
Identification of functional gene
modules by integrating
multi-omics data and known
molecular interactions

Xiaoqing Chen1,2†, Mingfei Han2†, Yingxing Li3, Xiao Li2, Jiaqi Zhang2

and Yunping Zhu1,2*
1Basic Medical School, Anhui Medical University, Hefei, China, 2National Center for Protein Sciences (Beijing),
Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China, 3Central Research
Laboratory, Peking UnionMedical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing, China

Multi-omics data integration has emerged as a promising approach to identify
patient subgroups. However, in terms of grouping genes (or gene products) into
co-expression modules, data integration methods suffer from two main drawbacks.
First, most existingmethods only consider genes or samplesmeasured in all different
datasets. Second, known molecular interactions (e.g., transcriptional regulatory
interactions, protein–protein interactions and biological pathways) cannot be
utilized to assist in module detection. Herein, we present a novel data integration
framework, Correlation-based Local Approximation of Membership (CLAM), which
provides two methodological innovations to address these limitations: 1)
constructing a trans-omics neighborhood matrix by integrating multi-omics
datasets and known molecular interactions, and 2) using a local approximation
procedure to define gene modules from the matrix. Applying Correlation-based
Local Approximation of Membership to human colorectal cancer (CRC) and mouse
B-cell differentiation multi-omics data obtained from The Cancer Genome Atlas
(TCGA), Clinical Proteomics Tumor Analysis Consortium (CPTAC), Gene Expression
Omnibus (GEO) and ProteomeXchange database, we demonstrated its superior
ability to recover biologically relevant modules and gene ontology (GO) terms.
Further investigation of the colorectal cancer modules revealed numerous
transcription factors and KEGG pathways that played crucial roles in colorectal
cancer progression. Module-based survival analysis constructed four survival-
related networks in which pairwise gene correlations were significantly correlated
with colorectal cancer patient survival. Overall, the series of evaluations
demonstrated the great potential of Correlation-based Local Approximation of
Membership for identifying modular biomarkers for complex diseases. We
implemented Correlation-based Local Approximation of Membership as a user-
friendly application available at https://github.com/free1234hm/CLAM.
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1 Introduction

Increasing attention has been devoted to the integration of multi-omics data to discover
coherent biological signatures. In a comprehensive review of multi-omics data integration
methods, Huang et al. (Huang et al., 2017) categorized the existing algorithms into four classes:
matrix factorization methods (e.g., NMF (Zhang et al., 2011; Zhang et al., 2012) and iCluster
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(Shen et al., 2012), Bayesian methods (e.g., MDI (Kirk et al., 2012),
BCC (Lock and Dunson, 2013) and CONEXIC (Akavia et al., 2010),
network-based methods (e.g., SNF (Wang et al., 2014), MoGCN (Li
et al., 2022) and Lemon-tree (Bonnet et al., 2015), and multi-step
analysis (e.g., CNAmet (Louhimo and Hautaniemi, 2011) and iPAC
(Aure et al., 2013). These methods can discover patient subgroups
when using samples as clustering objects and genes (or gene products)
as clustering features, or identify co-expressed gene modules by
exchanging the clustering objects and features.

However, most of the existing methods are particularly suitable for
patient subtyping. Although some methods can be applied to gene
module detection, such as jNMF (Zhang et al., 2012), iNMF (Yang and
Michailidis, 2016), moCluster (Meng et al., 2016), iCluster,
CONEXIC, Lemon-tree (Bonnet et al., 2015), etc., they suffer from
two main drawbacks. First, most methods are limited in terms of input
data, requiring the datasets from different sources to share the same
clustering objects (genes) or features (samples). For example, jNMF
and iNMF require the input data to share the same samples, iCluster
and moCluster require the input data to share the same genes. Second,
because co-expressed genes are often functionally related or co-
regulated, known molecular interactions (e.g., transcriptional
regulatory interactions, protein–protein interactions and biological
pathways) are valuable for improving module detection. Although
there are approaches that integrate multi-omics data and molecular
interactions, most of these methods are aimed at biomarker discovery.
For example, EMOG (Schulte-Sasse et al., 2021) integrates multi-
omics data and protein–protein interaction networks to identify new
cancer genes. ModulOmics (Silverbush et al., 2019) integrates multi-
omics data and molecular networks to improve the identification of
cancer driver modules. To our knowledge, molecular interactions are
rarely used to improve the identification of co-expressed gene
modules.

