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TP53 (or p53) is widely accepted to be a tumor suppressor. Upon various cellular
stresses, p53 mediates cell cycle arrest and apoptosis to maintain genomic
stability. p53 is also discovered to suppress tumor growth through regulating
metabolism and ferroptosis. However, p53 is always lost or mutated in human and
the loss or mutation of p53 is related to a high risk of tumors. Although the link
between p53 and cancer has beenwell established, how the different p53 status of
tumor cells help themselves evade immune response remains largely elusive.
Understanding the molecular mechanisms of different status of p53 and tumor
immune evasion can help optimize the currently used therapies. In this context,
we discussed the how the antigen presentation and tumor antigen expression
mode altered and described how the tumor cells shape a suppressive tumor
immune microenvironment to facilitate its proliferation and metastasis.
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Introduction

Genome instability is one of the hallmarks of cancer (Negrini et al., 2010; Hanahan and
Weinberg, 2011). TP53 (or p53) is a vital tumor suppressor as it is the key regulator of DNA
replication stress and DNA repair (Gaillard et al., 2015; Adriaens et al., 2016; Lindstrom
et al., 2022) to maintain genomic stability. p53 responds to diverse cellular stresses, such as
DNA damage, oxidative stress and oncogenic signaling (Hafner et al., 2019; Boutelle and
Attardi, 2021). In unstressed, non-transformed cells, the expression and activity of p53 are
blocked by its negative regulator MDM2 protein to be maintained at a low level (Haupt et al.,
1997; Kubbutat et al., 1997; Shieh et al., 1997). On the contrary, the p53-MDM2 interaction
will be lost and the expression of p53 is upregulated in stressed cells (Aubrey et al., 2018).
Upregulated p53 mediates cell cycle arrest and apoptosis (Engeland, 2018) to eliminate
damaged cells. p53 has a complicated link with the death or survival of tumor cells through
regulating metabolism (Liu and Gu, 2021). Ferroptosis, an iron-dependent mode of death
(Dixon et al., 2012) associated with metabolism, has also been recently found to be a p53-
regulated activity to inhibit tumor growth (Jiang et al., 2015; Liu and Gu, 2022) (Figure 1).

The function of the immune system in control of cancer has been realized (Keast, 1970).
Both the elements of innate immune and adaptive immune participate in anti-tumor
activities, such as CD4+ T cells, CD8+ T cells, and natural killer (NK) cells. The immune
response to cancer is thought to be activated in a tumor genome-dependent manner (Chen
and Mellman, 2017). Tumor antigens originated from specific gene mutations (Epping and
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Bernards, 2006) are presented by dendritic (DC) cells or directly
presented by tumor cells (Jhunjhunwala et al., 2021) for priming of
CD8+ T cells to eliminate tumor cells. Simultaneously, tumor cells
escape from immune attack through altering internal genes and
shaping external environment, and p53 is one of the key points.

TP53 mutation is strongly associated with a risk of cancer
(Harris, 1995; Willenbrink et al., 2020). Previous researches in
transcriptome and proteome have demonstrated that
TP53 mutation exists broadly in patients suffering tumors, such
as urothelial carcinoma of the bladder (Xu et al., 2022), lung cancer
(Chen and Roumeliotis, 2020; Gillette et al., 2020), and mutant p53
(hereafter referred to as “mutp53”) always results in poor prognosis
(Cao et al., 2021). The mutp53 displays various responses in cellular
activity (Muller and Vousden, 2013), mainly dominant-negative
effects compared to wild-type p53 (wt-p53) (Muller and Vousden,
2014). The loss of p53 gene also results in developing more advanced
carcinomas than p53+/+ and p53+/− in mice skin cancer models
(Guinea-Viniegra et al., 2012). Restoring the function or expression
of p53 has been proved to inhibit tumor progression and even
reduce tumor size in both in vivo and in vitro experiments (Ventura
et al., 2007; Guinea-Viniegra et al., 2012).

Based on current research, the hallmarks of tumors with
different status of p53 is clear, but how the tumor cells with

different p53 status survived from immune surveillance remains
largely elusive. Here, we focus on the complicated molecular
network of tumor evasion derived from different status of
p53 and explore new options of immunotherapy.

