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Background: Pulmonary tuberculosis (PTB) is a chronic infectious disease and is
the most common type of TB. Although the sputum smear test is a gold standard
for diagnosing PTB, the method has numerous limitations, including low
sensitivity, low specificity, and insufficient samples.

Methods: The present study aimed to identify specific biomarkers of PTB and
construct a model for diagnosing PTB by combining random forest (RF) and
artificial neural network (ANN) algorithms. Two publicly available cohorts of TB,
namely, the GSE83456 (training) and GSE42834 (validation) cohorts, were
retrieved from the Gene Expression Omnibus (GEO) database. A total of 45
and 61 differentially expressed genes (DEGs) were identified between the PTB
and control samples, respectively, by screening the GSE83456 cohort. An RF
classifier was used for identifying specific biomarkers, following which an ANN-
based classification model was constructed for identifying PTB samples. The
accuracy of the ANN model was validated using the receiver operating
characteristic (ROC) curve. The proportion of 22 types of immunocytes in the
PTB samples was measured using the CIBERSORT algorithm, and the correlations
between the immunocytes were determined.

Results: Differential analysis revealed that 11 and 22 DEGs were upregulated and
downregulated, respectively, and 11 biomarkers specific to PTB were identified by
the RF classifier. The weights of these biomarkers were determined and an ANN-
based classification model was subsequently constructed. The model exhibited
outstanding performance, as revealed by the area under the curve (AUC), which
was 1.000 for the training cohort. The AUC of the validation cohort was 0.946,
which further confirmed the accuracy of the model.

Conclusion: Altogether, the present study successfully identified specific genetic
biomarkers of PTB and constructed a highly accurate model for the diagnosis of
PTB based on blood samples. The model developed herein can serve as a reliable
reference for the early detection of PTB and provide novel perspectives into the
pathogenesis of PTB.
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Introduction

Tuberculosis (TB) affects nearly five million adult males,
3.5 million adult females, and 1 million children, and there are
approximately 10.4 million cases of TB worldwide (Jeremiah
et al., 2022). Owing to the increasing global population, public
health departments are continually aiming to improve the
diagnostic efficiency of TB and reduce its rate of transmission.
Microscopic examination of sputum smears for acid-fast bacilli
and sputum cultures are commonly used for diagnosing
pulmonary TB (PTB) worldwide. However, these
microbiology-based approaches and culture methods are time
consuming, and the probability of infection is high (Barac et al.,
2019). It is therefore urgently necessary to study and development
non-sputum-based, simple, sensitive, and specific tests for
diagnosing PTB. The biomarkers of PTB have been
increasingly explored in the last three years owing to several
studies on the identification of novel diagnostic biomarkers and
development of novel diagnostic methods for PTB (Khambati
et al., 2021; Morrison and Mcshane, 2021; Khimova et al., 2022).
These studies have paved the way for the diagnosis and
identification of novel biomarkers of PTB. While there has
been success in clinical use of pathogen-based biomarkers in
the form of Cepheid GeneXpert and Urine Lipoarabinomannan
(LAM), host-based biomarkers are in less advanced stages of
development (Nogueira et al., 2022). Based on previous literature,
the present study aimed to identify more specific biomarkers of
PTB using blood samples.

Blood-based gene expression signatures are the most
potential biomarkers for diagnosing PTB. According to the
target product profile (TPP) for non-sputum biomarker triage
tests published by the World Health Organization in April 2014,
TPPs require a minimum diagnostic sensitivity of 90% and
specificity of 87% for the diagnosis of PTB in adults
(Denkinger et al., 2019). Several recent studies have
demonstrated that whole-blood RNA signatures can be used
for predicting active TB infections and determining the
progression of Mycobacterium tuberculosis infections in
individuals who are at a risk of developing active TB (Kaforou
et al., 2013; Blankley et al., 2016; Sweeney et al., 2016; Zak et al.,
2016).

