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Introduction:Cervical cancer (CC) is the fourthmost commonmalignant tumor in
term of in incidence and mortality among women worldwide. The tricarboxylic
acid (TCA) cycle is an important hub of energy metabolism, networking one-
carbon metabolism, fatty acyl metabolism and glycolysis. It can be seen that the
reprogramming of cell metabolism including TCA cycle plays an indispensable
role in tumorigenesis and development. We aimed to identify genes related to the
TCA cycle as prognostic markers in CC.

Methods: Firstly, we performed the differential expressed analysis the gene
expression profiles associated with TCA cycle obtained from The Cancer
Genome Atlas (TCGA) database. Differential gene list was generated and cluster
analysis was performed using genes with detected fold changes >1.5. Based on the
subclusters of CC, we analysed the relationship between different clusters and
clinical information. Next, Cox univariate and multivariate regression analysis were
used to screen genes with prognostic characteristics, and risk scores were
calculated according to the genes with prognostic characteristics. Additionally,
we analyzed the correlation between the predictive signature and the treatment
response of CC patients. Finally, we detected the expression of ench prognostic
gene in clinical CC samples by quantitative polymerase chain reaction (RT-qPCR).

Results: We constructed a prognostic model consist of seven TCA cycle
associated gene (ACSL1, ALDOA, FOXK2, GPI, MDH1B, MDH2, and MTHFD1).
Patients with CC were separated into two groups according to median risk
score, and high-risk group had a worse prognosis compared to the low-risk
group. High risk group had lower level of sensitivity to the conventional
chemotherapy drugs including cisplatin, paclitaxel, sunitinib and docetaxel. The
expression of ench prognostic signature in clinical CC samples was verified by
qRT-PCR.
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Conclusion: There are several differentially expressed genes (DEGs) related to TCA
cycle in CC. The risk score model based on these genes can effectively predict the
prognosis of patients and provide tumor markers for predicting the prognosis of CC.
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signature, bioinformatics

Introduction

Cervical cancer (CC) is the fourth most common cancer and
also the fourth leading cause of cancer related deaths. According
to a report released by the International Agency for Research on
Cancer (IARC) in 2018, there are 570,000 new cases and
310,000 deaths in the world in this year (CA Cancer J Clin,
2020). In spite of the promotion of the HPV-related vaccine and
screening programs, many patients with CC are already advanced
or have locally advanced cancer at diagnosis, which leads to a
poor prognosis. Previous studies found that 5-year survival rate
of CC patients detected at an early stage is 92% (Bray et al., 2018),
whereas the 5-year survival rate for advanced CC patients,
especially for metastatic CC patients, whose survival rates
range from 5% to 15%, is still low (Moore, 2006). In order to
improve survival rates, primary screening and early detection of
CC are high priorities. The appropriate biomarkers for clinical
diagnosis and prognosis have not been identified yet. Thus, better
prognostic biomarkers for CC development are urgently required
to increase patient survival.

As a central pathway of cellular oxidative phosphorylation, the
TCA cycle participates in physiological processes such as cellular
bioenergetics, biosynthesis, and REDOX balance. Most cancers,
including CC, are a disease characterized by the accumulation of
genetic alterations and genetic dysregulation, leading to uncontrolled
cell proliferation requiring increased energy production and
macromolecular synthesis (DeBerardinis and Chandel, 2016). In
response to increased metabolic stress, malignant cells often
reprogram their biochemical pathways so that nutrients can be
rapidly absorbed and broken down, thereby promoting disease
transformation, maintenance, and progression. As it is universally
accepted that cancer cells primarily use aerobic glycolysis for
respiration, the TCA cycle has been overlooked until recently in
cancer metabolism and tumorigenesis. With modern technological
advances such as unbiased and targetedmetabolomics alongwith high-
throughput sequencing technology, there are a wealth of new
discoveries in the field of tumor metabolism. Recent studies have
found that gankyrin positively regulates TIGAR transcription to
promotes hepatocellular carcinoma progression by accelerating the
conversion of glucose metabolism to PPP and TCA cycle (Yang et al.,
2022). Furthermore, glutamine has been shown to be an indispensable
nutrient source inmany cancer types, particularlyMYC-driven cancers
(DeBerardinis and Cheng, 2010). Researchers pay increasing attention
to lipid metabolism in tumorigenesis recent years. To sum up, these
studies have provided compelling evidence that the TCA cycle serves as
a significant role in cancer metabolism and tumorigenesis (Sajnani
et al., 2017).

