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We propose Destin2, a novel statistical and computational method for cross-
modality dimension reduction, clustering, and trajectory reconstruction for
single-cell ATAC-seq data. The framework integrates cellular-level epigenomic
profiles from peak accessibility, motif deviation score, and pseudo-gene activity
and learns a shared manifold using the multimodal input, followed by clustering
and/or trajectory inference. We apply Destin2 to real scATAC-seq datasets with
both discretized cell types and transient cell states and carry out benchmarking
studies against existing methods based on unimodal analyses. Using cell-type
labels transferred with high confidence from unmatched single-cell RNA
sequencing data, we adopt four performance assessment metrics and
demonstrate how Destin2 corroborates and improves upon existing methods.
Using single-cell RNA and ATAC multiomic data, we further exemplify how
Destin2’s cross-modality integrative analyses preserve true cell-cell similarities
using the matched cell pairs as ground truths. Destin2 is compiled as a freely
available R package available at https://github.com/yuchaojiang/Destin2.
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Introduction

Recent advances in single-cell assay of transposase-accessible chromatin followed by
sequencing (scATAC-seq) technologies (Buenrostro et al., 2015; Cusanovich et al., 2015;
Satpathy et al., 2019) offer unprecedented opportunities to characterize cellular-level
chromatin accessibilities and have been successfully applied to atlas-scale datasets to yield
novel insights on epigenomic heterogeneity (Cusanovich et al., 2018; Domcke et al., 2020).
scATAC-seq data analysis presents unique methodological challenges due to its high noise,
sparsity, and dimensionality (Urrutia et al., 2019).Multiple statistical and computationalmethods
have been developed and evaluated by independent benchmark studies (Chen et al., 2019).

The first set of methods call ATAC peaks or segment the genome into bins and take the cell by
peak (or cell by bin)matrix as input. Among thesemethods, Signac (Stuart et al., 2021), scOpen (Li
et al., 2021), and RA3 (Chen et al., 2021) perform TF-IDF normalization followed by different
dimension reduction techniques. SnapATAC (Fang et al., 2021) computes a Jaccard similarity
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matrix, while cisTopic (Bravo Gonzalez-Blas et al., 2019) performs topic
modeling. Moving beyond the peak matrix, Cicero (Pliner et al., 2018)
and MAESTRO (Wang et al., 2020) make gene expression predictions
from unweighted and weighted sum of the ATAC reads in gene bodies
and promoter regions, respectively; the predicted gene activities have
been shown to in the ballpark recapitulate the transcriptomic profiles and
discern cell populations (Jiang et al., 2022). For TF-binding motifs,
chromVAR (Schep et al., 2017) computes a motif deviation score by
estimating the gain or loss of accessibility within peaks sharing the same
motif relative to the average cell profile; these deviation scores have also
been shown to enable accurate clustering of scATAC-seq data.

Notably, most, if not all, of the aforementioned methods carry out
“unimodal” analysis with a single type of feature input (i.e., peaks, genes,
ormotifs). One of the earliestmethods, SCRAT (Ji et al., 2017), proposes
to use empirical and prior knowledge to aggregate the peaks into genes,
motifs, and gene sets, while neglecting the peak-level information due to
high computational burden. EpiScanpy (Danese et al., 2021), ArchR
(Granja et al., 2021), and Signac (Stuart et al., 2021) all generate
multimodal feature inputs. However, dimension reduction and
clustering are still focused on the peak accessibilities—the gene
activities are generally integrated with single-cell RNA sequencing
(scRNA-seq) data for alignment, and the motif deviation scores are
used to identify enriched and/or differentially accessible motifs.

To our best knowledge, no integrative methods are available for
a cross-modality analysis of scATAC-seq data, yet it has been shown
that the peaks, genes, and motifs all contain signals to separate the
different cell types/states. Here, we propose Destin2, a successor to
our previous unimodal method Destin (Urrutia et al., 2019), for

cross-modality dimension reduction, clustering, and trajectory
reconstruction for scATAC-seq data. The framework integrates
cellular-level epigenomic profiles from peak accessibility, motif
deviation score, and pseudo-gene activity and learns a shared
manifold using the multimodal input. We apply the method to
real datasets with both discretized cell types and transient cell states
and carry out benchmarking studies to demonstrate how Destin2’s
cross-modality integration corroborates and improves upon existing
methods based on unimodal analyses.

Materials and methods

Figure 1 outlines Destin2’s analytical framework. For unimodal
data input, Destin2 utilizes Signac (Stuart et al., 2021), MAESTRO
(Wang et al., 2020), and chromVAR (Schep et al., 2017) for pre-
processing and generating the matrices of peak accessibility, gene
activity, and motif deviation, where the cell dimensions are matched,
and yet the feature dimensions differ. The peak matrix can be directly
loaded from the output of cellranger-atac or called/refined by MACS2
(Zhang et al., 2008). Pseudo-gene activities can be derived from either
taking the sum of ATAC reads in gene bodies and promoter regions by
Signac (Stuart et al., 2021) or using a regulatory potential model that
sums ATAC reads weighted based on existing gene annotations by
MAESTRO (Wang et al., 2020). Motif deviation scores are computed
using chromVAR (Schep et al., 2017) and measure the deviation in
chromatin accessibility across the set of peaks containing the TF-
binding motifs, compared to a set of background peaks. Destin2, by

FIGURE 1
A flowchart outlining the procedures for cross-modality scATAC-seq analysis by Destin2.
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its default, uses the JASPAR database for pairs of TF and motif
annotation in vertebrates (Fornes et al., 2020).

For data normalization and dimension reduction, we adopt two
parallel and state-of-the-art approaches, latent semantic indexing (LSI)
and latent Dirichlet allocation (LDA), for the peakmatrix. LSI normalizes
readswithin peaks using the term frequency-inverse document frequency
transformation (TF-IDF), followed by a PCA-based dimension reduction
(Stuart et al., 2021). LDA is a topicmodeling approach commonly used in
natural language processing and has been successfully applied to
scATAC-seq data to identify cell states from topic-cell distribution
and explore cis-regulatory regions from region-topic distribution by
cisTopic (Bravo Gonzalez-Blas et al., 2019). For the motif and gene
matrix, we use z-score transformation and the LogNormalize function by
Seurat (Butler et al., 2018), followed by principal component analysis
(PCA), respectively. These within-modality normalization and
dimension reduction, which return peak principal components (PCs),
motif PCs, and gene PCs, are necessary. They effectively reduce signal-to-
noise ratios, andmore importantly, it has been shown that PCA, followed
by canonical correlation analysis (CCA), offers a powerful approach to
uncover latent structure shared across modalities through an integrative
analysis (Brown et al., 2018). The number of PCs can be chosen by
inspecting the variance reduction (i.e., elbow) plot or using the JackStraw
method (Satija et al., 2015), which randomly permutes a subset of the data
and compares the PCs for the permuted data with the observed PCs to
determine statistical significance.

With the pre-processed and normalized unimodal data input,
Destin2 offers three options for cross-modality integration: consensus
PCA (CPCA), generalized/multiple CCA (MultiCCA), and weighted
nearest neighbor (WNN). Denote the feature input across K modalities
as X(1) ∈ Rn×p1 , . . . ,X(K) ∈ Rn×pK , where the n cells are matched. (I)
CPCA (Westerhuis et al., 1998), algebraically equivalent to applying a
second-step PCA to the concatenated peak PCs, motif PCs, and gene
PCs, returns consensus PCs as joint dimension reductions, which reveal
the union of the latent structure across multiple modalities. To identify
the first-rank consensus PC is analogous to solve:

ŵ 1( ), . . . , ŵ K( ){ } � argmin X 1( ), . . . , X K( )[ ]−
�����

X 1( ), . . . , X K( )[ ] w 1( ), . . . , w K( )[ ] w 1( ), . . . , w K( )[ ]
T�����

2
,

such thatw(k) ∈ Rpk for 1≤ k≤K and ‖w(1)‖ + . . . + ‖w(K)‖ � 1. (II)
MultiCCA (Kettenring, 1971), on the other hand, finds maximally
correlated linear combinations of the features between each pair of
modalities by solving:

ŵ 1( ), . . . , ŵ K( ){ } � argmax∑
1≤ i< j≤K

w i( )TX i( )TX j( )w j( ),

such that w(k) ∈ Rpk and w(k)TX(k)TX(k)w(k) � 1 for 1≤ k≤K; we
utilize the implementation from the mogsa package (Meng et al.,
2019) in R. (III) Instead of optimizing for the modality- and feature-
specific loading vector for projections of the three modalities, the
recently developed WNN method (Hao et al., 2021) learns cell- and
modality-specific weights, which reflect the information content for
eachmodality and are used to calculate a weighted cell-cell similarity
measure and construct a WNN graph. We will not go into the
algorithmic details of the WNN method—readers can refer to the
Seurat V4 publication (Hao et al., 2021), where theWNN framework
is extended to more than two modalities with matched cells.

Followed by joint dimension reduction and graph construction,
tSNE/UMAP can be used for visualization. Destin2 adopts Louvain/
Leiden clustering (Traag et al., 2019) for community detection and
identification of discrete cell clusters. The number of cell clusters (i.e., the
resolution parameter) can be optimized using the clustree method
(Zappia and Oshlack, 2018), which builds a tree to visualize and
examine how clusters are related to each other at varying resolutions,
allowing researchers to assess which clusters are distinct and which are
unstable with the use of additionalmetrics such as the SC3 stability index
(Kiselev et al., 2017). For cell population exhibiting continuous and
connected cell states, Destin2 resorts to a flexible and modularized
approach, Slingshot (Street et al., 2018), for trajectory reconstruction;
smooth representation of the lineages and pseudotime values are inferred
using the joint dimension reduction and visualized on the UMAP space.

Results

Destin2 improves clustering accuracy
compared to unimodal analysis methods

WeapplyDestin2 to four scATAC-seq datasets of human peripheral
blood mononuclear cells (PBMCs) from 10x Genomics, adult mouse
cortex cells from10xGenomics, human bonemarrowmononuclear cells
(BMMCs) (Granja et al., 2019), and human fetal organs (Domcke et al.,
2020). See Supplementary Table S1 for summary and details of the data.
For the PBMC and adult mouse cortex datasets, we annotate cell types
using scRNA-seq experiments from the same biological systems (PBMC
from 10x Genomics and mouse brain from the Allen Brain Institute),
utilizing the CCA-basedmethod for cross-modality integration and label
transfer (Stuart et al., 2019) and only keeping cells that can be uniquely
and confidently assigned to one cell type. For the BMMCdataset, we use
the curated cell type labels from the original publication (Granja et al.,
2019). For the human fetal dataset, we resort to the tissues of origin from
the experimental design/sample collection. These cell types/tissues are
used as ground truths for performance assessment.

We apply unimodal analysis methods (i.e., peak analysis by Signac
and cisTopic, motif analysis by chromVAR, and gene activity analysis by
Signac/MAESTRO) and Destin2 to these datasets, with UMAP
visualizations shown in Supplementary Figure S1. For benchmarking,
we adopt four metrics for performance assessment. (I) Adjusted rand
index (ARI) is used to compare the identified cell clusters against the
annotated cell types, with 1 indicating that the two are exactly the same.
(II) Adjusted mutual information (AMI) is similar to ARI but is more
suited when there exist small and unbalanced clusters (Romano et al.,
2016). (III) Homogeneity score (H-score) is an entropy-based measure
of the similarity between two clusterings and ranges between 0 and 1,
where 1 indicates perfect homogeneity. (IV) Cell-type local inverse
Simpson’s index (cLISI) (Korsunsky et al., 2019) is used to assess the
degree of mixing/separation of annotated cell types, with 1 indicating
that the different cell types group separately and 2 indicating that the
different cell types erroneously group together.

Across the four scATAC-seq datasets, our results suggest that the
multimodal analysis methods proposed by Destin2 improve clustering
accuracy compared to conventional unimodal analysis methods using
ARI and AMI as assessment metrics (Figure 2; Supplementary Table S2).
For cLISI and H-score, since the gold-standard cell-type labels are
transferred using the LSI-based dimension reduction as weights, it is
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not surprising that the LSI method achieves the top performance; non-
etheless, the difference between LSI-based methods and Destin2’s cross-
modality integration results are negligible (Figure 2; Supplementary Table
S2). Note that while the motif analysis returns the seemingly worst result,
whether themotifmodality is included in the integrative analysis does not
significantly alter the output (Supplementary Figure S2), demonstrating
Destin2’s robustness to the differential information content across
modalities. Additionally, and more importantly, careful inspection of
the confusion matrix (shown as a heatmap in Supplementary Figure S3)
suggests that Destin2 is able to identify cell types/states that are otherwise
indistinguishable and/or wrongly classified from a unimodal
analysis—e.g., Lamp5 v.s. Vip in Supplementary Figure S3B, as well
as GMP v.s. CD14monocytes and CLP v.s. pre-B cells in Supplementary
Figure S3C.

For downstream analysis, we first demonstrate how to determine the
clustering resolution using the clustree method (Supplementary Figure
S4). Specifically, clustering results with varying clustering resolutions
[and thus varying SC3 stability measures (Kiselev et al., 2017)] are
visualized as a tree: new clusters form from existing clusters, and the
overlap in cells between clusters at adjacent resolutions is computed and
used to calculate the in-proportion for each edge. Unstable clusters result
in cells switching between branches of the trees, with low in-proportion
edges; one can thus infer which areas of the tree are likely to be the result
of true clusters and which are caused by over-clustering (Zappia and
Oshlack, 2018). For cell populations with continuous cell states, we
further demonstrate how to reconstruct the development/differentiation
trajectory using Destin2’s joint dimension reduction paired with the
Slingshotmethod. As an example, we show the reconstruction of the true
branching lineages during human hematopoietic differentiation using
the BMMC data (Supplementary Figure S5).

Destin2 better preserves cell-cell similarities
using single-cell RNA and ATAC multiomic
data

We further applied Destin2 to three single-cell RNA and ATAC
multiomic datasets of human PBMCs from 10x Genomics, adult
mouse cortex cells from 10x Genomics, and mouse skin data from
SHARE-seq (Ma et al., 2020). See Supplementary Table S1 for a data

summary. In using these multiomic datasets, we demonstrate how
Destin2’s cross-modality analyses preserve true cell-cell similarities
by using the matched cell information as ground truth. Importantly,
this also does not need the RNA-ATAC alignment or the transfer of
discretized cell-type labels, which often fails for cell populations
consisting of transient states.

Specifically, we first obtained the low-dimensional embedding using
the ATAC data alone by the various unimodal methods and Destin2’s
multimodal methods. We then reconstructed the low-dimensional
embedding using the RNA data using Seurat’s scRNA-seq processing
pipeline (Butler et al., 2018). We then assess how the low-dimensional
embedding by the ATAC domain agrees with that by the RNA domain.
For benchmarking, we adopt two additional metrics designed specifically
for the single-cell multiomic data—fraction of samples closer than the
nearest neighbor (FOSCTTNN) and agreement. Bothmetrics measure the
preservation of a cell’s nearest neighbors between the RNA and ATAC
domains and do not rely on annotated cell types or identified clusters.
FOSCTTNN is adapted from the “fraction of samples closer than the true
match” metric (Liu et al., 2019): for each cell, we first identify its nearest
neighbor (i.e., closest cell) in the RNAdomain as ground truth, and then, in
the ATAC domain, we calculate the fraction of cells that are closer than its
true nearest neighbor. For agreement (Welch et al., 2019), we identify each
cell’sk nearest neighbors in theRNAandATACdomains, respectively, and
then calculate the fraction of overlap. Nearest neighbors are identified using
Euclidean distance of the cells’ reduced dimension from eachmodality and
method. The two cell-specific metrics can be further summarized using
median and Gini mean difference (GMD) across cells.

For the three multiomic datasets, our results suggest that the
multimodal analysis methods offered by Destin2 exhibit top or near-
top performance. For FOSCTTNN, Destin2’s cross-modality integration
results are either top-performing or negligibly different from the top
performer (Table 1); for agreement across different k (number of nearest
neighbors), the WNN method achieves the top performance (Table 2).
Interestingly and importantly, neither LSI nor LDA is indefinitely
preferred from this benchmark analysis—e.g., LDA outperforms LSI
using the FOSCTTNN metric in the PBMC data (Table 1), while LSI
improves upon LDA using the agreement metric by a largemargin in the
mouse brain data (Table 2). In real data analysis, where there is no ground
truth to guide method selection, Destin2 integrates and corroborates
information from both methods and demonstrates its robustness.

FIGURE 2
Benchmarking clustering accuracy. Four different metrics—ARI, AMI, H-score, and cLISI—were used for performance assessment. For each metric
and each method, results from the four unimodal scATAC-seq datasets are aggregated (i.e., each boxplot contains four data points). The ranks of the
methods for eachmetric are computed and then combined across all metrics and datasets. Destin2’smultimodal analysis framework achieves the highest
rank and improves clustering accuracy compared to conventional unimodal analysis methods.
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Discussion

We propose Destin2 to integrate multimodal peak accessibility,
motif deviation, and pseudo-gene activity measures derived from
scATAC-seq data. Destin2’s cross-modality integration can finish
within a few minutes on a local computer; the computational
bottleneck comes from the preprocessing step, which can also finish
reasonably fast within an hour across tens of thousands of cells
(Supplementary Table S3). For peak accessibility, Destin2 integrates
two most popular techniques—LSI and LDA—for data pre-processing
and within-modality dimension reduction. While Destin2 is not
restricted to only taking peak accessibilities as input, our framework
offers a strategy to ensemble results from the various peak-modeling
methods (Chen et al., 2019), so long as method-specific dimension
reductions are provided. For motif deviation, Destin2, by its default,

resorts to chromVAR (Schep et al., 2017), which can be computationally
intensive and infeasible to handle atlas-scale scATAC-seq data. While
alternativemethods are currently being developed for higher scalability, a
viable shortcut solution is to process the entire data in mini batches
(i.e., random subsamples of the cells), thus not requiring all the data to be
loaded into memory at one time. Such a strategy has been successfully
applied to scRNA-seq data with millions of cells (Hicks et al., 2021). For
pseudo-gene activity, Destin2 aggregates ATAC reads over gene bodies
and promoter regions using Signac (Stuart et al., 2021) or MAESTRO
(Wang et al., 2020), yet this largely neglects peaks and fragments from
intergenic and non-coding regions. Additional annotations, such as the
enhancers (Shlyueva et al., 2014), super-enhancers (Pott and Lieb, 2015),
A/B compartments (Lieberman-Aiden et al., 2009), and chromatin loops
(Rao et al., 2014), can be easily incorporated into Destin2’s framework as
additional modalities to be integrated.

TABLE 1 FOSCTTNN metrics on single-cell RNA and ATAC multiomic datasets. Destin2’s multimodal analyses achieve top or near-top performance. FOSCTTNN is
bound between 0 and 1, with 0 being the best performance. Neither LSI nor LDA is indefinitely preferred from this benchmark analysis; Destin2 integrates and
corroborates information across methods and modalities.

(A) PBMC 10x Genomics FOSCTTNN

Method q1 Median GMD Mean sd q3

Peak_LSI 0.015 0.045 0.107 0.089 0.126 0.116

Peak_LDA 0.013 0.039 0.081 0.069 0.095 0.090

Motif 0.048 0.131 0.168 0.174 0.158 0.261

GeneActivity 0.017 0.054 0.124 0.104 0.133 0.137

ConsensusPCA 0.014 0.045 0.098 0.084 0.107 0.118

MultiCCA 0.014 0.044 0.104 0.086 0.121 0.112

WNN 0.013 0.042 0.094 0.080 0.102 0.110

(B) Mouse Brain 10x Genomics FOSCTTNN

Method q1 Median GMD Mean sd q3

Peak_LSI 0.004 0.014 0.085 0.056 0.130 0.043

Peak_LDA 0.006 0.021 0.077 0.056 0.110 0.056

Motif 0.010 0.033 0.105 0.079 0.133 0.085

GeneActivity 0.028 0.109 0.308 0.257 0.294 0.487

ConsensusPCA 0.005 0.017 0.088 0.059 0.129 0.049

MultiCCA 0.005 0.017 0.083 0.057 0.122 0.050

WNN 0.005 0.018 0.091 0.062 0.130 0.055

(C) Mouse Skin SHARE-seq FOSCTTNN

Method q1 Median GMD Mean sd q3

Peak_LSI 0.011 0.034 0.165 0.117 0.196 0.110

Peak_LDA 0.011 0.036 0.143 0.104 0.174 0.101

Motif 0.024 0.076 0.185 0.154 0.194 0.200

GeneActivity 0.062 0.208 0.332 0.323 0.301 0.551

ConsensusPCA 0.011 0.034 0.147 0.105 0.180 0.097

MultiCCA 0.011 0.034 0.139 0.100 0.176 0.092

WNN 0.010 0.031 0.134 0.096 0.170 0.091
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For cross-modality joint modeling, Destin2 utilizes three
statistically rigorous and computationally efficient methods—CPCA,
MultiCCA, andWNN—and shows its outperformance and robustness.
Additional methods that fall in the realm of multiomic integration [e.g.,
JIVE (Lock et al., 2013), MOFA (Argelaguet et al., 2018), etc.] have not
been thoroughly explored. For CCA, its variants and extensions, such as
sparse CCA (Witten et al., 2009) and decomposition-based CCA (Shu
et al., 2020), can potentially further boost performance. Overall, we
believe that the framework by Destin2 introduces the concept of
multiomic integration to scATAC-seq data; through the various
benchmarking studies, we exemplify its utility and benefit and
illustrate how it can better facilitate downstream analyses.
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TABLE 2 Agreement metrics on single-cell RNA and ATAC multiomic datasets. Different numbers of nearest numbers (k) were selected. Destin2’s multimodal
analyses, especially theWNNmethod, achieve top or near-top performance. Agreement is bound between 0 and 1, with 1 being the best performance. Neither LSI
nor LDA is indefinitely preferred from this benchmark analysis; Destin2 integrates and corroborates information across methods and modalities.

(A) PBMC 10x Genomics Agreement

k Peak_LSI Peak_LDA Motif Gene Activity Consensus PCA MultiCCA WNN

50 0.091 0.102 0.032 0.085 0.092 0.091 0.107

100 0.163 0.175 0.061 0.150 0.163 0.163 0.183

150 0.220 0.232 0.086 0.200 0.219 0.221 0.241

200 0.269 0.282 0.110 0.244 0.268 0.270 0.290

(B) Mouse Brain 10x Genomics Agreement

k Peak_LSI Peak_LDA Motif Gene Activity Consensus PCA MultiCCA WNN

50 0.350 0.288 0.222 0.119 0.324 0.318 0.314

100 0.514 0.439 0.358 0.196 0.481 0.478 0.468

150 0.613 0.549 0.455 0.255 0.584 0.583 0.569

200 0.681 0.629 0.532 0.306 0.659 0.658 0.643

(C) Mouse Skin SHARE-seq Agreement

k Peak_LSI Peak_LDA Motif Gene Activity Consensus PCA MultiCCA WNN

50 0.046 0.048 0.024 0.010 0.046 0.046 0.050

100 0.088 0.088 0.047 0.020 0.087 0.085 0.094

150 0.124 0.122 0.068 0.030 0.123 0.122 0.131

200 0.157 0.154 0.087 0.039 0.156 0.155 0.166
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