Herein, we present a novel analytical framework referred to as
Correlation-based Local Approximation of Membership (CLAM),
which employs three methodological innovations to address the
above challenges. First, CLAM constructs a k-nearest neighbor
(KNN) matrix for each dataset and combines them into a trans-
omics neighborhood matrix. The combined matrix includes all genes
measured in at least one dataset. Therefore, this step does not require
different datasets to share the same genes or samples. Second, CLAM
uses various known molecular interactions, such as transcriptional
regulatory interactions, protein–protein interactions and biological
pathways, to adjust the neighborhood matrix. Third, CLAM applies a
local approximation procedure to define gene modules and performs
module-based survival analysis to evaluate module–disease
relationships. We have implemented CLAM as a user-friendly
application with extensive interactive interfaces available at https://
github.com/free1234hm/CLAM.

By applying CLAM and state-of-the-art module detection
methods to human colorectal cancer (CRC) and mouse B-cell
differentiation multi-omics data obtained from The Cancer
Genome Atlas (TCGA), Clinical Proteomics Tumor Analysis
Consortium (CPTAC), Gene Expression Omnibus (GEO) and
ProteomeXchange database, we demonstrated that CLAM showed
the highest precision, recall, relevance and recovery metrics in
recovering biologically relevant modules and identified the highest
number of gene ontology (GO) terms in enrichment analysis.
Additionally, further investigation of the CRC modules revealed
numerous transcription factors (TFs) and KEGG pathways that

played crucial roles in CRC progression. Module-based survival
analysis constructed four gene networks significantly correlated
with CRC survival. In contrast to traditional survival genes, which
affect patient survival based on their own expression levels, genes in
the four survival-related networks affect patient survival based on
the levels of their co-expression. We found that many genes in these
networks played crucial roles in cancer progression and could serve
as potential prognostic biomarkers. Overall, our results
demonstrated the superior ability of CLAM in reconstructing
modular structure from multi-omics data and identifying
modular biomarkers for CRC.

2 Materials and methods

CLAM includes modules with the following three key functions
(Figure 1): 1) constructing a trans-omics neighborhood matrix by
integrating the k-nearest neighbor matrices obtained from different
data sources; 2) using known molecular interactions to adjust the
combined neighborhood matrix; and 3) using a local approximation
procedure to define gene modules.

2.1 Construction of the trans-omics
neighborhood matrix

In each dataset, we first calculate the similarity between each pair of
objects (genes or proteins) and extract the k (10 as default) nearest
neighbors for each object. The similarity measure can be Euclidean
distance, mutual information and Pearson correlation coefficient, etc.
Second, the similarity measures between each object and its nearest
neighbors are used to calculate a set of weights W � w1, . . . ,wk{ }.
The weight between genes x and y is calculated as
wxy � Sxy/∑z∈KNN(x) Sxz , where Sxy represents the similarity
measures between genes x and y. The neighbors that have higher
similarities are given higher weights and ∑

y∈KNN(x) wxy � 1. Third,
we combine the KNN matrices of different datasets into a global
neighborhood matrix, which includes the neighborhood
information for all the genes measured in at least one dataset. If
a gene has measurements in m datasets, it has m × k neighbors in
the combined matrix with the previous weights divided by m.
Therefore, different genes may have different numbers of
neighbors (Figure 1 Step 1). Finally, the duplicated neighbors
and their weights are merged. This step ensures that the
duplicated neighbors are given higher weights.

