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Background: Hepatocellular carcinoma (HCC) has become the world’s primary
cause of cancer death. Obesity, hyperglycemia, and dyslipidemia are all illnesses
that are part of the metabolic syndrome. In recent years, this risk factor has
become increasingly recognized as a contributing factor to HCC. Around the
world, non-alcoholic fatty liver disease (NAFLD) is on the rise, especially in western
countries. In the past, the exact pathogenesis of NAFLD that progressed to
metabolic risk factors (MFRs)-associated HCC has not been fully understood.

Methods: Two groups of the GEOdataset (including normal/NAFLD andHCCwith
MFRs) were used to analyze differential expression. Differentially expressed genes
of HCC were verified by overlapping in TCGA. In addition, functional enrichment
analysis, modular analysis, Receiver Operating Characteristic (ROC) analysis,
LASSO analysis, and Genes with key survival characteristics were analyzed.

Results:We identified six hubgenes (FABP5, SCD,CCL20, AGPAT9(GPAT3), PLIN1, and
IL1RN) that may be closely related to NAFLD and HCC with MFRs. We constructed
survival and prognosis genemarkers based on FABP5, CCL20, AGPAT9(GPAT3), PLIN1,
and IL1RN.This gene signaturehas showngooddiagnostic accuracy inbothNAFLDand
HCC and in predicting HCC overall survival rates.

Conclusion: As a result of the findings of this study, there is some guiding
significance for the diagnosis and treatment of liver disease associated with
NAFLD progression.
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1 Introduction

Hepatocellular carcinoma (HCC) accounts for about 90% of all liver cancers, making it
the second leading cause of cancer death worldwide (Llovet et al., 2021, M. A; Morse et al.,
2019). The development of HCC usually follows a background of chronic low-grade
inflammation characterised by chronic liver damage followed by inflammation,
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hepatocellular necrosis, and regeneration. HCCs are predominantly
caused by Hepatitis B (HBV), Hepatitis C (HCV) infection, alcohol
consumption, as well as metabolic perturbations leading to non-
alcoholic fatty liver disease (NAFLD) (R. E. Ericksen et al., 2019, C;
Trierweiler et al., 2016). Due to universal vaccination and antiviral
therapy, viral HCC prevalence is decreasing. It will be necessary to
modify strategies for cancer prevention, prediction, and surveillance
for HCC (Awosika and Sohal, 2022, S. F; Huang et al., 2018). The
metabolic syndrome refers to a group of disorders that include
dyslipidemia, hyperglycemia, and obesity, has received increasing
attention as a novel risk factor for HCC (K. Akahoshi et al., 2016).
There was a greater than 100-fold increase in risk for HBV or HCV
carriers who also had diabetes or obesity, which suggests synergistic
effects of metabolic factors and hepatitis (C. L. Chen et al., 2008).
Patients with metabolic risk factors (MRFs) may be at greater risk of
developing hepatocarcinogenesis when FABP4 is overexpressed in
HSCs (N. Chiyonobu et al., 2018).

According to statistics, 25 per cent of the population worldwide
suffers from NAFLD (A. Lonardo et al., 2016). NAFLD is becoming
more prevalent worldwide, especially in western countries (Mancina
et al., 2016). Consequently, NAFLD has become an economic and
health concern worldwide. There is no doubt that NAFLD is a
hepatic manifestation of metabolic syndrome (MS) and is often
associated with dyslipidemia, obesity, and T2DM (J. Wattacheril,
2020). As a result of liver lipid accumulation, NAFLD can cause
inflammation and damage to the hepatocytes (J. Wattacheril, 2020).
The liver biopsy usually shows milder forms (steatosis) to severe
conditions (non-alcoholic steatohepatitis (NASH), advanced
fibrosis, cirrhosis) (Pouwels et al., 2022).

In the past, the exact pathogenesis of NAFLD that progressed to
MFRs-associated HCC has not been fully understood. High-
throughput gene chips and transcriptome sequencing have
entirely changed the previous systematic analysis methods for
disease research (M. Bustoros et al., 2020). RNA sequencing and
high-throughput microarrays help to identify reliable biological
markers, classify diseases, and reveal mechanisms of disease
development. The discovery of new biomarkers can be helpful in
predicting risk and determining which treatment is most suitable for
an individual patient. Thus, the prediction of candidate genes may
also be based on NAFLD-HCC with MRFs pathogenesis.