The p53 mutation regulates the MHC
molecules and reduces
immunogenicity of tumor cells

Major histocompatibility complex (MHC) molecules expressed
on cell surface present peptides to T cells to motivate immune
responses. MHC molecules can be divided into two major classes.
MHC Class I mainly presents peptides came from intracellular
proteins (Jhunjhunwala et al., 2021), which prevent cells from
malignant proliferation and stop cancer formation, while MHC
Class II presents extracellular proteins to protect cells from
infection. MHC I is formed by four domains. The α1, α2, and
α3 domain form a heavy chain, and the β2m domain forms a light
chain. After the heavy chain combine with β2m, the complex binds
to peptides provided by the transporter associated with antigen
processing (TAP) and is transported to the cell surface via the Golgi
network (Flutter and Gao, 2004; Cresswell et al., 2005). Under most

FIGURE 1
The function of p53. p53 is a key regulator of DNA replication stress and DNA repair. p53 is inhibited by MDM2 protein, but upregulated under stress.
Upregulated p53 mediates cell cycle arrest and DNA replication, metabolism switching, and ferroptosis.
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circumstances, tumor cells lack of the expression of MHCmolecules
to decrease their immunogenicity.

Tumor cells that lack p53 exhibit markedly lower MHC I
molecules (Bubeník, 2004) (Figure 2). The dysfunctional p53 lost
its TAP1 activation function. In normal cells, TAP1 is induced by
endogenous wild-type p53 (wt-p53) to enhance the transport and
the expression of surface MHC-peptide complexes, but not in
mutant p53 (R249S) cells and p53-null like HCT116E6 cells (Zhu
et al., 1999). Similarly, endoplasmic reticulum aminopeptidase 1
(ERAP1) is another p53-target gene. ERAP1 acts as a molecular
scissor to trimN-terminal extended peptides to be optimal length for
assembling with MHC I (Falk and Rötzschke, 2002; Reeves et al.,
2020). In human colon carcinoma cell lines, it has been proved that
the cognate response element of ERAP1 gene is not accessible to
bind silenced p53. The expression of MHC I consequently
decreased. (Wang et al., 2013). Wt-p53 limits tumor growth via
repressing the myelocytomatosis (Myc) oncogene transcription
(Olivero et al., 2020). But the p53 deletion could increase the
expression of Myc (Olivero et al., 2020) and the p53-R249S
mutation could enhance the activity of Myc (Liao et al., 2017).

Upregulated MYC prevented nuclear-derived double-stranded RNA
from being recognized by toll-like receptor 3 (TLR3), consequently
inhibited the activation of downstream MHC I (Krenz et al., 2021).

Thus, one of the treatments is to upregulate MHC I expression
relying on the re-activation of p53. Pharmacologically activated
p53 induced by MDM2 inhibitors enhanced the expression of
endogenous retroviruses (ERV). The derepression of ERV
triggered ERV-dsRNA-interferon (IFN) pathway followed by
activation of antigen processing and presenting genes, including
B2M, HLA-A, HLA-B, and HLA-C which encode MHC class I
molecules (Zhou et al., 2021). Besides, it is also demonstrated that
the dual-targeting PI3K and HDAC inhibitor BEBT-908 can
promote ferroptosis of cancer cells by hyperacetylating p53 and
promoting the expression of ferroptotic signaling (Liu et al., 2019;
Fan et al., 2021). Acetylation-modified p53 in tumor cells induced
the upregulation of MHC I via signal transducer and activator of
transcription (STAT) one signaling pathway (Fan et al., 2021).

Another mechanism that p53 impacts immune escape is
through affecting the recognition of MHC molecules. The
different mutant p53 status interfere with TCR-MHC

FIGURE 2
Mutant p53 downregulates the expression of MHC I. The formation and expression of MHC I is related with TAP and ERAP1. TAP transports peptides
degraded by proteasome into ER. ERAP1 trims these precursor peptides to be optimal length for assembling with MHC. The dysfunctional p53 lost its
TAP1 and ERAP1 activation function. What’s more, the p53mutation and deletion play roles in upregulating MYC oncoprotein, consequently inhibited the
activation of downstream MHC I.
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identification as endogenous proteins presented by MHC I via
proteasome. By detecting the secretion of IFNγ, tumor necrosis
factor (TNF)-α, and the proportion of CD69+ T cells, it was found
that p53-bearing destabilizing mutations, such as R175H and Y220C
mutations, are recognized more efficiently and activated more
p53 target T cells than G245S mutation (Shamalov et al., 2017).

