factor for the occurrence of lung disease. CS can
induce persistent inflammatory responses in the airway and only a
part of life-long smokers will develop COPD. In addition, some non-
smokers can develop COPD, and many people diagnosed with airway
restriction in childhood may develop COPD later in life (Singh et al.,
2018). Accordingly, individual differences and hereditary
susceptibility play an important role in the pathogenesis of COPD.
However, the pathogenesis of COPD has not been clarified
(Cortopassi et al., 2017; Vogelmeier et al., 2020).Therefore, this
study aimed to detect the regulatory mechanisms of the ceRNA
integration networks in COPD.

Over the past decades, non-coding RNAs (ncRNAs) have been
considered as controversial molecules. Whereas, owing to the rapid
development of high-throughput sequencing and RNA analysis
techniques, ncRNAs have been suggested to participate in the
pathophysiological processes of various diseases (Guttman and
Rinn, 2012; Castel and Martienssen, 2013). More than 90% of
human transcripts are RNA transcripts, and these transcripts are
thought to be ncRNAs (Li et al., 2017). These ncRNAs can be
divided into microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs) (Esteller, 2011).

LncRNAs can transcribe over 200 nucleotides via RNA
polymerase II, but do not encode proteins (Rinn and Chang, 2012).
LncRNAs have been demonstrated to regulate different epigenetic,
transcriptional, and post-transcriptional functions, and play an
integral part in the process of lung diseases, including COPD
(Kopp and Mendell, 2018; Devadoss et al., 2019). CircRNAs are
another class of endogenous ncRNAs possessing covalently closed
loop structures that lack 5′ caps and 3′ poly A tails (Zhang et al., 2018).
For circRNAs, due to their stability and histological specificity, the
mechanisms and functions are still unclear. However, increasing
number of reports suggested that circRNAs could be recognized as
ideal biomarkers for clinical applications (Verduci et al., 2021).

In addition, recent studies revealed a hypothesis regarding
competing endogenous RNAs (ceRNAs), indicating that these
RNA transcripts (including mRNA, lncRNA, pseudogenes, and
circRNA) may act as natural miRNA sponges by competing for

the same miRNA response elements (MERs) to regulate relevant
mRNA expression induced by the ceRNA network (Salmena et al.,
2011; Tay et al., 2014). On the basis of many studies, ceRNA
regulation has a significant effect on the emergence and
progression of COPD. For example, in COPD tissues, the low-
expressed lncRNA, SNHG5, is closely involved in low-forced
expiratory volume in one second (FEV1%) in patients via the
miR-132/PTEN axis, which regulates human bronchial epithelial
cell inflammation and apoptosis in COPD (Shen et al., 2020).
LINC00987 can regulate lipopolysaccharide-induced apoptosis,
oxidative stress, inflammation, and autophagy via the let-7b-5p/
SIRT1 axis (Wang et al., 2020), resulting in the amelioration of
COPD. CircTMEM30A is highly expressed in COPD patients with
lung cancer, the circTMEM30A/hsa-miR-130a-3p axis regulates
TNF-α and promotes the malignant progression of COPD with
primary lung cancer (Ding and Dong, 2021). Circ-OSBPL2
promotes apoptosis, inflammation, and oxidative stress in
HBECs in smoking-associated COPD through the miR-193a-5p/
BRD4 axis, indicating that the potential of circ-OSBPL2 to act as a
diagnostic biomarker for smoking-induced COPD (Zheng et al.,
2021).

ceRNAs represent a new post-transcriptional regulatory
mechanism involved in the emergence and progression of various
conditions (Guttman and Rinn, 2012; Castel and Martienssen, 2013;
Meng et al., 2017). Based on several investigations, the lncRNA-
miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks are
associated with COPD progression (Liu et al., 2022). However, only
few reports have revealed the overall expression profiles of lncRNAs,
circRNAs, miRNAs, mRNAs and the regulatory mechanism of
pivotal lncRNA or circRNA-miRNA-mRNA ceRNA regulatory
networks in smoking-induced COPD. In addition, due to the
difficulty of collecting clinical samples, most bioinformatics
analyses are performed with samples from public databases rather
than their own clinical samples. Therefore, comprehensive analyses
are needed to identify more reliable biomarkers for the occurrence
and development of COPD.