The increasing use of high-throughput sequencing technologies
in the last decade has enabled the investigation of various aspects of
diverse diseases (Dillies et al., 2013; Sullivan et al., 2017). Large
volumes of high-throughput data have been stored in public
platforms owing to the rapid development of high-throughput
sequencing technology. These data can therefore be used for
selecting critical indicators or feature biomarkers, which is a
significant challenge for the development of diagnostic models.
Machine learning techniques, including random forest (RF) and
artificial neural network (ANN), can provide novel insights for
solving this problem, and have been widely employed in previous
studies for constructing diagnostic models by analyzing sequencing
data (Dillies et al., 2013; Sullivan et al., 2017). Random Forest
algorithm can perform random sampling to screen the target
biomarkers and has high predicted accuracy (Byeon, 2019).
Furthermore, the Artificial Neural Network can be used to
evaluate the weight of target biomarkers screened by RF and

construct the predicted model for PTB with divided training and
validation datasets (Curchoe et al., 2020). However, multi-
biomarker-based diagnostic models and the combination of RF
and ANN have not been employed for the diagnosis of TB to date.

The present study aimed to construct a multi-mRNA
diagnostic model for the diagnosis of PTB. To this end, the
genes that were differentially expressed between the PTB and
control samples in the public datasets in the Gene Expression
Omnibus (GEO) database were initially identified. The essential
biomarkers for classifying PTB were screened using an RF
classifier, and the weight of each biomarker was determined
using ANN. A diagnostic model was subsequently developed
based on these biomarkers and the accuracy of the model in
discriminating between PTB and control samples was verified by
receiver operating characteristic (ROC) curve analysis. The area
under the curve (AUC) of the training (GSE83456) and
validation (GSE42834) cohorts was determined to be
1.000 and 0.946, respectively. The high accuracy indicated
that the diagnostic model constructed herein met the
necessary requirements for the clinical diagnosis of PTB. The
protocol and algorithms used in the present study are depicted in
Figure 1.

Methods

Data processing

In this study, two RNA expression datasets were initially
retrieved from the GEO database using the keywords
“tuberculosis, normal.” The GSE83456 and GSE42834 datasets
were processed using the GPL10558 platform of an Illumina
HumanHT-12 V4.0 Expression BeadChip system. Based on the
available literature on the use of machine learning for the
diagnosis of diseases, we assumed that the sample size of the two
datasets was appropriate for developing a machine learning-based
diagnostic model. The obtained RNA-seq data were subsequently
annotated and normalized using R software (version 4.2.1). The
GSE83456 and GSE42834 datasets were selected as the training and
validation cohorts, respectively.

Identification of differentially expressed
genes (DEGs)

The DEGs between the PTB and control samples in the training
set were identified using the limma package in R, with p < 0.05 and |
log2foldchange (FC)| >1.0. The DEGs were visualized using the
pheatmap and ggplot2 packages in R.

Functional enrichment analysis

The identified DEGs were subjected to Gene Ontology (GO)
enrichment analysis for investigating the biological functions of the
DEGs, using the clusterProfiler package in R (version 4.1.5). GO
terms with p < 0.05 were considered to be significantly enriched. The
Metascape webserver (http://metascape.org) was also used to
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annotate the enriched biological pathways for comprehensive
analysis of the biomarkers. The most enriched functions or
pathways were subsequently displayed using bubble and bar plots.

Screening significantly enriched DEGs
using RF

The DEGs were further screened using the randomForest
package in R software. The optimal tree number was first
identified based on the best stability and lowest error rate by
calculating the error rate of each of the 1–500 trees. We
established an RF model based on the optimal tree number for
screening the specific PTB genes as candidate biomarkers using the
mean decrease in Gini coefficient. In the RF algorithm, a gene
importance value greater than 2 is considered to be a common
screening criterion, and has been used in other studies on machine
learning-based diagnostic models.

