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Genetic data plays an increasingly important role in modern medicine. Decrease in
the cost of sequencing with subsequent increase in imputation accuracy, and the
accumulation of large amounts of high-quality genetic data enable the creation of
polygenic risk scores (PRSs) to perform genotype—phenotype associations. The
accuracy of phenotype prediction primarily depends on the overall trait
heritability, Genome-wide association studies cohort size, and the similarity of
genetic background between the base and the target cohort. Here we utilized
8,664 high coverage genomic samples collected across Russia by “Evogen’, a
Russian biomedical company, to evaluate the predictive power of PRSs based on
summary statistics established on cohorts of European ancestry for basic phenotypic
traits, namely height and BMI. We have demonstrated that the PRSs calculated for
selected traits in three distinct Russian populations, recapitulate the predictive power
from the original studies. This is evidence that GWAS summary statistics calculated
on cohorts of European ancestry are transferable onto at least some ethnic groups in
Russia.
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1 Introduction

Unrelenting progress in sequencing technologies has led to an unprecedented accumulation
of a vast amount of “omics” data. Although the era of human genomics began two decades ago,
this field has remained a booming scientific and medical area with many knowledge gaps
remaining. Initial versions of the human genome were published in 2001 (Lander et al., 2001;
Venter et al., 2001), but a complete sequencing was performed only twenty years later (Nurk
et al., 2022). Data accumulation continues while genomic sequences are increasingly used in
practical medicine.

The organism of each human is unique and inimitable. This is primarily predetermined by
differences in our genomic sequences (Varki et al., 2008). Such variations create the need for
personalized medicine, a search for the optimal way to manage a specific pathology for a
concrete patient. For timely diagnosis and therapy, optimal selection is crucial to predict disease
risk. Genome-wide association studies (GWAS) produce estimates for patients separated into
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different cohorts with varying risks for developing a disease according
to their genomic information. GWAS studies could reveal single
nucleotide polymorphisms (SNPs) significantly associated with
scrutinized traits. However, most SNPs are omitted during GWAS
analysis due to the absence of significance, whereas taking into account
all available SNPs provides a better explanation for the association
between genetics and the selected trait (Yang et al., 2010).

The contribution of genetic factors to pathogenesis in a wide variety of
human diseases is well known (Rebbeck, 2017; Verheijen and Sleegers,
2018; Kwon et al., 2019; Schoettler et al., 2019; Graham and Xavier, 2020;
Mikhaylenko et al., 2020). Nevertheless, the degree of genetic impact in
each particular pathological condition might be hard to estimate. In cases
with unclear genetic influence, one should consider the involvement of
several genes in the development of the pathology. Multiple genetic
markers (e.g, SNPs) could be combined into a single score for
anticipating disease risk (Dudbridge, 2013). Polygenic risk score (PRS)
is an approach for predicting personal predisposition to a given disease
(Lambert et al, 2019). PRS could be calculated by summarizing an
individual’s risk alleles, normalized according to the weight of risk
allele size effect (Choi et al., 2020). PRSs may improve current clinical
risk prediction models for many diseases, such as breast cancer, prostate
cancer, coronary artery disease, obesity, type 1 diabetes, type 2 diabetes,
and Alzheimer’s disease—all reviewed by Lambert et al. (2019) . In
combination with clinical risk data, PRS could become an important tool
for precision medicine. Patients with higher polygenic risks need to
undergo more intensive diagnostic procedures than patients with
lower risks (Torkamani et al., 2018). Additionally, some treatments for
one disease could induce the onset of another. For example, statins
prescribed to prevent strokes preclude less than two strokes out of one
hundred, while provoking diabetes development in one out of one
hundred cases (Torkamani et al,, 2018). The use of PRS could provide
more efficient and informed treatment of a particular disease, for example
CAD (Klarin and Natarajan, 2022) or schizophrenia (Binder, 2019).