2.2 Calculation of the prior correlation
probability

For each gene in the combined neighborhood matrix (g1 in Figure 1
Step 2), we construct a co-regulatory network using protein–protein
interactions (PPIs), transcriptional regulatory interactions (via TFs or
miRNAs) and KEGG pathways. This network consists of g1 and its
neighbors which directly interact with g1 or share the same
transcriptional regulators with g1. Second, we calculate a co-
regulation score between g1 and each neighbor according to the
network structure. Assuming that g1 binds to n1 miRNAs; n2 TFs
and directly interacts with n3 genes through PPIs, the edges directly

Frontiers in Genetics frontiersin.org02

Chen et al. 10.3389/fgene.2023.1082032

https://github.com/free1234hm/CLAM
https://github.com/free1234hm/CLAM
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1082032


connected to g1 have the sameweight 1/(n1 + n2 + n3). Given amiRNA
(or TF) that binds to n4 neighbors of g1, the weight between the miRNA
and each target gi∈[1,n4] is 1/n4. Finally, the co-regulation score between
g1 and gi is 1/(n1 + n2 + n3) × 1/n4. Neighbors not included in the co-
regulatory network are scored zero. Third, we calculate the prior
probability between g1 and each neighbor using softmax regression
(a generalization of logistic regression that we can use for multi-class
classification). Finally, the weights between gene x and its neighbors are
transformed to (wxy × priorxy), where y ∈ KNN(x). This step assures
that functionally related or co-regulated genes are given relatively high
weights.

2.3 Identification of gene modules

We followed the local approximation process proposed by Fu et al.
(Fu andMedico, 2007) to define gene modules. First, the density of one
object is calculated as the average similarity measure between this
object and its k-nearest neighbors. Second, the densities of all objects
are used to identify cluster centers and outliers: 1) one object is defined
as a cluster center when its density is higher than that of all objects in
its neighborhood and 2) one object is defined as an outlier when its
density is lower than that of all objects in its neighborhood. The higher

k is, the fewer cluster centers will be identified; as a consequence, fewer
clusters will be generated. Third, we define a membership vector for
each object. Assuming that we have identified M cluster centers, the
membership vector of each object x is represented as
p(x) � p1(x), . . . , pM+1(x){ }, in which each element pi(x) indicates
the membership degree of x to cluster i and the last element indicates
the probability that x is an outlier.

Next, we initialize the membership vector of each object. First,
each cluster center is assigned a unique membership vector, where
only the element corresponding to its own cluster is 1 and the other
elements are 0. Second, all outliers are assigned the same membership
vector, in which the last element is 1 and the other elements are 0.
Third, for all other objects, the elements in each vector are set to the
same value 1/(M + 1). Subsequently, through an iteration process, we
update the membership vector of each object (except for cluster
centers and outliers) using its linear approximation, which is
calculated by combining its nearest neighbors’ membership vectors,
namely, p(x) ≈ ∑

y∈KNN(x)
wxyp(y), where w is the weight matrix

produced by integrating multi-omics data and known relationships.

The iteration process is terminated when the overall difference
between all membership vectors and their approximations is
minimized, which is calculated as follows:

FIGURE 1
Overview of the CLAM workflow. Step 1: procedure for integrating the KNN matrices of different datasets into a global neighborhood matrix. Step 2:
procedure for calculating the prior correlation probabilities between each gene and its neighbors in the neighborhoodmatrix. Step 3: the local approximation
procedure for identifying gene modules.
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E � ∑
x∈X

����p x( )− ∑
y∈KNN x( )

wxyp y( )����2

where each term is the difference between the membership vector p(x)
and the linear approximation of p(x) by its neighbors∑
y∈KNN(x)

wxyp(y). Finally, each object is assigned to the cluster with

the highest score in the final membership vector.