In the present study, lung resection specimens from patients with
COPD (COPD) (n = 7) and non-COPD control subjects (Normal)
(n = 6) were chosen. Whole transcriptome sequencing (RNA
sequencing [RNA-seq]) was performed to screen differentially
expressed lncRNAs, circRNAs, miRNAs, and mRNAs. In addition,
we constructed the lncRNA-mRNA-miRNA and circRNA-mRNA-
miRNA networks through bioinformatics analysis respectively. Relied
on the Kyoto Encyclopedia of Gene and Genomes pathway
enrichment analysis (KEGG), Gene Ontology analysis (GO), Gene
set variation analysis (GSVA), and Gene set enrichment analysis
(GSEA), the crucial pathways involved in COPD were detected. To
further explore the mechanism of different mRNA expression, a
protein-protein (PPI) network, hub-RBP (RNA binding protein)
and immune infiltration analyses were carried out. Overall, these
ceRNA networks may contribute to the discovery of novel
biomarkers for COPD.
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Materials and methods

Sample collection and the ethics committee

Lung resection specimens were collected from 20 patients with
solitary pneumonic tumors who underwent pneumonectomy at the
Department of Thoracic Surgery, General Hospital of Ningxia Medical
University between June 2020 and December 2020, in accordance with
the Declaration of Helsinki. Fresh non-neoplastic lung tissue should be
at least 5 cm from the neoplastic lesion. The enrolled patients were
divided into two groups: In the present study, lung resection
specimens from patients with COPD (COPD) (n = 7) and non-
COPD control subjects (Normal) (n = 6). Patients were diagnosed
based on the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) (Guo et al., 2018; Zhu et al., 2021). The characteristics of the
participants are shown in Table 1.

The study inclusion criteria for patients with COPD were as
follows: (Niu et al., 2022): a post-bronchodilator forced expiratory
volume in 1 s (FEV1)/forced vital capacity (FVC) rate lower than 0.70,
which “verifies the existence of constant airflow restriction”; (Labaki
and Rosenberg, 2020) age >40 and <80 years, current smoker with a
history of cigarette smoking (more than 20 pack-years); (Lozano et al.,
2012) patients with stable clinical condition that are not receiving
chemotherapy or radiotherapy. The exclusion criteria for patients with
COPD were as follows: (Niu et al., 2022): patients companied with
lung metastasis or other organs tumors, including stomach, intestine,
liver, pancreas, kidney, etc; (Labaki and Rosenberg, 2020) patients
with other lung and systemic diseases, such as asthma, bronchitis,
interstitial lung diseases, and cardiac, hepatic, or renal diseases;
(Lozano et al., 2012) patients who inhaled or received oral

glucocorticoids for 3 months before surgery and those who used
biomass fuel and have a history of occupational exposure. Age-
and sex-matched non-smokers without COPD and smokers with
COPD served as controls.

This study was approved by the Ethics Committee of the General
Hospital of Ningxia Medical University (Grant No.KYLL-2021-418).
Each participant provided written informed consent.

Whole transcriptome resequencing and data
quality control

Total RNA was extracted from frozen lung tissues using Trizol
Reagent (Invitrogen, Life Technologies, United States). The Qubit®

RNA Assay Kit for Qubit® 2.0 Fluorometer (Life Technologies, CA,
United States) and NanoPhotometer® spectrophotometer (IMPLEN,
CA, United States) were separately used to determine the
concentration and purity of the total RNA. Subsequent
experiments were performed with total RNA samples that met the
following criteria: RNA integrity number (RIN) > 7.0 and 28S/18S
ratio >1.8. First, the small RNA sequencing library was created using
the NEB Next Multiplex Small RNA Library Prep Set (Illumina, San
Diego CA, United States), as recommended by the manufacturer.
Thereafter, a complementary DNA (cDNA) library of lncRNA was
established following ribosomal RNA (rRNA) removal using the
Epicenter Ribo-zeroTM rRNA Removal Kit (Epicenter,
United States). rRNA with no residue was purified by ethanol
precipitation. Sequencing libraries were produced using rRNA-
depleted RNA and the NEBNext UltraTM Directional RNA Library
Prep Kit for Illumina (NEB, United States), according to the

TABLE 1 Characteristics of subjects in this study.

Characteristic Non-COPD (Normal) Patients with COPD(COPD) p

n 6 7

Gender (M/F), n (%) 0.005

F 5 (83.3%) 0 (0%)

M 1 (16.7%) 7 (100%)

Smoking history (pack-years), n (%) 0.043

0 6 (100%) 0 (0%)

22 0 (0%) 1 (14.3%)

25 0 (0%) 2 (28.6%)

30 0 (0%) 1 (14.3%)

33.75 0 (0%) 1 (14.3%)

45 0 (0%) 1 (14.3%)

50 0 (0%) 1 (14.3%)

Age (Years), mean ± SD 53.83 ± 6.59 60.14 ± 11.82 0.272

BMI (kg/m2), median (IQR) 23.75 (23.38, 24.04) 25 (24.1, 25.85) 0.445

FEV1 (L), median (IQR) 3.12 (2.77, 3.4) 2.66 (2.54, 2.81) 0.198

FEV1 (% predicted), mean ± SD 117.67 ± 14.72 94.71 ± 19.93 0.040

FEV1/FVC (%), mean ± SD 80.33 ± 1.21 64.42 ± 3.69 <0.001
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manufacturer’s recommendations. Finally, all products were cleaned
(AMPure XP system), and library quality was evaluated using the
Agilent Bioanalyzer 2,100 system. Paired-end sequencing of individual
libraries was performed on an Illumina HiSeq sequencer platform
(Illumina).