This study aims to identify the key genes involved in NAFLD
and HCC with MRFs and to provide a reference for further study of
the transformation of MFRs-associated HCC and a molecular-
targeted approach to cancer treatment. In this study, we analyzed
microarray data comprehensively, selecting normal tissues and
NAFLD samples and microarray data of MFRs-associated HCC
and adjacent normal tissues, and separately analysed the
differentially expressed genes (DEGs) in both groups of chips.
Combining the GEO DEG data of human HCC with MFRs and
normal liver tissue with chip data to determine key DEGs that
directly affect the diagnosis and treatment of NAFLD. Afterwards,
further functional enrichment analysis was conducted to determine
how DEGs regulate the main biological functions. Furthermore, by
using protein-protein interaction (PPI) networks and survival
analysis of patient data, key genes are identified that affect the
diagnosis, treatment, and prognosis of patients with NAFLD.

2 Methods

2.1 Profiles of gene expression

GSE63067, GSE89632, and GSE102079 datasets were
downloaded from Gene Expression Omnibus (GEO), an open-
access database that provides gene expression profiles. GSE63067
(Frades et al., 2015) and GSE102079 (N. Chiyonobu, S. Shimada,
Y. Akiyama, K. Mogushi, M. Itoh, K. Akahoshi, S. Matsumura, K.
Ogawa, H. Ono, Y. Mitsunori, D. Ban, A. Kudo, S. Arii, T.
Suganami, S. Yamaoka, Y. Ogawa, M. Tanabe and S. Tanaka,
2018) are both based on the GPL570 [(HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0 Array]. GSE89632
(B. M. Arendt et al., 2015) is based on [(GPL14951) Illumina
HumanHT-12 WG-DASL V4.0 R2 expression bead chip]. The
title of the GSE63067 data set is “Expression data from human
non-alcoholic fatty liver disease stages”. The data contained the
gene expression profiles of 11 NAFLD patients and seven non-
NAFLD controls. The title of the GSE102079 data set is
“FABP4 overexpressed in intratumoral hepatic stellate cells
within hepatocellular carcinoma with metabolic risk factors”.
Between 2006 and 2011, 152 patients who underwent curative
hepatic resection for HCC at Tokyo Medical and Dental
University Hospital participated in an integrated gene
expression microarray study. In the control group, 14 adjacent
liver tissues were obtained from patients with metastases of
colorectal cancer without chemotherapy. The validation data
set was from GSE89632 and The Cancer Genome Atlas
(TCGA) data set. The title of the GSE89632 data set is
“Genome-wide analysis of hepatic gene expression in patients
with non-alcoholic fatty liver disease and healthy donors with
hepatic fatty acid composition and other nutritional factors”. A
cross-sectional study included 20 patients with simple steatosis
(SS), 19 non-alcoholic steatohepatitis (NASH), and 24 healthy
liver donors. The TCGA database of liver hepatocellular
carcinoma (LIHC) contains RNA-Seq data for 374 HCC
patients and 50 normal tissues (https://portal.gdc.cancer.gov/)
for gene expression and immune system infiltrates.

2.2 Analysis of differentially expressed genes
(DEGs) in NAFLD and HCC with MRFs

A comparison of DEGs between NAFLD and normal
controls, HCC patients with MRFs, and corresponding
controls was performed using the limma R
package“complexheatmap” and “ggplot2” to generate heat
maps and volcano maps, respectively, which is an efficient
analysis method in bioinformatics (M. E. Ritchie et al., 2015).
In NAFLD datasets, the selected criteria were p-value <0.05 and |
log2FC|>1. In HCC datasets, the selected criteria were
p-value <0.05 and |log2FC|>1. Additionally, the overlapping
DEGs between NAFLD and HCC with MRFs were determined
by Venn diagrams using the Venn platform (http://
bioinformatics.psb.ugent.be/webtools/Venn/). A subsequent
analysis was performed on these overlapping DEGs.
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2.3 Functional classification and pathway
enrichment for DEGs

GO function enrichment analyses were conducted on the above
overlapping DEGs. It consisted of biological process (BP), cellular
component (CC), and molecular function (MF) (2006). The analysis
of KEGG signaling pathway enrichment using a package called
“clusterProfiler” (M. Kanehisa et al., 2016). GO terms and KEGG
pathways enrichedwith adjusted p-value of 0.05were selected for analysis.