2.4 Data collection and preprocessing

Mouse and human multi-omics data were used for the evaluation
study. The mouse datasets include RNA-seq data from GEO (GSE75417)
and MS data from PRIDE (PXD003263). Both datasets share the same
samples collected at six time points during the differentiation process of
mouse pre-B-cells. The human data include RNA-seq andMS data of CRC
patients obtained from TCGA and CPTAC. The RNA-seq and MS data
include 497 and 90 samples, respectively, in which 47 samples are collected
from the same patients. Because some existing methods (e.g., iNMF and
jNMF) require the input data to share the same set of samples, only the
47 samples from the same patients were used in the evaluation study.
Among the initial genes or proteins measured in different omics datasets,
we removed those with more than 20% missing values. The remaining
missing values were filled using the KNN imputation method. The
processed expressionmatrices are included in theCLAM toolkit as test data.

2.5 Evaluation metrics

We followed the evaluation pipeline proposed by Saelens et al.
(Saelens et al., 2018) to compare the performance of CLAM and
existing methods. First, we collected various types of known
modules, including 1599 human and 1078 mouse miRNA
modules extracted from known miRNA–target interactions
(Chen and Wang, 2020), 795 human and 1349 mouse TF
modules extracted from known TF–target interactions (Cahan
et al., 2014; Han et al., 2018; Zhang et al., 2020), and
335 pathway modules from the KEGG database (Kanehisa et al.,
2017). Second, we calculated the recovery, relevance, recall, and
precision metrics by comparing the known modules with a set of
detected modules. These scores have been previously used in several
evaluation studies (Prelic et al., 2006; Amigo et al., 2009; Eren et al.,
2013; Saelens et al., 2018). If G represents all genes, M a set of
known modules, M′ a set of observed modules, M(g) the modules
that contain gene g , and E(g ,M) the set of genes that are included
with g in at least one module ofM (including g itself), the precision
is defined as follows:

Precision � 1
G| | ∑g∈G

1

E g ,M′( )∣∣∣∣ ∣∣∣∣ ∑
g′∈E g ,M′( )

min M′ g( ) ∩ M′ g′( )∣∣∣∣ ∣∣∣∣, M g( ) ∩ M g′( )∣∣∣∣ ∣∣∣∣( ) × Φ g , g′( )
M′ g( ) ∩ M′ g′( )∣∣∣∣ ∣∣∣∣⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

where Φ(g , g′) � 1
|M′(g,g′)| ∑

m′∈M′(g,g′)
max

m∈M(g,g′)
Jaccard(m′,m). Recall is

calculated in the same way but with M′ and M switched. In addition,

relevance is defined as Relevance � 1
|M′| ∑

m′∈M′
max
m∈M

Jaccard(m′,m),
and recovery is calculated in the same way but with M′ and M

switched. Third, before combining the four scores, we normalized
every score by dividing it by an average score of 500 permuted versions

of the known modules. Finally, we calculated the harmonic mean
between the normalized versions of all four scores to obtain an overall
score.

2.6 Module-based survival analysis

In traditional survival analysis, patients are ranked according to
the expression of a specific gene. The log-rank test is then applied to
determine whether there is a significant survival difference between
the top and bottom half (or 1/4) of the ranked patients. However, the
differential expression of a single gene is not the only factor that affects
patient survival, and the traditional approach ignores the potential
effects of differential regulation between multiple genes. In this study,
we present a module-based survival analysis approach to identify the
sets of genes whose co-expression levels are significantly correlated
with patient survival.