Raw data (raw reads) in fastq format were initially processed using
bcl2fastq or in-house Perl scripts. Clean data (clean reads) were
acquired at this step by expurgating reads containing adapters,
reads containing ploy-N, with 5′ adapter contaminants, without 3′
adapter or the insert tag, containing ploy A, T, G, or C, and low-quality
reads from the original data. Simultaneously, the Q20, Q30, and GC
content of the clean data were determined. High-quality and clean
data were the basis of the entire downstream calculations.

Identification of differentially expressed
genes

The R package “Deseq2” (Love et al., 2014) was used to identify
differentially expressed genes between non-smokers without COPD
and smokers with COPD tissues, and these genes were called
differentially expressed lncRNAs (DElncRNAs), circRNAs
(DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs),
respectively. The screening criteria for differential genes were |
log2FC| > 1 and p-value <.05. Genes with logFC >1 and
p-value <.05 were identified as upregulated genes, while those with
logFC <−1 and p-value <.05 were identified as downregulated genes.
The result is visualized into volcano map and heatmap by R package
ggplot2 and pheatmap respectively.

Construction of a ceRNA regulatory network

Based on the regulatory mechanism of ceRNA networks, lncRNAs
and circRNAs can act as miRNA sponges to combine miRNAs and
regulate downstream target mRNAs. In this study, DEmiRNAs were
employed as the center of the ceRNA network. First, target genes of
DEmiRNAs were obtained using four databases: miRDB (Chen and
Wang, 2020), miTarBase (Huang et al., 2020), miRanda, and
TargetScan (Agarwal et al., 2015). Genes in no less than three
databases were indicated as the target genes for these DEmiRNAs,
and only the overlapping portions of the genes were used to construct
the miRNA-mRNA relationship. The miRcode database (Jeggari et al.,
2012) was used to screen the miRNA-circRNA pair mutual effects,
which were then combined with the miRNA-mRNA interaction pairs
to set up the DElncRNA-DEmiRNA-DEmRNA ceRNA network using
Cytoscape (Shannon et al., 2003) software What’s more, the miRanda
database was used to determine the connection between the
DElncRNAs and DEmiRNAs. The DEcircRNA-DEmiRNA were
correlated with the miRNA-mRNA interaction pairs to construct
the DEcircRNA-DEmiRNA-DEmRNA ceRNA network using
Cytoscape software.

GO and KEGG enrichment analyses of
DEmRNAs

GO (Gene Ontology, 2015) is a database resource for understanding
the superior functions and availability of biological systems, including

biological process (BP), cellular component (CC), and molecular
function (MF), from large-scale molecular datasets produced using
molecular-level information, especially genome sequencing and other
high-throughput experimental techniques. KEGG (Kanehisa and Goto,
2000) is an extensively used database for storing information on
genomes, biological pathways, diseases, and medicines. The R
software package, clusterProfiler (Yu et al., 2012), was used to
perform GO functional annotation and KEGG pathway enrichment
analyses of DEmRNAs in the ceRNA networks. The significance levels
of interest in the KEGG pathways and BPs in GO were p-value<0.05.

Gene set enrichment analysis (GSEA)

GSEA (Subramanian et al., 2005) (http://software.broadinstitute.
org/gsea/index.jsp) is a genome-wide expression profile chip data
analysis method for identifying functional enrichment through a
comparison of genes and predefined gene sets. A gene set is a set
of genes that share localization, pathways, functions, or other
characteristics. GSEA can be used to assess related pathways and
molecular mechanisms in smokers with COPD.We obtained the “hall.
v7.2. symbols.gm” gene set in the MSigDB (Liberzon et al., 2015)
database (v7.5.1) and performed GSEA on the differentially expressed
mRNAs using the R package for GSEA. A false discovery rate (FDR) <.
25 was considered to indicate obvious enrichment.

Gene set variation analysis (GSVA)

The R package, GSVA (Hanzelmann et al., 2013), was used to
determine the scores of the relevant pathways underpinned by the
gene expression matrix of every sample using single-sample gene set
enrichment analysis (ssGSEA), and differentially screened many
functions (or pathways) using the limma package (Ritchie et al., 2015).

Construction and analysis of the protein-
protein interaction (PPI) network

PPI analysis of known differentially expressed genes and predicted
PPIs was performed using the STRING database (Szklarczyk et al.,
2015) (http://string-db.org; version11.5).

The Cytoscape software (version 3.6.1) Network Analyzer was
used to calculate the node degree. cytoHubba (Chin et al., 2014) is a
Cytoscape plug-in used to study the hub genes of the PPI network.

Combined PPI pairs with a confidence value of 0.9 were retrieved,
and data from the PPI table were inputted into the Cytoscape software
to create a visual PPI network. By employing the MCODE (Version
2.0.0) plug-in in the software to select hubmodules in the PPI network,
the GOSemSim (Yu et al., 2010) package was applied to conduct a
Friends analysis on the first two core clusters. The cytoHubba plugin
was also used to study hub genes in the PPI network.