Based on their genome, humans can be divided into various ethnic
groups with different predispositions to pathologies. Large-scale genetic
studies on human diseases are mostly based on data collected from
Europeans. As a result, the knowledge about possible genomic variation is
biased toward the specific background population (Sirugo et al., 2019).
86.1% of GWAS participants originate from four countries:
United Kingdom (40.5%), United States (19.8%), Japan (14.3%), and
Iceland (11.5%). However, the European superpopulation can be
separated into several groups (Nelis et al, 2009). For example, the
Russian population is distinct from the British cluster (Nelis et al,
2009; Zhernakova et al., 2020; Oleksyk et al., 2021). To the best of our
knowledge, the most representative study of Russian population genetics
by whole genome sequencing included just 264 persons (Mallick et al.,
2016; Pagani et al, 2016; Zhernakova et al, 2020), and the largest
genotyping studies included hundreds of samples (Stepanov et al., 2019).

193 ethnic groups were self-reported in Russia, according to the
2010 census (Russian Census., 2022). The population of Russia’s
European part is genetically diverse (Balanovsky et al, 2008;
Khrunin et al., 2013; Kushniarevich et al., 2015; Triska et al,
2017). Moreover, self-identified Russians have different ancestry.
Specifically, Russians from the north-western part of the country
are more closely related to the Finnish population than those from
the south-western part of Russia, according to principal component
analysis (PCA) (Kushniarevich et al.,, 2015).

Currently, the largest meta-analysis of height and BMI associated
variants for PRS calculation was conducted based on data of
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700,000 individuals of joint European and United Kingdom
ancestry (Wood et al.,, 2014; Locke et al,, 2015; Yengo et al., 2018).
PRS calculated based on European ethnic group cannot be
unambiguously applied to another. For example, PRS calculated
using the United Kingdom’s height biobank are hardly compatible
with the Iberian populations in Spain (Duncan et al., 2019). In this
study we utilized complete genomes of 8,664 healthy Russian citizens
sequenced by “Evogen”, to evaluate whether the PRS calculated using
other European ethnic groups applies to the people of distinct Russian
populations.

2 Materials and methods
2.1 Cohort description

The current study used a collection of a total of 11,753 whole
genome sequencing (WGS) samples, sequenced in Russia between
September 2019 and 28 July 2022.48.3% of the participants were men
and 51.74% were women. The average age was 40.4 = 19.9 years
(men -40.1 * 19.9 years, women —40.6 + 19.6 years). Peripheral
venous blood samples were collected in EDTA tubes (transported
under temperature control). All patients provided informed consent
for whole blood sampling for research purposes. The study was
approved by the local ethical committee of the Endocrinology
Research Center and was performed in accordance with the
approved guidelines and the Declaration of Helsinki.

2.2 Library preparation

DNA extraction was performed by spin column using the Qiagen
QIAamp DNA Blood Kit (Cat. No. 51106) from whole blood
according to the manufacturer’s protocol. DNA amount was
(Thermo  Fisher
Scientific)/Denovix (DeNovix Inc.). For the subsequent library
preparation only genomic DNA of high quality (OD260/0D280 =
1.8-2.0, OD260/0D230 > 2.0) was used. Library preparation was
performed with a PCR-free enzyme fragmentation protocol
(MGIEasy FS PCR-Free DNA Library Prep Set, Cat. No.
1000013455) using 800-1,200 ng gDNA. The distribution of insert
size was 400-600 bp. WGS library preparation was performed both

measured fluorometrically with  Qubit4

manually and automatically.

2.3 Sequencing

Whole genome sequencing was performed using DNBSEQ-G400
(MGI Tech Co., Ltd.) with FCL PE150 (cat. no. 1000012555), FCL
PE200 (cat. no. 1000013858), and DNBSEQ-T7, according to the
manufacturer’s protocol.