In this study, we conducted a series of analysis including Cox
regression, LASSO regression andmultivariate Cox regression based on

TCA cycle-associated genes in CC. A prognostic risk model based on
7 gene signatures was constructed via TCGA database and externally
validated by Gene Expression Omnibus (GEO) database. In the
meanwhile, the model provided an indication of prognosis,
diagnostic value and predicting response to chemotherapy for CC.

Materials and methods

Data collection and preprocessing

From TCGA database (https://portal.gdc.cancer.gov/), we
obtained RNA sequence transcriptome data and relevant clinical
information of 304 patients with CC and 3 normal adjacent tissue
samples. From the GEO database (https://www.ncbi.nlm.nih.gov/
geo/, GSE44001), we downloaded RNA sequencing data and clinical
information of 300 patients for external validation.

Identification of differentially expressed TCA
cycle-related genes

The list of TCA cycle-related genes was obtained through literature
mining (Arnold et al., 2022). Their mRNA expression levels between
CC and normal adjacent tissue samples were compared according to
TCGA cohort. The limma software package was used to identify the
differentially expressed TCA cycle-related genes with the significance
threshold (p < 0.05 and |log2FC|>1.5), which were presented as a
heatmap. The “corrplot” package was used to reveal correlations
between DEGs associated with the TCA cycle. An interaction
network of proteins among TCA cycle-related DEGs was
constructed using STRING and visualized using Cytoscape 3.8.0.

Consensus clustering

The “ConsensuClusterPlus” R package was used for the analysis
the comprehensive expression of the 18 differentially expressed TCA
cycle-related genes to identify distinct subgroups of 302 CC samples.
It was repeated 1,000 times to ensure classification stability
(parameters: clustering algorithm, k-means; distance, Euclidean).
The optimal k value was determined based on cumulative
distribution function and delta area values. Principal Component
Analysis (PCA) were performed by “Rtsne” R package to reduce the
dimension of the 18 DEGs. The Kaplan-Meier method and log-rank
test were used to evaluate the overall survival (OS) rate of patients
with different subtypes. Chi-square test was used to analyze the
distribution of age, tumor grade, tumor stage and histological type
among different clusters.
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Construction of TCA cycle related
prognostic signature

To sort out TCA cycle related genes with potential prognostic
value (p < 0.05), univariate Cox analysis was performed for OS.
Next, using a least absolute shrinkage and selection operator
(LASSO) regression model, the optimal value was determined to
build a prognostic gene signature. We used R’s glment package to
perform Cox regression analysis and LASSO. On the basis of the
following formula: Risk score = ∑Coefgene × Expgenes, risk scores
for every single patient was calculated, where Coefgene represents
the coefficient of each prognostic gene and Expgenes represents the
expression level of each gene. According to the median risk scores,
patients were divided into high-risk and low-risk group. In
addiction, we plotted the receiver operating characteristic (ROC)
curves and Kaplan–Meier plots. To perform the validation of the
prognostic model, GEO dataset (GSE44001) was analyzed the
prognostic value with similar methods.

Functional Enrichment Analysis and
cuproptosis-related gene analysis

Gene set enrichment analysis (GSEA) (https://www.
broadlnstitute.org/gsea/) was used to identify differential
expressions of genes (gene sets) that were functionally related
and whose enrichment in CC patient subgroups was significant.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
databases were downloaded from the molecular signatures
database (MSigDB) as the functional enrichment reference set
(http://www.gsea-msigdb.org). Finally, the significantly enriched
KEGG pathways are shown centrally. Gene set variation analysis
(GSVA) was implemented in the “GSVA” R package to investigate
potential molecular characteristics that differed between high- and
low-risk groups. Access to the MSigDB, the Hallmark gene set “c2.
cp.kegg.v2022.1. Hs.symbols.gmt” was gotten to applied in GSVA.
According to a threshold of |log2FC| > 0.1 and p < 0.05, DEGs
between high- and low-risk groups were screened and undergone to
gene ontology (GO) and KEGG analyses using the “clusterProfiler”
R package. Furthermore, we made a comparation the expression
levels of cuproptosis-related genes between the high-risk group and
the low-risk group, and visualized them by box plots.