Given a gene module of M � (G, S, v), where G � g1, g2, g3{ }
represents the genes included in M, S � s1, . . . , sN{ } represents all
patient samples, and v: 3 × N represents the expression-value matrix.
Assuming that the expression profile of g1 ( v11, . . . , v1N{ }) is positively
correlated with that of g2 ( v21, . . . , v2N{ }) and negatively correlated
with that of g3 ( v31, . . . , v3N{ }). First, z-score normalization is applied
to v11, . . . , v1N{ }, v21, . . . , v2N{ }, and v31, . . . , v3N{ }, which ensures the
same weight of the three genes. Second, the normalized expression of
g3 is transformed to −v31, . . . ,−v3N{ }, which ensures that the three
genes show theoretically similar expression patterns. Third, for each
patient, si (i ∈ [1,N]), we calculate the standard deviation (σ i) of the
transformed expression values of the three genes (v1i; v2i,; −v3i). The
standard deviation σ i can represent the co-expression level of the three
genes in patient si. Genes are highly co-expressed in patients with low
standard deviations and present lower co-expression in patients with
high standard deviations. Finally, the log-rank test is applied to
compare the survival curves between patients whose standard
deviations were greater than the median versus those whose
standard deviations were less than or equal to the median. A
significant p-value indicates that the three genes affect patient
survival based on their pairwise expression similarities.

3 Results

3.1 Method evaluation

Using RNA-seq and MS data of human CRC and mouse B-cell
differentiation (see ‘Data collection and preprocessing’), we conducted
a comprehensive evaluation of 12 module detection methods,
including 7 integrative clustering methods and 5 individual
clustering methods. The integrative clustering methods included
CLAM1 (using known molecular interactions to assist module
detection), CLAM2 (without using known interactions), jNMF
(Zhang et al., 2012), iNMF (Yang and Michailidis, 2016), Lemon-
tree (Bonnet et al., 2015), moCluster (Meng et al., 2016) and iCluster
(Shen et al., 2009). And the individual clustering methods included
CLAM3 (applying the CLAM algorithm to individual datasets),
independent component analysis (ICA) (Im et al., 2022), FLAME
(Fu and Medico, 2007), K-means (Lin et al., 2004) and WGCNA
(Langfelder and Horvath, 2008). Among these methods, CLAM1 is the
only one that addresses three critical challenges, including allowing
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different samples in different datasets, allowing different genes in
different datasets, and utilizing known molecular interactions to assist
module detection (see the bottom of Figure 2A).

According to the evaluation pipeline described in MATERIALS
AND METHODS, we scored the different methods by comparing
their observed modules with sets of known modules obtained from
TF/miRNA–target interaction networks and KEGG pathway database.
Notably, because CLAM1 and CLAM3 use known interactions to
assist model training, we used 5-fold cross-validation to differentiate
the training and validation sets. First, the known modules were
randomly divided into five parts. Second, CLAM1 and
CLAM3 used four of those parts for training and reserved one-fifth
for evaluation, while the other methods used each of the five folds to
evaluate their performance. Finally, step 2 was repeated five times to
calculate the average evaluation score for each method. The evaluation
results revealed several interesting conclusions. First, CLAM1 and
CLAM3 achieved the highest overall scores among all tested methods
(Figure 2A), indicating that the utilization of known interactions
significantly improved the consistency between the observed and
known modules (although the interactions used were not included
in the known modules). Second, CLAM2 outperformed most of the
existing integrative clustering methods, but showed no significant
advantage over FLAME or WGCNA. This indicated that the
integration of datasets from different sources contributed little to
the overall score. However, using another evaluation method, gene
ontology (GO) enrichment analysis, we reached a different conclusion.

According to the number of significantly enriched GO terms, the
tested methods could be divided into three categories (Figures 2B, C):
methods that allow the input data to have different genes (CLAM1,
CLAM2, iNMF and jNMF) performed best; methods that process each

input dataset separately (CLAM3, FLAME, WGCNA and k-means)
took second place; and methods that cluster the overlapping genes in
the input data (Lemon-tree, moCluster and iCluster) identified the
fewest GO terms. These results suggest that the number of significantly
enriched GO terms is positively correlated with the total number of
genes in the final modules. Therefore, the integrative clustering
methods that allow the input data to have different genes are well
suited for GO enrichment analysis because they cluster the union of
genes in the input data. Additionally, we found a significant reduction
in the number of GO terms identified by jNMF and ICA from the
mouse data (Figure 2C). This is because both jNMF and ICA have a
limitation that the number of modules must be less than the number of
samples. However, there are only 18 samples in the mouse RNA-seq
and MS data, which results in jNMF and ICA generating far fewer
modules than the other methods.