2.4 Data processing
Raw fastq files were processed with MegaBOLT (MGI) for quality
control, mapping (hg37) and variant calling. Subsequently, individual

vcfs were merged via beftools and further processed with PLINK, hail,
PRSice-2 and custom R scripts.
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Briefly, for analysis of ethnicity, PLINK files were downloaded
from external studies (Fedorova et al., 2013; Kushniarevich et al., 2013;
Yunusbayev et al., 2015; Triska et al., 2017; Tambets et al., 2018) and
merged into single plink dataset. Shared SNPs were extracted from the
merged external dataset and used for subsetting our cohorts with
subsequent generation of plink files. Multiallelic and non-genotyped
sites were excluded from the analysis. Due to the different array
platforms used in these studies and the different genotyping
efficiencies, only 36,709 SNP sites were successfully genotyped in
all individuals. Principal component analysis (PCA) was carried out by
importing plink files to hail matrix and applying default hail hwe_
normalized_pca. Individual PCA impact was estimated by plotting
eigenvalues (Supplementary Figure S1A) and the first ten PCAs were
used for selected for further usage (available as Supplementary Table
S1). Samples were clusterized based on Euclidean distance between
first 10 PCAs using hierarchical clusterisation implemented in R
function hclust. Optimal number of clusters for further analysis
was selected manually based on evaluation of clusterization
accuracy by adjusted mutual information (AMI) which is
applicable for evaluation of unbalanced clusterization (Romano
et al,, 2016) (Supplementary Figure S1B). Ethnic information from
external datasets was used as a ground truth labels.

We performed quality control of the target dataset prior to
PRS calculations. Firstly, we selected samples with age between
20 and 60 years. Secondly, we calculated the F statistic of
heterozygosity rates using PLINK software and removed
samples with more than 3 standard deviation (SD) units from
the mean. To avoid gender mislabeling and poor quality samples
we filtered out females with obtained F statistic for X chromosome
homozygosity estimate > 0.2 and males with < 0.8. Then the
relatedness of the samples was calculated according to standard
PLINK procedure. Samples with relatedness > 0.125 were omitted
from the dataset. SNP used for PRS calculation were taken from
the corresponding summary statistics. The SNPs with minor allele
frequency less than 0.01 and p-value of Hardy-Weinberg
Equilibrium Fisher’s exact test less than 10°° were used for the
further analysis. A total of 8,589 samples passed the filtration and
were used for PRS tests.

For PRSs calculation PRSice-2 (Choi and O’Reilly, 2019) was
used and the stringent COJO set of summary statistic published by
Yengo et al. (2018) as a reference input. Target SNPs were
extracted from our cohort (Supplementary File S1) and
converted into plink format. Height and BMI were scaled using
zscore [phenotype—mean (phenotype)]/sd (phenotype) for each
cluster individually and separately for men and women thus
eliminating sex specific bias in the phenotypes. Age, sex and
the first 10 PCAs were used as a covariate in the model. PRSice
was run on the resulting plink files with the following parameters:
-stat BETA--beta--binary-target F--target selected_snp_set--bp
POS--Al Tested_Allele--A2 Other_Allele--thread max--cov all.
cov--ultra--chr CHR--snp SNP--keep-ambig--no-clump--seed
1215374327. Statistical difference between clusters stratified by
PRS was accessed by one way ANOVA. Confidence interval for
R2 was calculated by bootstrapping in R boot. ci (type = “bca”)
(Davison and Hinkley, 1997; Canty and Ripley, 2022). Quantile
plots were generated by PRSice-2.
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3 Results

3.1 The cohort used in the study was of a good
quality and suitable for population analysis

For the study, we used the large WGS data collection assembled
by “Evogen” during screening of the Russian population for carriers
of rare genetic diseases. A total of 11,753 samples were taken into
initial analysis. In the first step, the overall quality of the WGS data
was estimated. Mean sequence depth is one of the most important
parameters for robust SNP identification. On average, 90% of the
bases were covered with more than 10 reads, which is a sufficient
depth for calling germline variations in WGS (Ajay et al., 2011;
Kishikawa et al., 2019) (Figure 1A). Indeed, 96.6% of all detected
SNPs were covered by more than 10 reads (Figure 1B). We also
estimated the amount of SNPs in our dataset, which was already
included in the dbSNP database. As expected, the majority of the
called SNPs, 64%, were already identified previously and the
observed frequencies of the newly described variants in our
cohort were significantly lower than ones already reported
(Figure 1C). We also have checked the correlation of the
observed SNPs frequencies and the
GnomadV2 The correlation  was
0.996 compared to the non-Finnish European population, which

between our cohort

database. Pearson
is the closest to the Russian population. The overall validations
carried out indicated good data quality and applicability for further
research.