2.4 Establishment of protein-protein
interactions and identification of hub genes

In order to further investigate the interactions between the above-
mentioned common genes, a search tool called the Search Tool for
Retrieval of Interacting Genes (STRING) has been developed for PPI
network construction (D. Szklarczyk et al., 2015). Interaction scores of at
least 0.4 were considered significant. Subsequently, PPI network
visualisation was conducted with Cytoscape software. Then, the
Maximal Clique Centrality (MCC), Density of Maximum
Neighborhood Component (DMNC), Maximum Neighborhood
Component (MNC), Degree, and Edge Percolated Component (EPC),
algorithms in the cytoHubba plug-in (http://hub.iis.sinica.edu.tw/
cytohubba/) was applied to identify PPI hub genes with high connectivity.

2.5 Comparing the hub gene expression
degree and analysing the prognosis

Based on the TCGA database, the six hub genes expression in HCC
normal tissues and tumor tissues was investigated. In LIHC, 374 HCC
specimens with normal adjacent tissues and HCC tissue (50 each) were
compared with neighbouring normal tissues. GEPIA was used to
investigate the prognostic significance of hub genes (http://gepia.
cancer-pku.cn/index.html) (Z. Tang et al., 2017). Survival analyses
were considered significant when log-rank p < 0.05 was used.

2.6 Developing signatures and evaluating
their reliability

Based on the training dataset, hub genes associated with
prognosis were identified and assessed against other datasets for
their predictive performance. Half of TCGA is set as the training
set. The other half of TCGA is set as a validation set. The entire
TCGA cohort is a verification set. Using univariate Cox
proportional hazard regression analysis, it was evaluated
whether hub genes are associated with overall survival (OS)
in the training set. In the “glmnet” package, the Latent Selection
Operator penalised Cox proportional hazard regression using
Cox proportional hazards models. A prediction formula for
gene characteristics was devised. The formula for the model is as
follows: risk score = gene1×β1 (gene one expression level) +
gene 2×β2 (gene two expression level) +. . .gene n×βn (gene n
expression level). In this formula, genes are combined with gene
expression values and regression coefficients from multiple Cox
proportional hazards regression models (George et al., 2014;

Zhang J. et al., 2021). Using the Kaplan–Meier (K–M) survival
curves, survival comparisons were performed between low- and
high-risk groups via the R package “survival”. Furthermore, a
time-dependent receiver operating characteristic (ROC)
analysis (including 1-, 3-, and 5-year survival) was conducted
to evaluate hub gene sensitivity and specificity using the R
package “survival ROC” (P. J. Heagerty et al., 2000). It is
critical to consider the area of the AUC curve when trying to
predict clinical outcomes. Prognosis is better when AUC >0.5;
the closer AUC is to 1, the better.

2.7 The expression of hub genes is
correlated with the presence of immune
cells in tumor

Tumor contains a large number of immune cells, and the
prognosis of high-grade HCC patients with high subtype of
dominant immunity is obviously better (Y. Kurebayashi et al.,
2018). To examine whether the expression of hub genes is
correlated with the presence of immune cells in HCC, we
examined the correlation between hub gene mRNA
expression and tumor-infiltrating immune cells. The web tool
TIMER was used (https://cistrome.shinyapps.io/timer/) (T. Li
et al., 2017). Six tumor-infiltrating cell subsets were analysed,
such as B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells.

2.8 Statistical analysis

ROC curves for hub genes were constructed using the pROC
package (X. Robin et al., 2011). To measure the effectiveness of the
model, we calculated the area under the curves (AUC). These results
showed the usefulness of genes for diagnostic purposes.
p-values <0.05 were considered statistically significant.

3 Results

3.1 Identification of DEGs in NAFLD and HCC

The series GSE63067 dataset about NAFLD and the series
GSE102079 dataset about HCC from the NCBI GEO database
was downloaded. Based on a p-value of 0.05 and |log2FC |
of >1.0, 125 DEGs were identified in GSE63067, and 726 DEGs
were identified in GSE102079 using the “limma” package in R
software. Volcano plots and heatmaps were used to visualise the
DEGs of the two data sets shown in Figures 1A,B and Figures 2A,B,
respectively. Using the Venn Diagram online tool, 26 common
genes of two diseases were identified and are shown in Figure 1C.