Quantitative real-time PCR (qRT-PCR) for
identification of hub genes

Total RNA was isolated from non-smokers without COPD
(Normal) (n = 5) and smokers with COPD (COPD) (n = 5) using

Frontiers in Genetics frontiersin.org04

Feng et al. 10.3389/fgene.2023.1050783

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://string-db.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1050783


TRIzol reagent (Invitrogen, Life Technologies, United States), and
cDNA was derived using the RevertAid First Strand cDNA Synthesis
Kit (Thermo Scientific, United States). qRT-PCR was conducted using
the CFX Connect Real-time PCR system (Bio-RAD, United States)
and the TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) kit (Takara
Bio, Japan), according to the instructions. The housekeeping gene,
GAPDH, was used for normalization. All primer sequences are shown
in Supplementary Table S1. Data represent the average of three
independent replicates.

Immune infiltration analysis

CIBERSORTx (Chen et al., 2018) deconvolves the transcriptome
expression matrix, which is based on the theory of linear support
vector regression, to predict the composition and richness of immune
cells in mixed cells. The gene expression matrix data were uploaded to
CIBERSORTx, and combined with the LM22 eigengene matrix.
Samples with p < .05 were filtered, and the immune cell infiltration
matrix was obtained. The R language ggplot2 package was used to
draw histograms to represent the distribution of 22 types of immune
cell infiltration in every sample. For the two study groups, a boxplot
was generated to demonstrate the relative abundance of immune cell

infiltration. The correlation between the expression of key genes and
the content of various types of immune cells was also analyzed.

Construction of the RBP-gene and TF-target
gene

RNA binding proteins (RBPs) play a vital role in gene regulation.
Currently, most RNAs bind to proteins to form RNA-protein
complexes, except a few RNAs that can function as ribozymes alone.
RBPs play a key role in the regulation of life activities, such as RNA
synthesis, alternative splicing, modification, transportation, and
translation. Consequently, analyzing the interaction between RNA
and protein is key for evaluating the function of RNA. The starBase
(Li et al., 2014) database is based on high-throughput CLIP-Seq and
degradome experimental data. The database contains miRNA-ncRNA,
miRNA-mRNA, RBP-RNA, and RNA-RNA data. RBPs can recognize
special RNA binding domains and interact with RNA in cells, which
belong to a type of post-transcriptional protein, and can participate in
the control of RNA splicing, transport, sequence editing, intracellular
localization, and translation. In this study, the hub-RBP network was
constructed using the starBase database (https://starbase.sysu.edu.cn/)
and visualized using Cytoscape software.

FIGURE 1
Flow chart of the overall analysis to explore the biological characteristics of COPD by bioinformatics methods.
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Transcription factors (TFs) control gene expression by
interacting with target genes during the post-transcriptional stage.
To analyze the regulatory effect of TFs on hub genes, specific binding
of TFs to gene regulatory regions is an important approach for the
regulation of gene expression. TF prediction was performed using the
JASPAR database (JASPAR 2018) (Vlieghe et al., 2006) and
TFBSTools software (3.3.2) (Tan and Lenhard, 2016), and the
binding sites of TFs within the region 2,000 bp upstream of the
start site of each lncRNA and 500 bp downstream, direction and

scoring results were provided. The hub-TF interaction networks
were visualized using Cytoscape software.

Statistical analysis

All calculations and statistical analyses were carried out at
https://www.r-project.org/ (version 4.0.2). For the comparison of
two groups of continuous variables, an independent Student’s t-test

FIGURE 2
Differential expression analysis. (A,B,E), Volcano plot of differentially expressed mRNA, lncRNA, and miRNA analysis. (C,D,F), Heatmap presentation of
differential mRNAs, lncRNAs, and miRNAs.
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was used to estimate the statistics of normally distributed variables,
and the Mann-Whitney U test (Wilcoxon rank sum test) was used
to analyze the differences between non-normally distributed
variables. All statistical p values were two-sided, and p < .05 was
considered statistically significant.

Results

Identification of DEGs in COPD

A total of 13 individuals participated in the study, including 6 in
the normal and 7 in the COPD group (Table 1). The analysis strategy
and procedure used in this study are illustrated in Figure 1.

A total of 1,796 DEmRNAs were identified, of which 796 were
upregulated and 1,000 were downregulated. A total of
2,207 DElncRNAs were identified, of which 1,245 were
upregulated and 962 were downregulated. Finally,
11 DEmiRNAs were identified, among which 5 were upregulated
and 6 were downregulated. Volcano plots (Figures 2A, B, E) and
heat maps (Figures 2C, D, F) of the DEGs were generated to
visualize the difference between the COPD group and the
normal group.