Immune checkpoint analysis and the role of
the predictive signature in predicting the
clinical treatment response

Spearman correlation analysis was performed using “cor.test” in
R to analyze the correlation between immune checkpoint expression
with p < 0.05 as the cutoff for significance. The pRRophetic R
package was used to predict chemosensitivity based on data from the
Genomics of Drug Sensitivity in Cancer pharmacogenomics
database. The half maximal inhibitory concentration (IC50) of
clinically commonly used chemotherapy drugs was calculated to
evaluate the role of predictive signatures in predicting the treatment
response of CC. We compared the IC50 values between the high-
and low-risk groups via Wilcoxon signed-rank test.

Analysis of quantitative reverse
TranscriptionPolymerase chain reaction
(qRT-PCR)

Both cervical cancer and adjacent non-cancerous tissues used
in this study were obtained from postoperative patients with
cervical cancer from 2019 to 2022 in Department of
gynecology, Guangdong Women and Children Medical
Hospital. All samples were obtained through review by the
ethics committee, and the informed consent of CC patient was
acquired. We extracted RNA from specimens by utilizing the
TRIzol reagent (Ambion, United States), followed by reverse
transcription into cDNA utilizing the QuantiTect Reverse
Transcription Kit (Promega, United States). Quantitative PCR
(qPCR) is a technique for measuring the amount of DNA
present in a sampl in real time. With the aid of SYBR-Green
(Vazyme, China), real-time qPCR assays were carried out, and
expression levels were standardized to beta-actin levels. The
sequences of primers are listed in Table 1.

Statistical analysis

All statistical analyses were performed with the use of R software
(Version 4.2.1). Wilcoxon test was used to analyze the difference in
the expression of TCA-related genes between normal and tumor
tissues. Cox regression model was used for univariate and
multivariate survival analysis to screen independent prognostic
signature. The OS of patients in the high and low risk groups
was analyzed by the Kaplan-Meier method and log-rank test. The

TABLE 1 Consists of a collection of primer sequences utilized in this study.

Primer Sequence (5′to 3′)

ACSL1-F CTTATGGGCTTCGGAGCTTTT

ACSL1-R CAAGTAGTGCGGATCTTCGTG

ALDOA-F CAGGGACAAATGGCGAGACTA

ALDOA-R GGGGTGTGTTCCCCAATCTT

FOXK2-F GGAGGCGTCTGAGTCTCCA

FOXK2-F CCCACCTTGTACCCTGAAGA

GPI-F CCGCGTCTGGTATGTCTCC

GPI-R CCTGGGTAGTAAAGGTCTTGGA

MDH1B-F CTAGCATGACGACTGAACTGATG

MDH1B-R AGAGGCACTGGTGATCCAGA

MDH2-F TCGGCCCAGAACAATGCTAAA

MDH2-R GCGGCTTTGGTCTCGATGT

MTHFD1-F GCGCCAGCAGAAATCCTGA

MTHFD1-R AGGTACTTGCTCCTTCAACTGA

Beta-actin-F GTGAAGGTGACAGCAGTCGGT

Beta-actin-R AAGTGGGGTGGCTTTTAGGAT
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ROC curve was drawn and the area under the curve (AUC) was
determined by using the “survivalROC” software package.
GraphPad Prism 9 program was used to draw scatter plots, and
paired t-test was used to detect the differences in the expression of
prognostic related genes between cervical cancer tissues and
adjacent tissues. A p-value of less than 0.05 was considered to be
statistically significant (p < 0.001 = ***, p < 0.01 = **, and p <
0.05 = *).