As for MHC II, it is found MHC II mediated the T-cell response
to acute myeloid leukemia (AML) after allogeneic hematopoietic cell
transplantation. The p53 deletion caused the downregulation of
MHC II and tumor necrosis factor related apoptosis-inducing ligand
receptor one and receptor 2 (TRAIL-R1/2) which induced immune
evasion of AML (Chitlur, 2022; Ho et al., 2022).

How does p53 mutation or deletion
shape an immunosuppressive
environment?

Over the past few centuries, researchers came to realize tumors
are more than a group of malignant proliferating cells, but a
complex “organ” including tumor cells, stromal cells, immune
cells, extracellular matrix, vessels, cytokines, chemokines, as well
as other metabolic products (Fu et al., 2021). It has been found
that tumor cells transformed themselves (Bottcher et al., 2018) at
gene and transcriptome levels (Bi et al., 2021; Sun et al., 2021) to
shape a surrounding which is suitable for proliferation and

differentiation. In this part, we discussed how the changes of
p53 influence the cytokines secreting, suppressive ligands expression,
and immunocytes with inhibitive function differentiation
(Figure 3).

The p53 mutation or deletion induces
immunosuppressive cytokines and
downregulates proinflammatory factors

Cytokines are the main proteins produced and secreted by many
different cell types. They mediate immune system responses (Borish
and Steinke, 2003) and communication between cells and immune
system components (Propper and Balkwill, 2022). For one thing,
cytokines can act directly on tumor cells to promote or inhibit their
growth; for another, they can also influence the status of tumors by
recruiting immune cells or stromal cells. Responses caused by
different cytokines also have synergy or confrontation effects
(Salazar-Onfray et al., 2007). All above combined the complexity
of cytokines therapy (Conlon et al., 2019). Understanding the
regulatory mechanism of cytokines may help enhance clinical
benefits and reduce adverse reactions. Using RNA interference to
reactivate p53 briefly in the p53-dificient mouse liver carcinoma
model, (Xue et al., 2007) found that tumor proliferation is restricted
and dependent on the cellular senescence program and consequently
increased inflammation cytokines. We hypothesized that the

FIGURE 3
p53 mutation and deletion shape an immunosuppressive environment. The consequences of mutation (left) or deletion (right) of p53 in tumor cells
are shown. Mutp53 decreased the release of IFN I, consequently decreased the infiltration of CD4+ T cells, CD8+ T cells, and NK cells. Mutp53 promoted
the formation of exhausted CD8+ T cells through IL-17 signaling. The increased IFNγ played a role in the expression of immunosuppressive ligands, PD-L1
and PD-L2. Mutant p53 has a synergistic effect with TGF-β to promote EMT. p53 deletion upregulated the releasing of WNT ligands, CXCL1, CCL3,
CCL21, and miR-149–39 to enhance the differentiation of TAMs and Tregs. Pre-malignant epithelial cells would release IL-6 and IL-8 to promote EMT.
This process promoted tumor formation and metastasis.
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influence of p53 in different status on tumor immunity may be
achieved through the influence of cytokines.

Type I IFN (IFN I) is an important cytokine whose response
plays significant roles in antiviral innate immune and anti-tumor
adaptive immune (Woo et al., 2015). One of the mechanisms to
active immunity is to upregulate the expression of IFN-stimulated
genes (ISGs), thereby giving rise to ISG DC cells resembling type
1 DC cells. ISG DC cells present intact tumor-derived peptide-MHC
I to reactivate antitumor immunity (Corrales et al., 2016; Duong
et al., 2022). The attenuation of IFN I response is conducive to tumor
evasion. Current studies confirmed that IFN I response is activated
by stimulator of IFN genes (STING) pathway. Cells with
mutp53 suppress downstream signaling of cGAS/STING.
Mutp53 prevents STING-IRF3-TBK1 trimeric complex formation
and IFN regulatory factor 3 (IRF3) activation via interacting with
TANK binding protein kinase 1 (TBK1) (Balka et al., 2020; Ghosh
et al., 2021), consequently downregulates the release of IFN I.