3.2 Analysis of pathways and functional roles
associated with overlapping DEGs

Functional enrichment and KEGG pathway analyses of
26 common NAFLD and HCC genes were performed at a
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threshold of p-value <0.05. The results showed that DEGs were
enriched in biological processes, including cellular response to
environmental stimuli, cellular response to abiotic stimuli,
cellular response to ionising radiation, unsaturated fatty acid
biosynthetic process, and response to zinc ions (Figure 3A).
Regarding molecular function, DEGs were principally
associated with receptor ligand activity, cytokine activity,
monocarboxylic acid binding, and fatty acid binding
Figure 3B. The KEGG pathways of DEGs were enriched in the
PPAR signalling pathway (Figure 3C).

3.3 Analysing the PPI network and selecting
hub genes

The PPI network was first performed based on the STRING
database to investigate how DEGs interact with one another.
Afterwards, the results were imported into Cytoscape to be
analysed (Figure 4A). A Cytoscape plug-in, Cytohubba, was
used to analyse the PPI network and identify hub genes. We
got top 10 genes from protein-protein network ranked by five
different algorithms of cytohubba including MCC, DMNC,
MNC, Degree, and EPC (Table1). In this study, the genes with

the top six values were considered as hub genes. Based on the five
algorithms, the top six genes were determined to be hub genes:
FABP5, SCD, CCL20, AGPAT9, PLIN1, IL1RN (Figure 4B).

3.4 The diagnostic value of hub genes has
been validated

To evaluate the diagnostic value of the top six hub genes
obtained from the above analysis, ROC curves were constructed
and their corresponding area under the curve (AUC) was
calculated. Figure 5A shows the result of NAFLD. The AUC
for FABP5, SCD, CCL20, AGPAT9, PLIN1, and IL1RN in
NAFLD patients and normal controls were 0.828, 0.818,
0.883, 0.857, 0.961, 0.818 at NAFLD GSE63067 dataset.
Figure 5B shows the ROC curves in HCC patients and
normal controls. The AUC for FABP5, SCD, CCL20,
AGPAT9, PLIN1, and IL1RN in HCC and the normal
controls were 0.717, 0.785, 0.776, 0.821, 0.901, 0.839 at HCC
with MRFs GSE102079 dataset. For validation, The AUC for
FABP5, SCD, CCL20, AGPAT9, and IL1RN were 0.561, 0.746,
0.858, 0.981, 0.907 in NAFLD based on GSE89632 (Figure 5C).
The AUC for FABP5, SCD, CCL20, AGPAT9, PLIN1, and

FIGURE 1
Differentially expressed genes (DEGs) shown in a volcano plot and Venn diagram (A) An analysis of the differential genes in GSE63067 using a
volcano map. (B) An analysis of the differential genes in GSE102079 using a volcano map. (C) Venn diagram of DEGs in GSE63067 and GSE102079 data
sets. Abbreviations: DEGs, differentially expressed genes; NAFLD, non-alcoholic fatty liver; HCC, Hepatocellular Carcinoma, MFRs, metabolic risk factors.
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FIGURE 2
Differentially expressed genes heatmaps (A) Heat map of DEGs in GSE63067 (NAFLD) and (B) Heatmap of DEGs in GSE102079(HCC with MFRs).
DEGs in red indicate upregulation, DEGs in blue indicate downregulation, and DEGs in white indicate no significant changes. Abbreviations: NAFLD, non-
alcoholic fatty liver; HCC, Hepatocellular Carcinoma.

FIGURE 3
Analyses of functional enrichment between two groups of DEGs. (A) Enrichment results for GO biological processes; (B) Enrichment results for GO
molecular function processes; (C) Enrichment results for KEGG pathways A bubble’s size represents the number of genes associated with each term. A
term’s bubble size represents how many genes are associated with it. Each bubble’s color indicates the adjusted p-value abbreviations: GO, Gene
Ontology; BP, biological process; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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IL1RN in HCC and the normal controls were 0.900, 0.614, 0.807,
0.589, 0.725, 0.769 at HCC TGCA dataset Figure 5D).