3.2 The population analysis of the cohort
revealed presence of the ethnic minorities

The cohort collected across Russia includes ethnically diverse
people, and their stratification is crucial for properly assessing the
accuracy and predictive power of the PRS. Analyzed cohort did not
have meta-information on ethnicity, so we evaluated their
population structure using publicly available data for different
European and Russian subpopulations (Fedorova et al., 2013;
Kushniarevich et al., 2013; Yunusbayev et al., 2015; Triska et al.,
2017; Tambets et al., 2018). A principal component analysis (PCA)
of the genotype of people from the cohort in combination with
several published and publicly available datasets with assigned
ethnic information is shown in Supplementary Figure S2. The
raw data used to create Supplementary Figure S2 can be found
in Supplementary Table SI. The results of the assignment of
genotypes from the sample to ethnic groups are shown in
Supplementary Table S2. Clusterization was based on the
Euclidean distance in the space of the first 10 PCs. Number of
clusters selected manually based on AMI Supplementary Figure S1.
As was to be expected, the majority of individuals in the collected
cohort were in close proximity to previously published populations
from central Russia (CR) and neighboring Baltic and Slavic
countries. Nevertheless, our randomly sampled cohort included
people from many different Russian populations, such as Tatars,
Bashkirs, Buryats and others, which underlines the overall ethnic
complexity.
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5,858, N2 = 992, N3 = 865, N4 = 260, N 7 = 99, N8 = 100, N11 = 203).

3.3 The predictive power of PRS for BMI and
height is similar for the populations studied

According to Choi et al. (Choi and O’Reilly, 2019) at least
100 individuals are required for PRS evaluation, therefore clusters
with less number individuals were excluded from the further
analysis. Resulting cohort presented on Figure 2. Height and
BMI distribution selected clusters presented on
Supplementary Figure S3. Summary statistics from the largest,
to our knowledge, meta-analysis of variants associated with height
and BMI (Yengo et al., 2018) was used to calculate PRS. The most
stringent sets of SNPs (3,263 for height and 939 for BMI) reported
by the authors were used for the analysis. These SNPs were
assumed to be independent from each other based on
conditional and joint association analysis (Yang et al, 2011)
with a p-value cutoff of 107®. The corresponding individual
level genetic data file available as Supplementary File S1 and
the corresponding phenotypic description can be found in
Supplementary Table S2. At the level of SNP frequencies we
observed small but significant differences between clusters

for

Frontiers in Genetics

04

compared to non-Finish European frequencies from gnomad v2
(Supplementary Figure S4). The PRS for each individual in our
cohorts was calculated using PRSice-2 (Choi and O’Reilly, 2019),
with an age, sex and the first 10 PCAs being used as a covariate in
the model. PRS stratification is shown on Supplementary Figures
S5A, B. We found no statistically significant differences between
zscores in different PRS strata, by one-way ANOVA. Quantile
plots for height and bmi are presented on Supplementary Figures
S5C, D. The resulting R2 for height and BMI for each cluster with
95% confidence intervals (CI) is shown on Figure 3;
Supplementary Table S2. It should be noted that the PRS
calculated on the basis of the European population was
applicable to all seven tested clusters of ethnic groups in Russia.