In summary, the utilization of known molecular interactions can
improve the agreement with known modules, while data integration
can improve the discovery of functional annotations. This is why
CLAM1, which integrates multi-omics data and known molecular
interactions, performs best on both evaluation metrics.

3.2 Investigation of the resulting modules

CRC is the third most common malignant cancer with the second
highest mortality rate (Ayerden et al., 2021; Rydbeck et al., 2021; Peng
et al., 2022). By applying CLAM tomulti-omics data of CRC (see ‘Data
collection and preprocessing’) with KNN ranging from 5 to 15, we
obtained 88, 71, 59, 49, 42, 37, 35, 28, 27, 25 and 23 gene modules. TF
and KEGG pathway enrichment analyses performed on these modules

FIGURE 2
Comparison of 12 module detection methods, including 7 integrative clustering methods and 5 individual clustering methods. (A) The histograms show
the agreement between the observed and known modules. Scores in the upper and middle histograms are generated by applying the tested methods to
human and mouse data, respectively. The bottom shows whether the tested methods address three critical challenges of integrative clustering. (B–C) The
number of significantly enriched GO terms in (B) human and (C) mouse modules with p-value thresholds of 0.01 and 0.05.
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produced 77 pathways (Supplementary Table S1) and 49 TFs
(Supplementary Table S2) shared by different parameters.
Representative pathways and TFs are displayed in Figure 3.

According to KEGG Orthology, we divided the pathways into
five classes, including proliferation (e.g., cell cycle and DNA
replication), immune system (e.g., natural killer cell-mediated
cytotoxicity and chemokine signaling pathway), signal
transduction (e.g., PI3K/Akt signaling pathway and NF-κB
signaling pathway), cancer overview (e.g., proteoglycans in
cancer and chemical carcinogenesis) and metabolism (e.g.,
oxidative phosphorylation and pyruvate metabolism).
Additionally, we found that among the 49 TFs, 39 were involved
in at least one of the above pathways (see heatmap in Figure 3B).
Particularly, 13 TFs were involved in four types of pathways
associated with proliferation, immune system, signal
transduction and cancer overview, indicating a close correlation
between the resulting TFs and pathways.

Following a broad literature exploration, we observed that
67 out of the 77 overlapping pathways were previously reported
to be cancer related, in which 55 pathways had been reported in
colon cancer and 12 pathways had been reported in other cancer
types (Supplementary Table S1). This was reasonable because the
overlapping results of different parameters would have been more
likely to be studied in previous studies. Additionally, 46 out of the
49 TFs are known to play roles in CRC and the remaining three
(RFXAP, SPI1 and RFX5) are related to other cancers
(Supplementary Table S2). For example, RELA, NFKB1,
NFKBIA and IKBKB are involved in the synthesis and
activation of NF-κB, which supports tumorigenesis by

promoting cell proliferation, invasion and metastasis and
inhibiting apoptosis (Patel et al., 2018). Dysregulation of E2F
family (E2F1, E2F3 and E2F4) expression activates or silences
oncogenes or tumor suppressors at multiple levels of gene
regulation and is involved in CRC progression (Kent and Leone,
2019; Xu et al., 2021). RFXAP, RFX5, RFXANK and CIITA are all
associated with MHC II expression, and mutations in any of them
lead to MHC II deficiency, which may result in immune evasion in
CRC (Michel et al., 2010; Axelrod et al., 2019). Overall, the series of
results demonstrated the superior ability of CLAM in
reconstructing the modular structure of complex biological
systems.