Construction and evaluation of an ANN-
based diagnostic model

In order to construct an ANN-based diagnostic model, the min-
max method was used for normalizing the input data, which were
subsequently converted into the “Gene Score” according to the gene
expression levels. For instance, the expression of an upregulated
gene was denoted as 1 if the expression level was higher than the
median expression value across all the samples, or denoted as 0 in
other instances. Similarly, the expression of a downregulated gene
was generally denoted as 0, or as 1 if the expression level was higher.
A neural network-based classification model was subsequently
constructed by calculating the weights of the significantly
enriched DEGs using the neuralnet package in R (version 4.2.1).
A neural network contains an input layer, a hidden layer, and an
output layer. In this study, the number of hidden layers was set to 5,
and the number of output parameters was set to 2 nodes (contract/
segment). Additionally, the AUC value of the training cohort was

FIGURE 1
Flow chart of the present study. DEGs, differentially expressed genes; RF, random forest; ANN, artificial neural network.
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FIGURE 2
Identification of DEGs in the training cohort. (A) The heatmap of the 33 DEGs, including 11 upregulated and 22 downregulated ones. PTB were
represented by red samples, normal were represented by blue samples. Red blocks indicate high-expressed genes, and blue blocks indicate low-
expressed genes. Con, control group; PTB, Pulmonary Tuberculosis. (B) Volcano plots of all DEGs in theGSE83456 dataset. Two dotted lines on the X-axis
represent the value of log2FC is −1 and 1. The dotted line on the Y-axis represent the adj.p.value is 0.05. Red dots represent high-expressed genes,
blue dots represent low-expressed genes and black dots represent not significant changed genes.
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calculated using the pROC package in R (version 4.2.1). The
accuracy of the model was also verified using the independent
GSE42834 cohort.

Analysis of immune infiltration

CIBERSORT is a deconvolution algorithm that is used for
quantifying cell types based on the gene expression profiles, and
was used to determine the abundance of 22 types of immune cells in
the PTB and control tissues. Using the CIBERSORT algorithm, the
immune infiltration landscape in the GSE83456 cohort was
comprehensively analyzed, and the differences between the
control and PTB groups were depicted using waterfall and
correlation plots.

Statistical analyses

The differences in gene expression between the control and PTB
samples were compared using Student’s t-tests. The categorization
effects of the critical biomarkers on the PTB and control specimens
were determined using ROC curves and the AUC using the pROC
package in R. Statistical analysis was performed using the R software
(version 4.2.1) and GraphPad Prism (GraphPad Prism, USA). p <
0.05 was considered to be statistically significant, unless otherwise
stated.

Results

Data processing and identification of DEGs

The limma package in R was used for identifying the DEGs
between the 45 PTB and 61 control samples using the classical
Bayesian algorithm, based on the following criteria: p < 0.05 and
|log2FC| >1. A total of 33 DEGs were finally identified, including
11 and 22 DEGs that were significantly upregulated and
downregulated, respectively. As depicted in Figure 2A, the
expression of these DEGs differed significantly between the PTB
and control groups. The results were graphically represented using

a volcano plot, which further revealed the differences in gene
expression and statistical significance of the DEGs (Figure 2B).

Functional enrichment analysis of DEGs

The biological significance of the 33 DEGs in the pathogenesis of
PTB was investigated by GO pathway enrichment analysis using the
clusterProfiler package in R. The findings revealed that the 33 DEGs
were primarily involved in immune-related functions, including
adaptive immune response based on somatic recombination of
immune receptors comprising immunoglobulin superfamily
domains, positive regulation of T cell activation, positive
regulation of leukocyte cell-cell adhesion, regulation of leukocyte
apoptotic process, and leukocyte apoptotic process. The findings are
presented in a bubble plot (Figure 3). The Metascape webserver was
also used for annotating the enriched GO terms. The results of
Metascape analysis revealed that the three pathways of DEGs were
significantly enriched (Figure 4A, B and C).