Construction and analysis of the ceRNA
network

Based on the expression profiles of miRNAs, lncRNAs, and
mRNAs for COPD patients and normal participants, we
established a lncRNA-miRNA-mRNA ceRNA network, which
contained a total of 5 miRNA, 51 mRNA and 7 lncRNA nodes

(Figures 1–3). Furthermore, a circRNA-miRNA-mRNA ceRNA
network based on the expression profiles of miRNA, circRNA,
and mRNA in COPD patients and normal participants was
constructed. The ceRNA network contained 19 miRNA,
169 mRNA, and 10 circRNA nodes (Figures 2, 3).

PPI network and hub gene identification

A PPI network associated with DEmRNAs was constructed
through the STRING database, visualizing the interaction
relationship, which included 616 nodes and 1,424 edges.
(Figure 4). The first two hub modules in the PPI network,
Cluster1 (MCODE score = 12.667) and Cluster2 (MCODE
score = 10.6) were selected using MCODE in the software
(Figures 5A, B). Cluster1 contains 13 genes, of which 4 genes
expression up-regulation were RPS27, DOCK4, RPL27A, RPL35A,
the 9 genes expression down-regulated were RPS11, RPL23, RPL3,
RPS21, FAU, RPLP0, RPL5, RPL13A, and RPL32 (Figure 5A).
Cluster2 contains 10 genes, of which 5 were up-regulated,
namely NOP58, NOP56, FTSJ3, UTP6, RSL1D1, and 5 were
down-regulated, namely KRR1, NSA2, FCF1, NOC4L, UTP14C
(Figure 5B). We further used the GOSemSim package to
perform Friends analysis on the genes in the first two hubs, and
the results suggested that the KRR1 was more important
(Figure 5C). We then used the cytoHubba plugin to analyze the
MCC algorithm to select the top 10 genes, namely RPS21, RPL32,
RPL35A, FAU, RPLP0, RPS11, RPL27A, RPL23, RPL5, RPL13A as
core genes (Figure 5D). We verified the mRNA levels of the top
10 hub genes in the COPD group, and we found that expression of
8 hub genes (RPLP0, RPL5, RPL32, RPL13A, FAU, RPL32, RPS21
and RPS11) was significantly downregulated in COPD tissues

FIGURE 3
Interaction network of mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA. The interaction network of differentially expressed mRNA-miRNA-lncRNA
and mRNA-miRNA-circRNA, in which the yellow node is miRNA, the green node is lncRNA, the blue node is mRNA, and the red node is circRNA.
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compared to the normal tissue consisted with the prediction results
(Figures 6A–J).

Construction of the RBP-genes and TF-target
gene network

We applied starBase database to construct a mRNA-RBP
network, which comprised 7 mRNAs (FAU, RPS21, KRR1,
NOP56, RPL5, RPL23, RPLP0) and 127 RBPs, of which
RPL5 interacted with 118 RBPs, RPLP0 with 106 RBPs,
RPL23 with 115 RBPs, FAU with 90 RBPs, RPS21 with RBPs,
KRR1 with 103 RBPs and NOP56 with 114 RBPs (Figure 7A). We
subsequently constructed a TF-lncRNA network consisting of
100 lncRNAs and 231 TFs using JASPAR database and
TFBSTools software (Figure 7B). The top 10 TFs were
ZNF354C, RHOXF1, SHOX, ISX, LHX9, RAX2, MZF1, PDX1,
FOXL1, UNCX. Among them, ZNF354C was the transcription

factor that interacted with the most lncRNAs (97 lncRNAs) in
the TF-lncRNA network. (Figure 7B).

Functional enrichment analysis of DEmRNAs

To study the relationship between DEmRNAs and BPs, MFs,
CCs, biological pathways, and diseases, we first performed
functional enrichment analysis of DEmRNAs (Figures 8A–G;
Supplementary Tables S2, S3). DEmRNAs were the most
abundant in BPs, such as nucleotide-excision repair,
transcription-coupled nucleotide-excision repair, cell junction
organization, cell junction assembly, and control of actin
filament-based process (Figure 8E). Further, the DEmRNAs
were enriched in CCs, such as focal adhesion, cell-substrate
adherens junction, cell-substrate junction, cell-cell junction,
ATPase complex (Figure 8F). Small GTPase binding, Ras
GTPase binding, ubiquitin protein ligase binding, ubiquitin-like

FIGURE 4
Protein-protein interaction network. Protein-protein interaction analysis of DEGswas performed using STRING data, and the interaction relationshipwas
visualized. The larger the circle,the higher the fold of differential expression. Blue indicates genes with down-regulated expression and red indicates genes
with up-regulated expression.
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protein ligase binding, cadherin binding, and other MFs were
identified (Figure 8G).

Next, KEGG pathway enrichment analysis was performed on
DEmRNAs. Based on the results, the DEmRNAs were abundant in
biological pathways, such as base excision repair, ferroptosis,
Yersinia infection, and human T-cell leukemia virus 1 infection
(Figure 8D).