4 Discussion

In this work, we tested the relevance of PRS, which was developed
based on the European population, on three genetically distinct
populations from Russia. It is widely recognized that European
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ancestry is overrepresented in the majority of publicly available
databases (Duncan et al., 2019). At least some Russian populations
are closely related to Europeans, which should allow cross application of
GWAS summary statistics. Nevertheless, such cross application have
not been demonstrated systematically. Recently, Kolosov et al. (2022)
have shown that PRS is consistent between northwestern Russians
(n=230) and the British population. This result is in concordance
with our findings showing that the estimates from PRS, based on
the European data, can be applied to different Russian
populations. The northwestern Russians belong to population,
denoted in the current paper as CR. It is widely accepted that
European ancestry is overrepresented in the majority of publicly
available databases (Duncan et al., 2019). However, European
ancestry in itself is very heterogeneous. This is evident at many
levels, including the comparison of SNP frequencies for the
different European subpopulations (Lek et al, 2016). These
discrepancies may cause PRS incompatibility, such as between
the United Kingdom biobank and other European populations,
such as the Spanish Iberians or the Italian Tuscans (Duncan et al.,
2019). The cohorts analyzed and presented herein substantially
surpass previously published data for the Russian population. To
the best of our knowledge, the most representative study of
genome-wide variation of the Russian people analyzed
263 genomes from 55 ethnic groups (Zhernakova et al., 2020).
These data were collected by the Genome Russia Project (n = 60),
but also by Pagani et al. (2016) (n =173) and Mallick et al. (2016)
(n = 31). The current study is based on 8,589 individuals for
whom individual level genotypes were made publicly available for
a set of 4,319 SNPs associated with the inheritance of height
and BMIL

The cohort was divided into ethnically different subgroups. The
PCA plot is almost identical to the recently published meta analysis of
whole exome sequencing of the Russian population by Barbitoff et al.
(2021) (Figure 2). That strongly supports our strategy for stratification
of individuals into separate cohorts. Unfortunately, even in reasonably
large, randomly selected Russian population majority of samples
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(approximately 70%) fall into the compact single cluster, which
represents western Russia inhabitant leaving minor ethnicities
underrepresented in our analyses. Nevertheless we were able to
gather seven populations with sufficient number of individuals for
the analysis.

To accurately assess the transferability of external summary
statistics to the selected populations, a selected set of near-
independent SNPs with high genome-wide significance (p < 10-8)
which were used by (Yengo et al., 2018). The high level of significance
was chosen to prevent R” overestimating. Claimed predictive power of
the score was reproduced for both phenotypes with narrow CI
intervals for the first 3 clusters (Figure 3), which is explained by
the large cohort sizes and overall higher resemblance to the European
population, judging by overall clusterization (Supplementary Figure
S2). For other four populations definitive conclusion could not be
drawn from presented analysis, due to apparently insufficient cohort
sizes and, therefore large uncertainty in R* estimation. Many things
could affect the cross application of summary statistics (Cai et al.,
2021) such as admixture in the cohorts, differences in linkage
disequilibrium between populations and differences in epistasis.
Nevertheless, given that R* for height was comparable between all
three cohorts and one previously published, we might speculate that
the observed decline in R* for BMI is not related to differences in
genetics but rather to differences in environmental factors such as
different cultural background and diet.

It is worth noting that recapitulation of predictive results does not
lead to recapitulation of the PRS distribution across the whole
population (Duncan et al., 2019). Therefore, the PRS distribution
for individual strata for risk management must still be assessed
separately (Qassim et al., 2021).

The driving force behind the cross application of PRSs between
populations comes from the successes in predicting the risk of
with components.
association studies (GWASes) have revealed the complex nature
of common disease pathogenesis (Burton et al, 2007). The

diseases strong  genetic Genome-wide

association between human genome variants and disorders has
been demonstrated for bipolar disorder (Stahl et al, 2019),
rheumatoid arthritis (Smolen et al., 2018), type 1 (Bonifacio et al,,
2018) and type 2 (Montesanto et al, 2018) diabetes mellitus,
coronary artery disease (Erdmann et al, 2018) and other
pathologies. We consider this work as a proof of concept for the
cross application of PRS developed based on European cohorts to
Russian populations described here.
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