Results

Identification of TCA cycle-related DEGs
between normal and CC tissues

A list of 117 TCA cycle-related genes was identified
(Supplementary Table S1), based on published data, and their
RNA expression levels compared in TCGA data from 304 CC
and 3 normal adjacent tissue samples. There were
18 differentially expressed TCA cycle-related genes identified,
with a threshold of p < 0.05 and |log2FC > 1.5|, of which 17

(PKM, GPI, IDH1, SHMT1, MTHFD1, SHMT2, ENO1, IDH2,
ALDOA, DHFR, ELOVL3, SCD, TYMS, HK2, ALDOB, and
PKLR) were upregulated and only one gene, ACAT1, was
downregulated in tumor tissues (Figure 1A). Correlations
among the mRNA expression levels of TCA cycle-related
DEGs were analyzed by Pearson correlation analysis
(Figure 1B). The results showed that all the TCA cycle-related
DEGs had a positive correction with each other. In particular,
FASN was significantly correlated with SCD (r = 0.66, p < 0.001)
and PKM was significantly correlated with ENO1 (r = 0.63, p <
0.001). Construction of a PPI network revealed that the top
5 genes including PKM, IDH1, ENO1, PKLR and IDH2 were
selected, based on their values of closeness, to be the hub nodes
in the PPI network (Figure 1C).

Consensus clustering based on TCA cycle-
related DEGs

To explore the relationships between CC subtypes and expression
of the 18 TCA cycle-Related DEGs, consensus clustering analysis was

FIGURE 1
Differential expressions of 18 TCA cycle-related genes and tumor subclusters based on the TCA cycle-related DEGs. (A) The heatmap showed the
18 TCA cycle-related genes in tumor and normal adjacent tissues. (B) Display of the relationship between the TCA cycle-related DEGs. (C) PPI network
indicated the interactions of the TCA cycle-related genes. (Red and green colors represent >0.65 and < = 0.65 closeness respectively).
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performed to classify tumors according to expression levels of TCA
cycle -related DEGs. Clustering variable (k) values from 2 to 9 were
applied; when k = 2, intragroup correlations were low. Hence, patients
with CC could be divided into two different subtypes, including
215 cases in cluster 1 and 87 cases in cluster 2 (Figures 2A, B).
PCAwas conducted to verify the ability of themodel to group patients
in the entire set and observed that patients in different clusters were
dispersed in two directions (Figure 2C). There was a significant
difference in OS time between the two clusters (p = 0.041)
(Figure 2D). Further, the associations between the clustering and
clinicopathological parameters were examined. The significant
difference was found between cluster 1 and cluster 2, for the
survival state (p < 0.05) and pathological type (p < 0.01). In
contrast, other parameters such as age, tumor grade and clinical
stage were no significant different (Figure 2E).

Construction of Prognostic Signature for
TCGA CC

The TCA cycle-related genes were all chosen for the univariate
Cox regression analysis, and we found that 12 genes were
significantly associated with OS in TCGA CC (Figure 3A). A
LASSO regression analysis was applied to establish a prognostic
gene signature using the 12 genes mentioned above. Following
LASSO analysis to minimize overfitting (Figures 3B,C), seven
genes involving ACSL1, ALDOA, FOXK2, GPI, MDH1B,
MDH2 and MTHFD1 were identified (Figure 3D).

The risk score of seven genes was also calculated for further
univariate and multivariate Cox regression analyses. The risk score
formula to predict OS was developed as follows: risk score =
(−0.080 × ACSL1) + (−0.036 × ALDOA)+ (0.014 × FOXK2) +
(−0.068 × GPI) + (0.102 × MDH1B) + (−0.216 × MDH2) +
(−0.089 × MTHFD1). It is well-known that survival times vary
among patients with different pathological types of CC. Thus,
prognosis analysis of the seven genes in different pathological
types of CC including cervical squamous cell carcinoma and
cervical adenocarcinoma. Using this signature, patients were
further classified into equal high- and low-risk groups, based on
the median risk value (Figures 4A, E). As illustrated in the scatter
diagram in Figures 4B, F, individuals in the high-risk score group
had worse outcomes than those in the low-risk group. In addition, a
significant difference in OS time was detected between the two
groups by Kaplan-Meier analysis (p < 0.01, p < 0.05) (Figures 4C, G).
ROC curve analysis was conducted to evaluate the sensitivity and
specificity of the prognostic model, resulting in AUC values of the
models for predicting 1-, 3-, and 5-year OS of 0.613, 0.663, and
0.736 in cervical squamous cell carcinoma, while 1-, 3-, and 5-year
OS of 0.699, 0.663, and 0.633 in cervical adenocarcinoma
respectively (Figures 4D,H).