Screening key genes using an RF classifier

In order to identify the reliable diagnostic biomarkers of PTB,
the DEGs were classified using an RF classifier. According to
Figure 5A, which depicts the relationship between the RF tree
number and the error rate of the model, the trees with the lowest
error rate ntrees value (ntrees = 31) were selected. Based on the
model accuracy and decreased mean square error, the Gini
coefficient method was used for measuring the importance of
all the variables. The results of MeanDecreaseGini are provided
in Figure 5B. Kruppel-like factor 12 (KLF12) was identified as the
most important biomarker. A set of 11 specific biomarkers,
including KLF12, interleukin 23 subunit alpha (IL23A), neural
EGFL-like 2 (NELL2), Family With Sequence Similarity
102 Member A (FAM102A), Calcium Voltage-Gated Channel
Subunit Alpha1 E (CACNA1E), Oxysterol Binding Protein like
10 (OSBPL10), complement component C1q (C1QC), Hook
Microtubule Tethering Protein 1 (HOOK1), Chromosome
2 open reading frame 89 (C2orf89), inhibitor of DNA binding
3 (ID3), and Kelch Like Family Member 3 (KLHL3), with

FIGURE 3
Functional enrichment analysis results. Top five enriched GO terms in biological process (BP).
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significance >2 were selected as critical biomarkers for further
analysis. The heatmap revealed that CACNA1E and C1QC were
upregulated in the PTB group, while the remaining 9 genes were
downregulated (Figure 5C).

Construction of the ANN model

The weights of each of the biomarkers are provided in
Supplementary Table S1. The weights of the 11 biomarkers were
analyzed using ANN, based on the gene scores. The ANN model
consisted of one input layer, one hidden layer, and one output layer,
as depicted in Figure 6A. The input layer included 11 neurons,
hidden layer included five neurons and output layer included
2 neurons. The absolute partial derivative of the error function
was less than 0.01.

Validation of the ANN model

The performance of the ANN model was determined using
the pROC package in R, and the AUC of the training
GSE83456 cohort was 1.000. This indicated that the ANN
model performed exceptionally well in diagnosing PTB
(Figure 6B). The ANN model also demonstrated outstanding
performance with the independent GSE42834 validation cohort,
and the AUC of the validation cohort was determined to be 0.946
(Figure 6C).

Assessment of immune infiltration

The present study further investigated the correlation between
the ratios of the 22 types of immunocytes in the PTB and control
specimens using the CIBERSORT algorithm. The composition of
the immunocytes in the PTB and normal samples and the
relationships among the immunocytes are provided in Figure 7A.
The findings revealed a positive correlation between the levels of
M0 macrophages and monocytes, and between the levels of
M0 macrophages and neutrophils. However, there was a negative
correlation between the abundance of resting mast cells and
activated mast cells, levels of memory B cells and naïve B cells,
and the ratio of follicular helper T cells and neutrophils (Figure 7B).

Discussion

The early detection and diagnosis of PTB can reduce its chances of
transmission; therefore, identifying specific biomarkers for the prediction
of PTB is crucial for controlling disease progression. RF andANN can be
combined for developing reliable diagnostic models for certain diseases,
including osteoarthritis and hypertrophic cardiomyopathy (Xie et al.,
2020; Li S et al., 2022; Li Z B et al., 2022). RF andANNare advanced tools
for diagnosing PTB, but their main limitation is the necessity for trained
and qualified personnel for implementing these tools, as the construction
of neural networks, which includes training and testing, is a challenging
task. Additionally, the use of statistical tools for diagnosing diseases
continues to be a matter of difficulty.

FIGURE 4
The results of Metascape analysis. (A) The network of enriched terms. The 3 clusters were identified and rendered network graphics, in which terms
with a similarity score > 0.3 are connected by an edge. The thickness of the edge represents the similarity score. (B) Colored by p-value, terms containing
more genes tend to have amore significant p-value (C) Bar graph of enriched terms. Values of p determine the color of the bar. The values of p are lower,
and the color is more profound.
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The present study identified 33 DEGs between PTB and control
samples in the GSE83456 cohort. A total of 11 candidate genes were
identified using an RF classifier, and an ANN algorithm was used for
computing the weights of these genes. A classification model was

constructed for the diagnosis of PTB, and a ROC curve was
generated for assessing the efficacy of the classification by the
ANN model. An independent GSE42834 cohort was used for
determining the reliability of the classification model.