3.5 An evaluation of the expression patterns
and survival analysis of six hub genes

Consistent with the results in GEO datasets, the mRNA expression of
AGPAT9, PLIN1, and IL1RNwas significantly downregulated.At the same
time, that of FABP5, SCD, and CCL20 were upregulated considerably in
TCGAHCCcomparedwith non-tumor tissues (Figures 6A–L). According
to the GEPIA web tool, FABP5 and PLIN1 mRNA expression are
significantly linked to overall survival (OS) (Figures 6M–Q).

3.6 An analysis of the correlation between
hub gene expression levels

The correlation of expression levels of hub genes was captured
using GEPIA. An analysis of correlation was performed on any two
of FABP5, SCD, CCL20, AGPAT9(GPAT3), PLIN1, and IL1RN and
six hub genes. The above data indicate that upregulation of one of
them will decrease the high expression of other genes. IL1RN and
GPAT3 (Figure 7A), CCL20 and SCD (Figure 7B), CCL20 and
FABP5 (Figure 7C), SCD and PLIN1 (Figure 7D), IL1RN and
CCL20 (Figure 7E), and IL1RN and PLIN1 (Figure 7F) are all
positively related to each other. This may indicate that there is a
common transcription factor as well as epigenetic modifications
controlling them all.

3.7 The construction of the hub gene
prognostic signature

To avoid overfitting by LASSO regression, lambda. Min was
selected, resulting in a more accurate prediction rate. We used the
multivariate Cox proportional hazards regression analysis. Five
prognostic genes were developed, including ABP5, CCL20,
GPAT3, PLIN1, and IL1RNIn order to calculate the risk score
for each patient, the following formula was used: risk score =
(0.170124209 ×FABP5) + (0.073621309 ×CCL20) +
(0.011005683 × GPAT3) + (−0.056212587 ×PLIN1)+
(−0.100588077 ×IL1RN). The LASSO coefficient for SCD is equal
to 0. Hub gene risk scores were used to determine whether HCC
patients were low-risk or high-risk (Figure 8A). A significantly worse
OS was observed in high-risk patients compared to low-risk patients
(Figure 8B, training set p = 0.008, validation set p = 0.0026, entire
TCGA set p = 0.001). The reliability of hub genes was subsequently

FIGURE 4
The PPI network analysis highlights the most significant modules related to DEGs. (A) 26 DEGs were used in the construction of this PPI network. (B)
The most significant module of the PPI network includes 6 hub genes(yellow circles). DEGs differentially expressed genes; PPI, Protein-Protein
interaction.

TABLE 1 Results for analysis by Cytohubba.

node_name MCC DMNC MNC Degree EPC

S100A8 1 0 1 1 1.947

SOCS3 1 0 1 1 1.998

FABP5 3 0.30779 2 3 2.985

ENO3 1 0 1 1 2.051

TSLP 1 0 1 1 1.853

IL1RN 3 0 1 3 2.56

CCL20 2 0 1 2 2.318

SCD 4 0.30898 3 3 3.027

PLIN1 4 0.30898 3 3 3.055

AGPAT9 2 0.30779 2 2 2.75

MCC, maximal clique centrality; DMNC, density of maximum neighborhood component;

MNC, maximum neighborhood component; EPC, edge percolated component
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assessed using time-dependent ROC curves (Figure 8C). As a result,
the area under the curve (AUC) was 0.738, 0.612, and 0.695 for 1-
year, 3-year, and 5-year survival, respectively for the training set.
The AUC was 0.611, 0.633, and 0.664 for 1-year, 3-year, and 5-year
survival, respectively, for the validation set. These curves were also
applied in the entire TCGA set. The AUC was 0.696, 0.634, and
0.673 for 1-year, 3-year, and 5-year survival, respectively.

3.8 Correlation analysis of hub gene mRNA
levels with tuours-infiltrating immune cells

There are three kinds of cells in the tumor microenvironment:
tumor cells, stromal cells, and immune cells that infiltrate the
tumor. The TIMER web tool showed that the expression of all six
hub genes was associated with infiltrating immune subsets, and the
expression of NAFLD and HCC showed the most significant
correlation with them. For B-cells, CD4+ T-cells, CD8+ T-cells,
neutrophils, macrophages, and dendritic cells, the expression of
FABP5 showed the most significant correlation with them
(Figures 9A–F).