External validation of the seven-gene
signature

To test the robustness of the gene signature model built from the
TCGA data, data from 300 patients with CC in the GEO cohort, the
GSE44001 dataset were also divided into high- and low-risk groups

using a similar formula to TCGA data (Figure 5A). According to the
uniform formula, the survival analyses found that patients with
higher risk scores had poorer OS (p = 0.001) (Figures 5B, C). In the
GSE44001 dataset, the AUC was 0.705 at one year, 0.701 at three
years and 0.68 at five years (Figure 5D).

Functional enrichment analysis

To explore the potential biological processes in high- and
low-risk groups, we performed a GSEA. The KEGG pathway
analysis showed that phototransduction, RNA polymerase, and
steroid biosynthesis were mainly enriched in the low-risk group
(Figure 6A), while allograft rejection, glycosaminoglycan
biosynthesis—keratan sulfate and other glycan degradation
were principally enriched in the high-risk group (Figure 6B).
To further identify the expression difference of these two groups,

FIGURE 2
Tumor subclusters based on the TCA cycle-related DEGs. (A)
Consensus clustering matrix for k = 2. (B) Delta area value for k = 2, 3,
4, 5, 6, 7, 8, and 9. (C) PCA analysis between different subclusters (red:
cluster 1; green: cluster 2). (D) Kaplan–Meier curves of OS in two
clusters. (E) Distribution heat map of seven prognostic TCA cycle-
related genes and clinicopathological variables in the cluster1 and
cluster 2 (p < 0.01 = **, and p < 0.05 = *).
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the GSVA enrichment analysis revealed that cancer pathways,
including Wnt, Notch and mTOR signaling pathway were highly
expressed in low-risk group, compared with high-risk group
(Figure 6C). These results suggest that Metabolic
reprogramming modulates tumor proliferation, apoptosis, and
cell cycle via these pathways. The box plot of Cuproptosis-related
gene analysis illustrated that in the low-risk group, CDKN2A
DLAT DLD GLS LIAS MTF1, and PDHA1 were significantly
downregulated in the high-risk group (Figure 6D). The finding
echoed the definition of the novel cell deathmodality
“Cuproptosis” which is featured by disturbing specific
mitochondrial metabolic enzymes (Tsvetkov et al., 2022).

Correlation between the predictive
signature and CC therapy

Correlation assessment of the association between risk score and
immune checkpoint-related genes found that PD-L1, 4-1BBL, OX40L,
GITR, B7.1, and B7.2 had a negative correction with the risk score
(Figure 7A). In other words, CC patients with higher risk scores had
lower expression levels of these immune checkpoints. Our data
suggest that patients in low-risk group may be more sensitive to
immunotherapy. In addition to immunotherapy, we also analyzed the
association between the predictive signature and the efficacy of
general chemotherapy for CC. The results found that the IC50 of
sunitinib, paclitaxel, cisplatin, and docetaxel was lower in the low-risk
group (Figure 7B), which is helpful for exploring individualized
treatment schemes suitable for high- and low-risk group patients.

Real-time quantitative reverse transcription
PCR (qRT-PCR).

To determine whether the seven prognostic genes were
differentially expressed in CC tissues, a total of 19 paired clinical
CC tissues and adjacent normal tissues were analyzed each gene
expression using qRT-PCR. The findings illustrated that the
expression levels of ACSL1, ALDOA, FOXK2, MDH2, and
MTHFD1 in cervical cancer specimens were differentially
expressed in contrast with those in normal specimens, whereas
there was no significant difference of the expression levels of GPI
and MDH1B (Figure 8).