3.3 Gene networks associated with CRC
survival

Survival analysis is a cornerstone of medical research, enabling
the assessment of clinical outcomes for disease progression and
treatment efficiency (Lanczky and Gyorffy, 2021). In traditional
survival analysis, patients are divided into low- and high-
expression groups based on the expression of a specific gene
(Figure 4A) (Figure 5). However, genes are rarely regulated
independently and are instead interconnected. A relatively simple
way to study the synergistic effects of multiple genes in prognosis is
to divide patients based on the average expression of multiple genes.
Figure 4B shows two examples of this approach, where genes in
Module 1 divide patients into Groups 1 and 2, and genes in Module
2 divide patients into Groups 3 and 4. However, this approach

FIGURE 3
Representative pathways (A) and TFs (B) identified by enrichment analysis of CRCmodules. The histogram displays the negative log10 of the enrichment
p-values. The red and black triangles indicate that the corresponding entry has been reported to be associated with colon cancer or other cancer types. The
pathways can be divided into five classes according to KEGG Orthology.
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FIGURE 4
(A–C) Examples of classifying patients based on (A) the expression of single genes, (B) the average expression of genes in each module, and (C) the
standard deviation of genes in each module, respectively. (D) The negative log10 of the log-rank test p-values generated by using single gene expression,
average expression and standard deviation to classify patients.

FIGURE 5
(A–D) Four networks correlated with CRC patient survival. (E–H) Kaplan‒Meier survival curves generated by performing module-based survival analyses
on networks (A–D).
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focuses on the differences in gene expression and ignores the
correlations between genes. For example, genes in Module 1 are
highly expressed in all patients in Group 1 and lowly expressed in all
patients in Group 2, suggesting that these genes exhibit significant
pairwise expression correlations in both groups of patients. Since
many expression correlations arise from functional relationships, the
functional relationships in Module 1 are preserved in both Group
1 and Group 2, which limits the difference in survival between
Groups 1 and 2. To address this issue, we used the standard deviation
of gene expression levels to classify patients. Figure 4C shows two
examples of this approach, where genes are highly co-expressed
(functionally related) in the left groups and present lower co-
expression (dysfunctional) in the right groups.

To compare the above classification criteria, we used the CRC
gene modules to classify CRC patients based on individual gene
expression, the average expression of genes in each module, and the
standard deviation of genes in each module, respectively, and used
the log-rank test to assess survival differences. The results showed
that classifying patients using the standard deviation yielded the
lowest log-rank p-values (Figure 4D), indicating that gene co-
expression levels were highly correlated with CRC progression
and patient survival. We further investigated four survival-
related modules (Supplementary Table S3) in which gene–gene
co-expression levels were significantly correlated with the overall
survival of CRC patients. The network maps and survival curves of
these modules are shown in Figure 4. Because co-expressed genes
often present functional consistency (Ghazalpour et al., 2006;
Kakati et al., 2019), these modules are likely to involve critical
gene regulatory or functional relationships affecting the prognosis
of CRC.

Evidence has shown that many genes in these modules play
crucial roles in cancer progression and can serve as potential
prognostic biomarkers. In Figure 4A, HSD17B8 is a good
candidate for advanced tumor stages (Luque-García et al., 2010),
and COLCA2 is recognized as a colorectal cancer-associated gene
(Yin et al., 2022). In Figure 4B, overexpression of
COL10A1 enhances the proliferation, migration, and invasion of
CRC cells (Huang et al., 2018); MMP11 expression affects the
immune response in CRC (Buttacavoli et al., 2021);
ADAM12 may play vital roles in the recruitment of immune cells
in CRC (Huang et al., 2021); and COMP promotes CRC cell
proliferation partially through the activation of the PI3K/Akt/
mTOR/p70S6K pathway (Liu et al., 2018). In Figure 4C,
ALDH4A1 deficiency leads to the accumulation of proline, which
sustains the proliferation and survival of CRC cells (Alaqbi et al.,
2022), andMT3 plays a pivotal role in tumor formation, progression,
and drug resistance (Si and Lang, 2018). In Figure 4D, TRAK1 is a
prognostic biomarker of CRC (An et al., 2011).