4 Discussion

In recent years, increasingly studies have confirmed the link
between NAFLD and HCC. A higher risk of HCC has been
associated with metabolic syndrome (Agosti et al., 2018, Y. P; Lin
et al., 2022, Y; Tan et al., 2019). In the clinic, development and
transformation of NAFLD are governed by common law, and its
transformation process is also typical of HCC transformation. So far,
the mechanism linking NAFLD and HCC remains unclear.
Therefore, exploring the molecular mechanisms between NAFLD
and other diseases and early identifying and intervening are likely to
have significant clinical significance. Bioinformatics analyses
comprehensively concentrate primarily on DEGs screening, the
development of related protein interaction networks, the
screening of genes, and the study of gene associations.

In this study, through searching the datasets of NAFLD and
HCC with MRFs from the GEO database, we found 26 common
DEGs between these diseases. The results of GO enrichment
analysis indicated that the DEGs were mainly enriched in
receptor-ligand activity, cytokine activity, monocarboxylic
acid binding, and fatty acid binding. Based on the KEGG

FIGURE 5
The diagnostic value of the top six hub geneswith ROCcurves in NAFLD andHCC. (A) The diagnostic value of the top six hub genes on ROC curves in
NAFLD is based on the GSE63067 data set. (B) The diagnostic value of the top six hub genes on ROC curves in HCCwithmetabolic risk factors is based on
the GSE102079 data set. (C) The diagnostic value of the top six hub genes on ROC curves in NAFLD is based on GSE89632 for validation. (D) The
diagnostic value of the top six hub genes on ROC curves in HCC is based on TCGA data. Abbreviations: TPR, True Positive Rate: FPR, False Positive
Rate.
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FIGURE 6
TCGA database, has been used to validate the expression patterns of six hub genes. (A–F) The different expressions of six hub genes in paired HCC
and normal controls in TCGA-LIHC. (G–L) The different expressions of six hub genes between HCC and the normal group. (M–R) This Kaplan-Meier plot
shows how the hub genes were significant prognostic factors.

FIGURE 7
A correlation analysis was conducted on six key genes. (A) IL1RN-GPAT3 (B) CCL20-SCD (C) CCL20-FABP5 (D) SCD-PLIN1 (E) IL1RN-CCL20 (F)
IL1RN-PLIN1.
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pathway enrichment analysis results, overlapping differential
genes are mainly involved in the PPAR signalling pathway. As
members of the nuclear receptor superfamily, PPARs can
regulate multiple metabolic pathways and are effective targets
in the treatment of many metabolic disorders, including NAFLD
(Wu et al., 2021). The PPAR signalling pathway is critical to the
progression of non-alcoholic steatohepatitis (Zhang Y. et al.,
2021). It is possible to predict HCC prognosis using the PPAR
signaling pathway effectively, independently, and usefully (Xu
et al., 2021).

As a result of the PPI network andmodule analysis, we identified
six key genes, including FABP5, SCD, CCL20, AGPAT9(GPAT3),
PLIN1, and IL1RN. The six genes were all changed in both NAFLD
patients and HCC patients withMRFs, suggesting that theymay play
an essential role in NAFLD and HCC with MRFs. An analysis of
ROC curves was performed to validate the diagnostic value of
NAFLD and HCC. This gene signature has shown good

diagnostic accuracy in both NAFLD and HCC. The expression of
FABP5 in NAFLD correlates with histological progression and the
loss of hepatic fat during cirrhosis progression in NASH (K. Enooku
et al., 2020). Several studies have shown that (fatty acid binding
protein 5, FABP5) is highly expressed in HCC. It has been shown
that FABP5 promotes angiogenesis and activates the IL6/STAT3/
VEGFA pathway in HCCs (F. Liu et al., 2020). Overall survival time
for HCC patients was negatively correlated with FABP5 levels in
monocytes. The FABP5 protein promotes immune tolerance in
patients with HCC by regulating monocytes and tumor-
associated monocytes’ fatty acid oxidation process via
suppressing the PPARα pathway (J. Liu et al., 2022). Our results
indicated that FABP5 expression is significantly linked to the overall
survival of HCC patients. FABP5 showed the most significant
correlation with tumor-infiltrating immune subsets, such as
B-cells, CD4+ T-cells, CD8+ T-cells, neutrophils, macrophages,
and dendritic cells. The close association between certain genes,