GSEA and GSVA

To determine the impact of gene expression levels on disease,
GSEA was performed to analyze the relationship between gene
expression and the BPs, CCs, and MFs. GSEA revealed that the
most significantly enriched gene sets were negatively correlated
with the COPD group, which included the TNF-α signaling via
NF-κB, interferon gamma response, inflammatory response,
unfolded protein response, mtorc1 signaling, estrogen response late,
IL6/JAK/STAT3 signaling. Interestingly, these phenotype
characteristics are thought to be associated with the progressions of
COPD (Figures 9A–H; Supplementary Table S4).

The results of GSVA suggested that COPD group was mainly
enriched in KEGG pathogenic Escherichia coli infection, prion
diseases, regulation of autophagy, mismatch repair,

glycosphingolipid biosynthesis lacto and neolacto series,
antigen processing and presentation, porphyrin and
chlorophyll metabolism, primary bile acid biosynthesis,
riboflavin metabolism, glutathione metabolism, metabolism of
xenobiotics by cytochrome p450, drug metabolism cytochrome
p450, sphingolipid metabolism, retinol metabolism, and
other biologically related functions and signaling pathways
(Figure 9I).

Immune infiltration analysis

In this study, the gene expression matrix data were analyzed
for immune cell infiltration, and filtered an immune cell
infiltration matrix (p < .05) that revealed the distribution of
immune cells (Figure 10A). The differences in immune cell
infiltration between the normal group and COPD group were
analyzed, the proportions of Eosinophils, M1 Macrophages,
activated memory CD4+ T cells, resting NK cells and resting
memory CD4+ T cells were higher in normal group. In
addition, activated NK cells had a higher proportion of
infiltration in COPD group (Figure 10B).

At the same time, the correlation between the infiltration of
various immune cells and hub genes in the COPD group was

FIGURE 5
Key analysis of differences between COPD and Normal. (A,B), MCODE plugins selected the first two hub modules in the PPI network, where blue
indicates up-regulated genes and red indicates down-regulated genes. (C), Friends analysis of genes in the first two clusters was performed using the
GOSemSim package, with similarity scores on the abscissa and gene names on the ordinate, where geneswith higher scoresweremore important. (D), For the
top ten Hub genes in the PPI network analyzed by the CytoHubba plug-in, darker colors indicate higher MCC scores.

Frontiers in Genetics frontiersin.org09

Feng et al. 10.3389/fgene.2023.1050783

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1050783


analyzed (Figures 11A–F). There was a positive correlation between
FAU gene expression and T cells regulatory (Tregs) in the COPD
group (Figure 11A). RPL5 was negatively correlated with Neutrophils
(Figure 11B). RPL5 was negatively correlated with T cells follicular

helper (Figure 11C). RPLP0 was negatively correlated with T cells
CD4 naive (Figure 11D). RPL10 was negatively correlated with B-cell
memory (Figure 11E) and RPS21 was negatively correlated with
CD4 naive T cells (Figure 11F).

FIGURE 6
Ten differential expression Hub genes. (A-J), RT-qPCR was used to verify the hub genes between COPD group and Normal group. “**” p<0.01.
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Discussion

COPD is a heterogeneous disease in which chronic
bronchiolitis and emphysema are the most prominent
phenotypes and remain the leading causes of death worldwide
(Mirza et al., 2018). With the evolution of the high-throughput
sequencing technology and bioinformatics analysis, the ceRNA
network hypothesis may illustrates the occurrence and
progression of disease partially. Despite an increasing number
of studies on ceRNA networks, it was not been fully elaborated
about the molecular mechanisms of COPD (Salmena et al., 2011;
Gong et al., 2020; Chen et al., 2022). In the present study, we
utilized the whole transcriptome sequencing analysis of two
groups (seven patients with COPD and six non-COPD control
subjects), screened out 1,796 DEmRNAs (796 upregulated
and 1,000 downregulated), 2,207 DElncRNAs
(1,245 upregulated and 963 downregulated), and 11 DEmiRNA
(five upregulated and six downregulated).

To date, the functions of most lncRNAs and circRNAs remain
unclear. Consequently, the construction of a ceRNA network of
lncRNAs/circRNA-miRNAs-mRNAs could provide help for the
prediction of the functions of lncRNAs/circRNAs. According to the
ceRNA co-expression network, 7 lncRNA-5miRNA-51mRNA and
10circRNA-19miRNA-169mRNA ceRNA networks were selected
for further investigation respectively. LncRNAs regulate gene
expression at different levels, including epigenetic,
transcriptional, and post-transcriptional, which can act as
miRNA sponges and interfere with miRNA-mediated
degradation of target mRNA (Quinn and Chang, 2016; Kopp
and Mendell, 2018). For example, the lncRNA, NORAD, is