FIGURE 5
Screening PTB biomarkers by random forest. (A) The relations between the error rate and the number of decision trees. (B) The Gini coefficient
method in random forest modeling of the train cohort. The genetic variable is on the y-axis and the importance index is on the x-axis. (C)Heatmap of the
11 specific periodontitis biomarkers.
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The results of enrichment analysis demonstrated that the
majority of DEGs were primarily enriched in immune-related
functions. It has been reported that T cells are involved in the
development of TB, and the activation of T cells enhance
resistance to M. tuberculosis infections (Feruglio et al., 2017).
Leukocytes are also implicated in the inflammatory pathogenesis
of TB (Ocana-Guzman et al., 2021). However, adaptive immune
responses based on somatic recombination of immune
receptors comprising immunoglobulin superfamily domains have not

been previously reported in TB, and may serve as a novel therapeutic
target for PTB. Altogether, the findings revealed that these
DEG identified herein are positively involved in the immune
processes in PTB.

Of the 11 genes screened using the RF classifier, KLF12 (Natarajan
et al., 2022), IL23A (Khader et al., 2011), NELL2 (Yang et al., 2015),
OSBPL10 (Li et al., 2022), C1QC (Cai et al., 2014), and ID3 (Han et al.,
2021) have been identified as candidate biomarkers of TB in previous
studies.

FIGURE 6
Construction and evaluation of ANN diagnostic model. (A) Topology, which include one input layer, one hidden layer and one output layer, the
visualization of the artificial neural network. (B) ROC curves of train model in the GSE83456 dataset. (C) ROC curves of test model in the
GSE42834 dataset.
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Notably, the present study identified additional five genes that
have not been previously shown to be associated with the
pathogenesis of PTB. The KLHL3 gene, which is downregulated
in PTB, encode proteins that are components of the CullinRING

E3 ubiquitin ligase complex and are involved in the ubiquitin-
proteasome system. The complex degrades proteins and also
plays an essential role in maintaining cellular functions (Zhang
et al., 2022). It has been reported that the ubiquitin-proteasome

FIGURE 7
Immune infiltration assessment via the CIBERSORT in the GSE83456 dataset. (A) Composition of 22 immunocytes on PTB samples and normal. (B)
The relationship among 22 immunocytes are displayed in correlation matrix.
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system also plays a role in inducing CD8+ T cells (Shen et al., 2008).
Therefore, the downregulation of KLHL3 may suppress the
degradation of proteins that regulate the ubiquitin-proteasome
system and subsequently induce CD8+ T cells that participate in
the pathogenesis of PTB.

The present study revealed that the expression of HOOK1 is
downregulated in PTB. A previous study reported that enhancing
the interaction between HOOK1 and CD147 may increase the
exosomal levels of amyloid-β (Xie et al., 2018). The deposition of
amyloid-β has been reported to be associated with tuberculous
meningitis (Stroffolini et al., 2021). We therefore speculated that
HOOK1 may affect the deposition of amyloid-β to regulate the
pathogenesis of PTB. CD147++ Tregs cells, a recently described
highly suppressive and activated subset of human Tregs, are capable
of producing proinflammatory cytokines in TB (Feruglio et al.,
2015). These studies collectively suggest that HOOK1 may
participate in the pathological processes of PTB via multiple
pathways.

The CACNA1E protein can mediate the entry of calcium ions into
excitable cells and regulate various calcium-dependent processes.
Numerous studies have reported that calcium channel blockers have
anti-tuberculosis potential (Lee et al., 2015; Song et al., 2015; Lee et al.,
2021). Therefore, the upregulation of CACNA1E in PTB may result in
the activation of calcium channels and lead to the pathogenesis of PTB.