Discussion

CC with high incidence and mortality rate remains a
considerable health burden in females worldwide. The occurrence
and development of CC is a complex, multi-step and multi-gene
process, among which high-risk human papillomavirus persistent
infection is the main factor (Crosbie et al., 2013). Previous studies
stress the importance of TCA cycle in cancer because its products
influence cell viability and proliferation (DeBerardinis and Chandel,
2016; Kim and DeBerardinis, 2019). Further, accumulating evidence
to illustrate that metabolic heterogeneity influences therapeutic
vulnerabilities and may predict clinical outcomes (Eniafe and
Jiang, 2021). It used to be thought that cancer progression bypass
TCA cycle which is in accord with Warburg effect. However, such
concept has been challenged and may be revised with the increasing

FIGURE 3
Establishment of the TCA cycle-related signature in the TCGA dataset. (A)Univariate cox regression analysis screened prognostic TCA cycle-related
genes (p < 0.05). (B) LASSO regression of the 12 prognostic genes. (C) Cross-validation for tuning the parameter selection in the LASSO regression. (D)
Stepwise multivariate cox regression analysis showed 7 independent prognostic genes.
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FIGURE 4
Prognostic value of the risk patterns of the signature in the TCGA dataset and prognosis analysis in different pathological types of cervical cancer:
cervical squamous cell carcinoma in (A–D) and cervical adenocarcinoma in (E,F). (A,E)Distribution of risk score. (B,F) Survival status plot and survival time.
(C,G) Kaplan-Meier analysis of OS. (D,H) ROC curves analysis between high- and low-risk groups.

FIGURE 5
Validation of the risk model in the GEO cohort. (A)Distribution of risk score. (B) Survival status plot and survival time. (C) Kaplan-Meier analysis of OS.
(D) ROC curves analysis between high- and low-risk groups.
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studies demonstrated that TCA cycle is of great importance in
cancers. TCA cycle also generates energy and building blocks to
meet the need of cancer cells growth, but hyperactivation of TCA
cycle was previously considered to produce excess reaction oxygen
species that is otherwise toxic to cells.

One study showed that through AMPK-mediated PDHA
phosphorylation, the TCA cycle drives cancer cells to adapt to
the metastatic microenvironment for metastasis (Cai et al., 2020).

Besides, recent reports also demonstrated that certain TCA
intermediates, such as oxaloacetate (OAA) and ketoglutarate
(a-KG), play an important role in ROS detoxification (Sawa
et al., 2017). Altogether, TCA cycle play a non-negligible role in
tumorigenesis, metastasis and therapy. Therefore, we constructed an
innovative signature based on TCA cycle associated genes. The
results suggested that the TCA cycle related signature have
substantial value for predicting OS and the drug sensitivity in CC.

FIGURE 6
Functional Analysis DEGs between low- and high-risk subgroups. GSEA KEGG pathway enrichment in low-risk group (A), and high-risk group (B). (C)
The heatmap of KEGG pathways between low- and high-risk subgroups analyzed by GSVA. (D) Box plot of cuproptosis-related genes analysis based on
low- and high-risk subgroups; *p < 0.05, **p < 0.01, ***p < 0.001.
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The signature was comprised of seven core genes involving
ACSL1, ALDOA, FOXK2, GPI, MDH1B, MDH2 and MTHFD1.
FOXK2 was targeted by TP53TG1 via regulating miR-33a-5p

and with the involvement of PI3K/AKT/mTOR signaling
pathway to accelerates the CC development (Liao et al.,
2022). The mechanism study confirmed that circ-ITCH

FIGURE 7
Comparison of treatment drugs sensitivity between high- and low-risk groups. (A)Correlation analysis of the expressions of six immune checkpoints
with riskscore. (B) IC50 of cisplatin, sunitinib, docetaxel and paclitaxel in high and low risk groups.