Interleukin-6 (IL-6) is an important trigger of tumor-promoting
inflammation. Tumor cells exposed to IL-6 activate the oncogenic
STAT3 transcription factor to promote epithelial-to-mesenchymal
transition (EMT), which is the first step for tumor cell migration.
MiR-34a, activated by p53, is a major inhibitor through targeting IL-
6R (Rokavec et al., 2014). In studies investigating aging and
carcinogenesis, it was found that pre-malignant epithelial cells
induce EMT through a paracrine mechanism of IL-6 and IL-8.
IL-6, and IL-8 caused the loss of p53 in normal cells and the
p53 deficiency exacerbated the pro-malignant secretory activity,
forming a vicious cycle (Downward et al., 2008). Whereas co-
expression of wt-p53 and NF-κB in tumor associated
macrophages (TAMs) can enhance the survival of tumor cells
through secreting IL-6, CXCL-1, and promoting tumor associated
neutrophils recruitment (Lowe et al., 2014).

Transforming growth factor-β (TGF-β) is an
immunosuppressive cytokine that has both positive and negative
roles in tumor formation (Yang et al., 2010). The canonical response
of TGF-β is the phosphorylation of SMAD2 and SMAD3, which
then combine with SMAD4 to mediate growth inhibition (Yang
et al., 2010). TGF-β acts as a tumor suppressor and the loss of TGF-β
signaling effectors is the molecular basis to develop tumors. A study
in prostate cancer discovered the TGF-βRII and Smad4 in tumor
cells taper off during the progression process (Zeng et al., 2004).
TGF-β also acts as a tumor promoter owing to its immune
suppressive effects (Batlle and Massague, 2019). TGF-β inhibits
the differentiation and proliferation of effector T cells (Teffs) but
enhances the fraction of regulatory T cells (Tregs) and other
suppressive cells through the phosphorylation of Smad family
proteins. Blocking TGF-β in breast cancer cell lines was
effectively to counteract its effects (Yi et al., 2021).

The dual functions of TGF-β in tumor cell survival are
interconnected with different status of p53. TGF-β mediates the
inhibition of p53 and DNA damage response to conduce to tumor
progression. These effects are achieved through the downstream
signals of miR-100 and miR-125b upregulated by SMAD2/
3 transcription factors (Ottaviani et al., 2018). Furthermore,
TGF-β1 antagonizes p53-induced apoptosis in precancerous cells
via switching the viral E2-associated factor 4 (E2F-4)/p107 complex
to Smad/E2F-4 corepressor, which represses transcription and
translation of p53 (Lopez-Diaz et al., 2013). Equally, both wt-p53

and mutp53 regulate the TGF-β-mediated human lung and breast
EMT by affecting TGF-β/SMAD3-mediated signaling. By restricting
the expression of Nox4, a NADPH oxidase, wt-p53 downregulates
downstream focal adhesion kinase phosphorylation to reduce
migration. On the contrary, mutp53 has a synergistic effect with
TGF-β to upregulate Nox4 and promotes tumor cells evasion
(Boudreau et al., 2014).

The p53 mutation or deletion upregulates
immunosuppressive ligands

Immunosuppressive ligands, also known as immune
checkpoints, such as programmed cell death protein 1 (PD-1)
and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), have
attracted much attention since their discoverers won the 2018 Nobel
Prize in Physiology or Medicine. Immune Checkpoints are
inhibitory pathways to maintain the persistence of immune
response and the stability of the internal environment based on
self-tolerance (Abril-Rodriguez and Ribas, 2017). Currently, there
are several immune checkpoint inhibitors (ICIs) proved by FDA for
clinical treatment. The representative examples are ipilimumab for
metastatic melanoma (Langer et al., 2007; Kirkwood et al., 2008;
Weber et al., 2008), nivolumab for non-small cell lung cancer
(Topalian et al., 2012; Hellmann et al., 2019; Forde et al., 2022)
and avelumab for urothelial carcinoma (Powles et al., 2020; Powles
et al., 2021). However, immune therapy still has limits. A large
fraction of patients has no response to immune therapy and many
patients responding develop drug resistance after several treatment
cycles (Chowdhury et al., 2018). Understanding the intrinsic
mechanisms of immune checkpoints expression can therefore
deepen our understanding of tumor immune escape and help
develop new treatment options.