FIGURE 8
An analysis of the five-gene signature model in the TCGA cohort for prognosis. Half of TCGA is set as the training set. The other half of TCGA is
designated as a validation set. The entire TCGA cohort is a verification set. (A) A comparison of risk score distribution, survival rates, and gene expression
between patients in low- and high-risk groups in TCGA training set and TCGA validation set, entire TCGA cohort. (B) The Kaplan-Meier curves of OS for
high-risk and low-risk groups in TCGA training set, TCGA validation set, and the entire TCGA cohort. (C) Time-dependent ROC curve AUCs from the
TCGA training set, TCGA validation set, and entire TCGA cohort.
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especially FATP5, and the presence of immune subsets that infiltrate
tumor may indicate their importance in immune dysregulation in
HCC. The SCD gene encodes an enzyme involved in the
biosynthesis of fatty acids, primarily oleic acid. Cancer cells are
resistant to chemotherapy-induced apoptosis partly because of the
expression of SCD, which is mediated by phosphatidylinositol three
kinase/c-Jun N-terminal kinases activation (Bansal et al., 2014).
NAFLD fibrosis is known to be associated with an increase in
CCL20, an essential inflammatory mediator (Chu et al., 2018). A
poor prognosis is related to CCL20 expression in hepatocellular
carcinomas after curative resection of cancer (X. Ding et al., 2012).

The GPAT3 (AGPAT9) gene encodes a lysophosphatidic
acid acyltransferase family member. The protein encoded by this
gene catalyses the conversion of glycerol-3-phosphate to
lysophosphatidic acid in triacylglycerol synthesis (J. Cao
et al., 2006). Mice with severe congenital generalised

lipodystrophies exhibit insulin resistance and hepatic
steatosis when GPAT3 is deficient (Gao et al., 2020). It was
found that knocking down GPAT3 effectively inhibited HCC
cell growth, induced cell apoptosis, and blocked mTOR
signalling in HCC cells.

IL1RN encodes an antagonist protein (IL1RA) that binds to
IL-1 as a natural antagonist. IL1RN is involved in developing
NAFLD features (M. G. Wolfs et al., 2015). A serum level of L-
1RA is associated with inflammation of the liver and higher
levels of ALT regardless of obesity, alcohol consumption, or
insulin resistance. There is potential for IL-1RA to be used as a
non-invasive indicator of NASH inflammatory responses
(Pihlajamäki et al., 2012).

PLIN1, an adipocyte-specific protein encoded by this gene,
coats lipid storage droplets to protect them until hormone-
sensitive lipases can break them down. In adipocytes, PLIN1 is

FIGURE 9
Correlation analysis of hub gene mRNA levels with tumor-infiltrating immune cells. (A–F) The correlation of FABP5, SCD, CCL20, AGPAT9, PLIN1,
IL1RN mRNA with tumor-infiltrating immune cells. TIMER is the database used for the data (https://cistrome.shinyapps.io/timer/).
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the major cAMP-dependent protein kinase substrate, and it may
inhibit lipolysis when unphosphorylated (J. H. Sohn et al., 2018).
NAFLD (non-alcoholic steatohepatitis, NASH) leads to an
upregulation of PLIN1. However, it impairs glucose
homeostasis and may be protective against lipotoxicity33 (Carr
and Ahima, 2016). Our study indicated that PLIN1 mRNA
expression is positively linked to overall survival.

5 Conclusion

Generally, by utilising biological information research methods,
we have identified six key genes for diagnosing NAFLD and HCC
withMRFs.Moreover, five key genes were identified for the prognosis
of HCC changes and the created gene marker composed of these
genes was FABP5, CCL20, and GPAT3 may be the critical dangerous
prognostic genes of HCC. PLIN1 and IL1RN are protective prognostic
genes of HCC. Nevertheless, since our research is based on data
analysis, further experiments would be required to confirm our
findings. Nevertheless, we hope that our research findings will
contribute to improving the diagnosis and treatment of liver
disease associated with NAFLD and HCC progression.
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