The present study is the first to identify the association between
FAM102A and the pathogenesis of TB. The findings revealed that
the expression of FAM102A was downregulated in the samples of
PTB in this study. Notably, protein-protein interaction (PPI)
analysis with STRING (string-db.org) revealed that the
FAM102A protein interacts with NELL2, which has been
confirmed as a biomarker of TB. It has been additionally
reported that NELL2 plays a crucial role in protecting cells from
environments that induce cell death (Kim et al., 2015). The
deficiency of NELL2 induces mitochondria-dependent cellular
apoptosis and inhibits cellular proliferation by phosphorylating
and activating extracellular signal-regulated kinase 1/2 (ERK1/2)
(Liu et al., 2021). These findings suggest that FAM102A can function
as a biomarker of PTB by interacting with NELL2, and subsequently
influence cellular apoptosis and regulate the pathogenesis of PTB.

The C2orf89 protein, also referred to as TRABD2A, could be
involved in activating resting CD4+ T cells but not activated CD4+

T cells. The TRABD2A protein is located on the plasma membrane
of resting CD4+ T cells and disappears following the activation of
T cells (Liang et al., 2019). CD4+ T cells produce cytokines, which are
vital in controllingM. tuberculosis infections (Ferreira et al., 2021). It
is therefore likely that the production of cytokines, including
interferon (IFN)-γ, by activated CD4+ T cells suppresses M.
tuberculosis infections and downregulates the TRABD2A protein
located on the plasma membrane of resting CD4+ T cells.

The particularities of our research are combining RF and ANN
methods innovatively, and multiple biomarkers combined diagnosis,
which showed outstanding results in the predictive power aspect. The
AUC of train model and valid model are both greater than 0.9.
Compared with several literatures (Manisha Singh et al., 2022; Yu
Dong Zhang, 2020) which utilize the chest radiography images to
detect Pulmonary Tuberculosis with the help of machine learning
tools (CAD, DL, ICNN), our work is analysing biomarkers from
peripheral blood biomarkers and constructing diagnostic model for

PTB with the combination of RF and ANN. Although, RF, ANN, or
other machine learning had been utilized in diagnosing TB (Dande
and Samant, 2018; Orjuela-Canon et al., 2022), combining RF and
ANN to diagnose PTB had never been reported. Our samples are both
from human blood, we could design the diagnostic kit based on the
eleven biomarkers and to detect the blood which sampling from
human fingers. It is we choose figure blood sampling rather than
sputum smear and X-ray that bring us the diagnostic convenience and
safety. However, the present study has certain limitations. Firstly,
although our diagnostic model performed well, the number of
samples in the training and validation datasets was relatively small.
Therefore, independent patient cohorts with a larger sample size are
necessary for evaluating the performance of the ANN-based
classification model developed herein, and sufficient samples need
to be collected from affiliated hospitals for this purpose. Secondly, all
the samples were only classified as normal or PTB, which may
influence the results of screening; therefore more subtypes of PTB
should be considered in future studies. Thirdly, the correlation
between the novel biomarkers and the pathogenesis of PTB remain
to be determined, and further experimental studies are necessary for
elucidating the underlying mechanisms by which the biomarkers
regulate the pathogenesis of PTB. Altogether, the model developed
herein has high accuracy and excellent diagnostic convenience owing
to the use of data obtained from routine blood tests.

Conclusion

Altogether, the present study successfully constructed a novel
diagnostic model for PTB. As the diagnostic method is based on
peripheral blood tests, a diagnostic kit can be designed based on the
11 biomarkers identified herein, which is highly convenient for the
rapid and accurate diagnosis of PTB. The diagnostic model,
biomarkers, and the peripheral blood test method discussed
herein provide novel insights into the underlying mechanisms
and can aid further studies on the clinical diagnosis of PTB.
However, further experimental studies are necessary for
determining the underlying mechanisms by which the identified
biomarkers regulate the pathogenesis of PTB.
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