It is discovered that PD-L1, PD-L2, and CTLA-4 expression is
significantly increased in patients with TP53 mutations in both
clinical samples and mouse models of hematologic neoplasms
(Pascual et al., 2019; Sallman et al., 2020). Similar findings have
been discovered in solid tumors (Thiem et al., 2019; Sun et al., 2020).
Furthermore, other co-inhibitory receptors, such as PD-1, T-cell
immunoglobulin and mucin-domain containing-3 (TIM3), and
lymphocyte-activation gene 3 (LAG3) are co-expressed on
tumor-infiltrating lymphocyte cells (Williams et al., 2019). Based
on these specific subtypes of T cells and tumor cells, TP53 mutations
are one of the indicators in predicting efficacy in patients treated
with ICIs (Chen et al., 2019; Sun et al., 2020).

PD-L1 expression is regulated by multiple pathways. The
gain-of-function mutant p53 upregulated IL-17 signaling and
induced the transformation of infiltrating T cells into exhausted
CD8+ T cells to counteract the effects of PD-1 inhibitors (Wang
J. et al., 2021). Besides, PD-L1 expression is upregulated by IFN-
γ induced immune response, and both wt- and mut-p53 work in
this process. It isn’t the activity, but the expression level of
p53 or mutp53 impacts PD-L1 expression activated by IFN-γ
(Thiem et al., 2019). The non-coding RNA miR-34,
transcriptionally induced by p53, is also proved to negatively
regulate PD-L1 (Cortez et al., 2016). In addition,
p53 transcriptionally induces the expression of PTEN gene,
an inhibitor of PI3K/Akt/mTOR pathway, which
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downregulates PD-L1 and maintains immune response (Hays
and Bonavida, 2019). For the p53 deletion losing inhibition of
PD-L1, it is conducive to tumor immune evasion.

The p53 mutation or deletion promotes
immunosuppressive cells differentiation

Tumor immune microenvironment (TIME) refers to
immunological components with tumors (Fu et al., 2021).
Various immune cells are the major participators of immune
response. Notably, patients with TP53 mutations display non-T
cell infiltrated phenotype. The numbers of cytotoxic T cells, helper
T cells, as well as NK cells significantly reduced. Meanwhile, highly
immunosuppressive Tregs (Sallman et al., 2020) and
M2 macrophages (Wang et al., 2021) are expanded in cases with
TP53 mutations.

Some indirect evidence suggests different status of p53 impact
the intensity of immune response. The adaptive immune response is
enhanced in the mouse model of colon cancer treated with
HDM201, a selective MDM2 inhibitor. After the
HDM201 treatment, the percentage of DC cells and CD8+ T cells
increased in a p53-dependent manner (Wang et al., 2021).
Moreover, p53 activation combined with immune checkpoint
blockade therapy has been found to make breakthroughs in a
variety of tumors. Studies in hepatocellular carcinoma (HCC)
demonstrated the number of infiltrating CD8+ T cells and the
fraction of activated CD8+ T cells is significantly increased after
the combination therapy (Xiao et al., 2022).

Tregs are the major suppressive cells in controlling immune
tolerance and homeostasis of immune system. Tregs are considered
as tumor-promoting cells (Ye et al., 2012) because of suppressing
anti-tumor Teffs response by releasing inhibitory cytokines such as
IL-10, TGF-β, and IL-35 (Li et al., 2020). The relationship between
Tregs and p53 is complex. Patients treated with p53 vaccination
displayed decreased frequencies of Tregs and the 2-year disease-free
survival reached 88% (Schuler et al., 2014). High doses of p53-
derived peptide inhibited the Tregs differentiation and
immunosuppressive function in vitro (Mandapathil et al., 2013).
However, a research found the lack of p53 in rheumatoid arthritis
compromised Tregs differentiation because of the decreasing
activity of STAT-5 (Park et al., 2013). Depletion of highly
activated and strongly suppressive tumor-infiltrating Tregs
contributes to clinical outcomes of immunotherapy (Van Damme
et al., 2021). These phenomena suggest that wt-p53 in the normal
state promotes Tregs differentiation to control immune response,
but under the tumor environment, p53 tends to suppress Tregs
action to limit tumors.