upregulated in non-small cell lung cancer (NSCLC) and
accelerates the progression of NSCLC by enhancing tumor cell
proliferation by targeting the miRNA-455/CDK14 axis (Wang
et al., 2021). Similarly, the expression of the NORAD was
notably increased in cancer tissues and cells compared with that
in normal tissues and cells in NSCLC, which regulates the
proliferation, migration, and invasion capabilities of NSCLC
cells by targeting the miR-520a-3p/PI3k/Akt/mTOR signaling
pathways (Wan et al., 2020). Wang et al. revealed that the
lncRNA, EBLN3P, was upregulated in lung adenocarcinoma cell
lines (A549 and NCI-H23), inhibiting A549 cell viability and
promoting apoptosis via the miR-655-3p/Bcl-2 axis (Wang and
Yin, 2022). CircRNA is a covalently closed loop-like structure that
is highly specific to the eukaryotic transcriptome and can be used as
a microRNA sponge, a splicer, and for transcribed gene expression
(Qu et al., 2015). Subsequently, out of the 10 DEcircRNAs from
circRNA-miRNA-mRNA ceRNA network in this study, only
1 DEcircRNAs had reported to be associated with lung diseases.
Yang et al. reported that hsa_circ_0003162 is significantly down-
regulated in lung adenocarcinoma, indicating that it may be
involved in the progression of lung adenocarcinoma (Liu et al.,
2021). However, none of the other 9 circRNAs have been reported,
which need further in vitro and in vivo experiments, might serve as
novel potential biomarkers for COPD. Thus, these ceRNA
networks indicate that our bioinformatics approach can
effectively identify the potential functions of lncRNAs and
circRNAs. To sum up, our results are consistent with most
current studies focusing on lncRNA or circRNA-miRNA pairs
and hopefully provide useful information for future research
on COPD.

FIGURE 7
mRNA-RBP and TF-lncRNA networks. (A), Diagram of the interaction network between key mRNA genes and RBPS, where pink circle node represent
RBPS and blue nodes represent the corresponding mRNAs. (B), network diagram of the interaction between lncRNA and TF transcription factors, where the
yellow is the differential lncRNA and the purple node represents the TF.
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FIGURE 8
GO and KEGG enrichment analysis. (A), network diagram of GO and KEGG functional enrichment of differential mRNAs. (B), GO analysis dot plot of
differential mRNA, abscissa is -log (p.adjust), ordinate is GO terms. (C), Chordal diagram of KEGG analysis. The quadrangle corresponding to the differentially
expressed genes on the left shows downregulated expression in blue and upregulated expression in red. (D), KEGG enrichment Pathway map of differential
genes, the horizontal axis is gene ratio, the vertical axis is Pathway name, the node size represents the number of genes enriched in the pathway, and the
node color represents p.value. (E–G), are the visualization results of functional enrichment of BP, CC andMF, respectively. The outer circle is the GO terms, the
red dot indicates the up-regulated genes, the blue dot indicates the down-regulated genes, the quadrate color indicates the z-score of GO terms, and the
blue indicates that the z-score is negative, which means that the corresponding GO terms are more likely to be inhibited. Red indicates that the z-score is
positive and is more likely to be activated in the corresponding GO terms.
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In our research, the STRING database was used to generate PPI
with DEmRNAs, which were keeping a high degree of consistency
with confirmatory experiment. The mRNAs including RPL5,
RPL11, RPL27A and RPL32 are significantly informative. As far

as we know, most ribosome proteins (RPs) are connected with cell
growth, proliferation, differentiation and apoptosis. Liao et al.
reported that ribosomal protein L5 (RPL5) and ribosomal
protein L11 (RPL11) synergistically guide RNA-induced

FIGURE 9
GSEA and GSVA analysis. (A), GSEA analysis showed fivemain biological functions. (B-H) and GSEA analysis suggested that themain enriched pathways in
the case group COPD group. (I), Heat map presentation of GSVA analysis.
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silencing complexes (RISCs) into c-Myc mRNA and degrade their
mRNA, thereby inhibiting the activity of c-Myc in human lung
adenocarcinoma cells (H1299) (Liao et al., 2013). Park et al.
reported that under stimulation, RPL5 further inhibits the
upsurge and promotes apoptosis of NSCLC cells by inhibiting
c-Myc (Park et al., 2021). Xie et al. found that silencing of
RPL32 causes RPL5 and RPL11 to be transferred from the
nucleus to the nucleoplasm, leading to the accumulation of
p53 and inhibition of lung cancer proliferation (Xie et al.,
2020). The expression of RPS27a in LUAD was also found to be
upregulated, suggesting that the expression of RPS27a may be
related to LUAD progression and poor prognosis (Li et al.,
2022). These results are consistent with our research. Thus, we
speculated that RPL5, RPL11, RPL27A and RPL32 might have
influence on the pathogenesis of COPD by regulating the above
phenotypes, which expected to be potential biomarkers for COPD.
Overall, comprehensive analysis of hub genes in COPD may offer
new perspectives on the pathogenesis of COPD.