Notably, when we performed traditional survival analysis on every
individual gene in these networks, only the expression of five genes
(CHST1, CHSY3, COMP, MATN3 and PALM2) was significantly
correlated with the survival of CRC patients (Supplementary Figure 1).
This indicated that in many cases, patient prognosis is not decided by
the expression of a single gene but by the synergistic effects of multiple
co-regulated genes, which are often neglected by traditional
approaches. In summary, with CLAM we defined four networks
closely correlated with CRC patient survival, which provided
numerous known and novel biomarkers that played critical roles in
CRC progression.

4 Discussion

With the accumulation of multi-omics expression data,
researchers have continuously improved data integration
approaches for decades. Nevertheless, most methods were aimed
at discovering patient subtypes, and no substantial progress has
been made in gene module detection. To address this issue, we
developed CLAM, which addressed several critical limitations of
data integration and achieved considerable progress in discovering
gene regulatory and functional relationships from multi-omics
data. However, two issues are worthy of further discussion and
research.

First, integration of datasets from different sources is quite time-
consuming and requires bulk memory space. Suppose we apply CLAM
to three expression matrices (N1,M1), (N2,M2) and (N3,M3),
where N represent sets of genes, M represents sets of samples, and
K represents the KNN parameter. For M≪N and K≪N, the time
complexity approximately equals to O(N1

2 +N2
2 +N3

2), which is
the sum of the time spent by an individual clustering algorithm on
multiple datasets. We further compared the running time of CLAM
with that of other integrative clustering algorithms. The results
showed that CLAM took 15.4 s to perform integrative clustering on
the CRC datasets, second only to moCluster (Supplementary Table
S4). Considering that moCluster clusters the overlapping genes in the
input data (2293 genes), CLAM is the fastest algorithm for clustering
the total genes in the input data (12,847 genes). Additionally,
algorithm optimization and parallelization can help save computing
time. For example, moCluster saves a lot of time by using the
consensus PCA algorithm to replace the EM-algorithm used by
iCluster (Meng et al., 2016), and parallelization saves nearly half
the time for the CLAM algorithm.

Second, methods for integrating gene mutation and expression
profiles can be divided into two categories. The first category can
predict cancer genes by integrating copy number variations (CNVs)
and expression data, such as iPAC (Aure et al., 2013) and NetICS
(Dimitrakopoulos et al., 2018). The second category aims to identify
cancer driver pathways (or modules) by integrating somatic
mutations, CNVs and gene expressions, such as iMCMC (Zhang
et al., 2013) and ModulOmics (Silverbush et al., 2019). Different
from the integrative clustering algorithms that identify all potential
co-expression modules, these methods focus on genes or modules
associated with cancer mutations. However, not all cancer genes are
associated with cancer mutations. One possible solution is to
introduce gene mutation information in the co-expression modules
identified by CLAM. In this way, we can identify modules associated
with cancer mutations. In subsequent iterations of CLAM, we will
explore this algorithm and test its performance.

In addition to improving module detection, this study
provides a module-based analysis pipeline to investigate
module–disease relationships. With this pipeline we
constructed four gene networks significantly correlated with
CRC patient survival. Through an extensive literature
exploration, we demonstrated that genes in these networks
played crucial roles in tumor progression and metastasis. More
importantly, we have shown that these results may be missed by
traditional survival analysis. With the accumulation of multi-
omics data, we believe that module detection and subsequent
analysis will attract increasing attention, significantly promoting
biomarker discovery in complex diseases.
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