The suppressive effects in Tregs cells is mainly dependent on
the expression and function of the transcription factor forkhead
box P3 (Foxp3) (Ohkura and Sakaguchi, 2020). Further, the
lineage stability of Tregs is closely related to the PI3K/Akt
pathway and its suppressor PTEN (Huynh et al., 2015). As is
mentioned above, the lack of p53 consequently promotes the
accumulation of inactivated PTEN, thus activating PI3K/Akt
signaling and the Tregs differentiation (Kang et al., 2017).
Foxp3 also can be regulated by miR-149-39. A study in
esophageal cancer found long non-coding RNA (lncRNA)

maternally expressed gene 3 (MEG3) upregulates MDM2, the
inhibitor of p53. The decreased p53 is unable to generate
sufficient miR-149-3p to limit transcription of Foxp3, but
upregulate Tregs (Xu et al., 2021).

Myeloid-derived suppressor cell (MDSC) is another important
member of the suppressive immune microenvironment, which
produces reactive oxygen species and other cytokines to inhibit
T cell mediated immune response (Li et al., 2021). p53 mediates the
quantity and quality of MDSC in TIME. The p53 deletion
enhanced the recruitment of suppressive myeloid CD11b+ cells
through upregulating the expression of CXCR3/CCR2-associated
chemokines and macrophage colony-stimulating factor (M-CSF)
(Blagih et al., 2020). The destabilizing p53 prevents MDSCs from
ferroptosis through upregulating Heme Oxygenase-1 (Hmox1)
expression to suppress lipid reactive oxygen species production
(Zhu et al., 2021). The dysfunctional p53 promotes the expansion
of lymphoid-like stromal network, which increased the expression
of CXCL1, CCL3, and CCL21 to recruit more immunosuppressive
populations, especially MDSCs (Guo et al., 2013).

TAMs are major tumor-infiltrating cells mediated a variety of
cellular activities such as tumor cytotoxicity (Chen et al., 2018),
angiogenesis, and lymphangiogenesis (Volk-Draper et al., 2019).
TAMs can be simply divided into tumor killing M1 type and tumor
promoting M2 type based on their response to tumors. The
transform mechanism between M1 and M2 that remains a
mystery is a research hotspot, and p53 plays a role in the
process. As mentioned above, the co-expression of p53 and NF-
κB in TAMs promotes the secretion of IL-6 and CXCL-1 to promote
tumor cell survival (Lowe et al., 2014). Tumor cells lack p53 also
release WNT ligands to stimulate TAMs to produce IL-1β. The IL-
1β triggers an inflammatory cascade throughout the body and drives
tumor metastasis (Wellenstein et al., 2019). In macrophages,
p53 acetylation induced M1 polarization to maintain iron
homeostasis (Zhou et al., 2018). In vitro co-cultures of
M0 macrophages with H358 (a p53-null cell line) exosomes
demonstrated that exosome-induced M2 polarization may be
p53 independent (Pritchard et al., 2020). Besides, upregulated wt-
p53 altered miRNA levels in the exosomes and promoted
macrophage repolarization towards a more pro-inflammatory/
antitumor M1 phenotype (Trivedi et al., 2016). Equally, TAMs
will affect p53 during the response. The expression of VEGF-C
and its receptor VEGFR3 promoted by TAMs results in the loss of
p53 and PTEN in tumor cells, which contributes to tumor resistance
(Li et al., 2017).

Target p53: New therapeutic strategies
for immunotherapy

In recent years, immunotherapy including ICIs, cancer
vaccination, and adoptive cell therapy has revolutionized the
treatment of cancer. As introduced above, the p53 mutation or
deletion play a central role in tumor immune evasion, so reactivating
wt-p53 or restoring tumor suppressive function of mutp53 are
promising anti-tumor immunotherapy strategies.

Scientists has appreciated the antigenic character of p53 since
1990s and developed p53-based vaccines (DeLeo and Appella, 2020).
A novel phase Ib clinical trial of adjuvant p53 peptide-loaded DC
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cells demonstrated that the DC–p53 vaccine triggered a p53-specific
immune response in 11 patients with head and neck squamous cell
carcinoma, out of the 16 patients treated (Schuler et al., 2014). In
another phase I trial, patients with platinum-resistant ovarian cancer
received a combination regimen of a Modified Vaccinia Ankara
vaccine delivering wild-type human p53 (p53MVA) and
gemcitabine chemotherapy. It is found that p53MVA could
elevate p53-reactive CD4 and CD8 T-cell responses, and patients
with greatest expansion of T cells had longer progression-free
survival (PFS) (Hardwick et al., 2018). Moreover, restoring
p53 expression by p53 mRNA nanomedicine (Xiao et al., 2022)
or directly introducing wt-p53 gene could reprogram the TME and
sensitize tumors to anti-PD-1 therapy in mice experiments (Kim
et al., 2019).