Furthermore, the biological function of DEmRNAs was
identified grounded on GO annotation and KEGG pathway
enrichment analysis. The nucleotide-excision repair, base

excision repair, Ferroptosis, Yersinia infection, Human T-cell
leukemia virus 1 infection were related to the pathophysiologic
mechanism of COPD. Then, we performed GSEA and GSVA
analyses to further elucidate the underlying mechanisms. The
GSVA heatmap result revealed that the activity of glutathione
metabolism, metabolism of xenobiotics by cytochrome p450, drug
metabolism cytochrome p450 was enhanced in smokers with
COPD samples, whereas regulation of autophagy was impeded.
GSEA result revealed relatively high enrichment of TNF-α viaNF-
κB, interferon gamma response, inflammatory response, IL6/JAK/
STAT3 signaling pathways in smokers with COPD patients.
Among which TNF-α via NF-κB play a significant role in
COPD pathology. TNF-α is an important pro-inflammatory
cytokine produced by different immune inflammatory cells
(such as epithelial cells) in response to stimulation. In COPD,
TNF-α recruit inflammatory cells producing inflammatory
mediators, which activated airway inflammation response
caused airway oxidation and hyperreactivity. Chen et al.
suggested that TNF-α stimulates interleukin-6 (IL-6) and
interleukin-8 (IL-8) generation, activating the nuclear factor-κB
(NF-κB) pathway by the degradation of IκB-α and the

FIGURE 10
Analysis of immune infiltration. (A), component analysis of immune cells in COPD and control samples; (B), Differential analysis of the composition of
various immune cells in the samples of COPD group and control group. The meanings represented by different asterisks explain significant differences. *
indicates that the difference is statistically significant, “*” p < 0.05; “**” p < 0.01.
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phosphorylation and nuclear migration of NF-κB p65, highlight
the role of TNF-α in the pathogenesis of chronic inflammation,
suggesting that TNF-α may be a promising target for the
treatment of airway inflammatory diseases especially COPD
(Brightling et al., 2008; Herfs et al., 2012; Chen et al., 2020),
which were consistented with our study. The JAK/STAT pathway
is activated by a variety of pro-inflammatory cytokines, such as IL-
6, IL-11, and IL-13, which are upregulated in different lung
diseases (Montero et al., 2021). Eskiler G et al. revealed that
IL-6-mediated Janus kinase (JAK)/signal sensor and
transcriptional activator 3 (STAT3) pathways are indispensable
in cancer cachexia, such as lung cancer via the induction of a
systemic inflammatory response. Johnson et al. revealed that the
IL6/JAK/STAT3 pathway is abnormally activated in many types of
cancer, which is often associated with poor clinical prognosis
(Johnson et al., 2018). All these above views indicated that TNF-α
via NF-κB and IL6/JAK/STAT3 signaling pathways were
implicated with pathogenesis of COPD.

Despite this, our study had some limitations. First, owing to the
small sample size used in this study, it is impossible to
comprehensively summarize the COPD transcriptome. Thus, the
sample size and male to female ratio should be expanded for further
analysis. Second, due to the limitations of the current environment,
although we are also interested in the comparison for ceRNA
networks between patients with lung tumor vs. no tumor COPD

patients, However, no similar samples have been collected, and no
similar public transcriptome data of lung tumor vs. no tumor COPD
patients have been searched in public databases, so it cannot be done
at present. Our next step is to collect such samples as much as
possible and then perform whole-transcriptome sequencing. Third,
because smoking is a risk factor for inducing COPD and most COPD
patients are combined with smoking, our focus in this study was
biased to whether the patient developed COPD and to search for
possible biomarkers of COPD. Next, we will continue to collect
samples, focus on whether COPD patients smoke and control
subjects smoke, and further study the pathological mechanisms of
smoking in the occurrence and development of COPD. Moreover,
RNA regulatory networks are only based on bioinformatics
predictions, lacking actual experiments to verify, which requires
in vivo animal experiments and in vitro cell models for in-depth
investigation. Finally, although several crucial signaling pathways
were identified, a series of molecular experiments may help to
demonstrate the possible phenotype and pathway regulation of
these predictive genes in COPD.

In conclusion, whole-transcriptome sequencing provided all-
side data for lncRNA, circRNA, miRNA, and mRNA from COPD
samples, discovered lots of differentially expressed RNAs and
significant pathways. Based on these ncRNAs, we conducted a
series of analyses, which may contribute to discover potential
biomarkers in the occurrence and development of COPD, and

FIGURE 11
Correlation analysis between hub genes and immune cells. (A), There was a positive correlation between FAU expression and immune cells T cells
regulatory (Tregs) in COPD group. (B), RPL5 gene expression was negatively correlated with Neutrophils (C), RPL5 gene expression was negatively correlated
with T cell follicular helper. (D), RPLP0 gene expression was negatively correlated with the immune cell component CD4 naive T cells. (E), RPL10 gene
expression was negatively correlated with B cell memory. (F) and RPS21 gene expression were negatively correlated with CD4 naive T cells.
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provide possible therapeutic targets for the diagnosis and prognosis
of COPD.
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