FIGURE 8
qRT-PCR The results showed that the expression of ACSL1, ALDOA, FOXK2, MDH2, and MTHFD1 in cervical cancer was significantly expressed
compared with normal group. ns p > 0.05; pp < 0.05; ppp < 0.01.
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regulated the expression of FOXK2 by adsorbing microrRNA-
93-5p (miR-93-5p) to inhibit tumor growth (Li et al., 2020).
Notably, FOXK2 was upregulated in the high-risk group in our
model. Except for FOXK2, other genes involved in the model
have not previously been studied in the context of CC. ACSL1,
encoding an isozyme of the long-chain fatty-acid-coenzyme in a
ligase family, is downregulate by MiR-27a-3p and MiR-205 to
increase the risk of liver cancer and hepatocellular carcinoma
respectively (Cui et al., 2014; Sun et al., 2020; Quan et al., 2021).
Similarly, ACSL1 acted as a protective factor in our prognostic
model. ALDOA increased most markedly in response to TGF-β
and further the results of in vitro and in vivo experiments show
that ALDOA is associated with the proliferation and metastasis
of pancreatic cancer cells (Ji et al., 2016). GPI, a member of the
glucose phosphate isomerase protein family, can be used as a
potential biomarker for predicting OS of hepatocellular
carcinoma (Lyu et al., 2016). Numerous studies have shown
that the overexpression of GPI/AMF is connected with poor
prognosis, such as tumor invasion and the increased mortality in
many cancer types, including gastrointestinal (Gong et al.,
2005), kidney, lung and breast cancers (Baumann et al., 1990;
Nabi et al., 1991; Jiang et al., 2006). MDH1B, (Malate
Dehydrogenase 1B) is one of alleles encoding MDH isozymes.
Carm1-mediated arginine methylation of MDH1 inhibits
glutamine metabolism, thereby inhibiting the growth of
pancreatic cancer (Wang et al., 2016). The tumor-suppressive
effects of methyl 3-(3-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)
propanamido)benzoate were investigated and demonstrated
that dual inhibition of MDH1 and MDH2 is an effective
approach to target tumor metabolism (Naik et al., 2017). As a
metabolism-related enzyme, MDH2 is overexpressed in
endometrial carcinoma tissues and correlated with its grade.
These results demonstrated that MDH2 promoted cancer
progression of endometrial cancer (Zhuang et al., 2017).
Studies have found that MTHFD1 deficiency can significantly
inhibit the antioxidant defense ability of cells and inhibit the
distant metastasis of tumors, which indicates that the high
expression of MTHFD1 in liver cancer tissues indicates a
poor prognosis.

In this study, we calculated a risk score based on the
constructed prognostic model, and classified patients with
cervical cancer into high-risk and low-risk groups according to
the median of this risk score. The Kaplan-Meier survival curve
showed that the OS of the high-risk group was significantly lower
than that of the low-risk group. The calculation of the AUC value
showed the value of the risk signature in predicting survival
prognosis. Validation set based on the GEO database was
analyzed with similar methods to verify the stability of the
predictive model. It is important to note that chemotherapy is
the main treatment approach for CC, but it often causes a number
of side effects, and cancer cells can become resistant to
chemotherapy (Grasso et al., 2017; Choi et al., 2021). Cancer
treatment failure in CC can be attributed to drug resistance.
Thus, assessment of individual drug response is crucial in the
treatment of CC. Accumulating evidence suggest that this
chemoresistance is strongly associated with specific metabolic
abnormalities in cancer cells, particularly increased use of
glucose and the amino acid glutamine that promotes anabolic

processes. (Luo et al., 2009; Vivanco, 2014; Belizario et al., 2016). In
fact, Reprogramming of metabolic pathways in cancer cells is a
complicated and confusing process. A popular view holds that a
key function of oncogenes is to reprogram cellular metabolism
back to the building blocks that maintain unrestrained tumor
growth (Yao et al., 2008). In our study, we developed an integrated
computational approach to identify metabolic reprogramming of
multiple drugs based on TCA cycle related genes.

Finally, we carried out qRT-PCR on the seven TCA cycle associated
genes linked to the prognoses of CC patients. These results
demonstrated the accuracy of our first step of difference analysis,
improved the credibility of subsequent studies, and also confirmed
the association of risk genes with TCA cycle, further validating the
predictive power of our model.

Although this study found that TCA cycle related pathways
affect the progression and treatment of CC, there remain some
limitations. Firstly, the small number of normal samples in
TCGA database may lead to a certain bias in the analysis.
Secondly, in order to explore the direct mechanisms
additional in vitro and in vivo studies are necessary. Finally,
this study is designed as a retrospective study, and a large
number of experimental data are needed to confirm the study
results.

Conclusion

In conclusion, our study revealed that the prognostic model
based on TCA cycle associated genes are significantly correlated with
the survival and clinicopathological characteristics in CC. TCA cycle
related signature are effective biomarkers for predicting the
prognosis of CC patients.
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