Targeting p53-MDM2pathway is another strategy. Combination of
reactivation of wt-p53 and ICIs is also proved to have a better anti-
tumor effect. Wang and co-workers demonstrated that HDM201, a
potent and selective second-generation MDM2 inhibitor, could trigger
adaptive immunity and develop durable, antigen-specific memory
T cells in a p53-dependent manner. Combination of HDM201 and
PD-1/PD-L1 blockade is more efficient for complete tumor regressions
(Wang et al., 2021). Similarly, Fang et al. (2019) also discovered that
p53 activation by APG-115 would reduce the number and proportion
of immunosuppressiveM2macrophage and has a synergistic effect with
PD-1 blockade in anti-tumor.

It isn’t difficult to find from the previous studies that p53 has a
strong connection with TIME (Hassin and Oren, 2022). The
p53 mutation and deletion in tumor cells trends to form a tumor
promoting microenvironment. Growing evidence indicated that
p53 could be an effective target to deal with immune evasion.

Concluding remarks

p53 is a star molecular whichmediates multiple cellular activities
of tumors and attracts much attention since its discovery. Scientists
gradually realized the better treatment is to recover normal immune
response, not only to enhance immune response. Owing to the
essential role of p53 mutation and deletion in tumor immune

evasion, reactivation of expression and function of p53 to
reshape TIME and restore anti-tumor immunity may be efficient
treatment for anti-tumor. Although scientists have spent almost
30 years to develop p53-based therapies, p53 is still a mystery
protein attracting our attention. Great expectations of targeting
p53 and unstable efficacy urge us to have a deeper understanding
of it.
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Glossary

NK cell Natural killer cell

DC cell Dendritic cell

Mutp53 Mutant p53

Wt-p53 Wild-type p53

MHC Major histocompatibility complex

TAP Transporter associated with antigen processing

ERAP1 Endoplasmic reticulum aminopeptidase 1

Myc Myelocytomatosis

TLR3 Toll-like receptor 3

ERV Endogenous retroviruses

IFN Interferon

STAT Signal transducer and activator of transcription

TCR T cell receptor

TNF Tumor necrosis factor

AML Acute myeloid leukemia

TRAIL-R1/2 Tumor necrosis factor related apoptosis-inducing
ligand receptor 1 and receptor 2

ISGs IFN-stimulated genes

STING Stimulator of IFN genes

IRF3 IFN regulatory factor 3

TBK1 TANK binding protein kinase 1

IL-6 Interleukin-6

EMT Epithelial-to-mesenchymal transition

TAMs Tumor accosicated macrophages

TGF-β Transforming growth factor-β
Teffs Effector T cells

Tregs Regulatory T cells

E2F-4 Viral E2-associated factor 4

PD-1 Programmed cell death protein 1

CTLA-4 Cytotoxic T lymphocyte-associated antigen-4

ICIs Immune checkpoint inhibitors

TIM3 T-cell immunoglobulin and mucin-domain containing-3

LAG3 Lymphocyte-activation gene 3

TIME Tumor immune microenvironment

Foxp3 Factor forkhead box P3

LncRNA Long non-coding RNA

MEG3 Maternally expressed gene 3

MDSC Myeloid-derived suppressor cell

M-CSF Macrophage colony-stimulating factor

Hmox1 Heme oxygenase-1

p53MVA Modified vaccinia ankara vaccine delivering wild-type
human p53

PFS Progression-free survival.

Frontiers in Genetics frontiersin.org11

Liu et al. 10.3389/fgene.2023.1088455

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1088455

	p53 mutation and deletion contribute to tumor immune evasion
	Introduction
	The p53 mutation regulates the MHC molecules and reduces immunogenicity of tumor cells
	How does p53 mutation or deletion shape an immunosuppressive environment?
	The p53 mutation or deletion induces immunosuppressive cytokines and downregulates proinflammatory factors
	The p53 mutation or deletion upregulates immunosuppressive ligands
	The p53 mutation or deletion promotes immunosuppressive cells differentiation

	Target p53: New therapeutic strategies for immunotherapy
	Concluding remarks
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary


