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Background: Copper is an indispensable mineral element involved in many
physiological metabolic processes. Cuproptosis is associated with a variety of
cancer such as hepatocellular carcinoma (HCC). The objective of this study was to
examine the relationships between the expression of cuproptosis-related genes
(CRGs) and tumor characteristics, including prognosis and microenvironment
of HCC.

Methods: The differentially expressed genes (DEGs) between high and low CRGs
expression groups in HCC samples were identified, and further were analyzed for
functional enrichment analysis. Then, CRGs signature of HCC was constructed
and analyzed utilizing LASSO and univariate and multivariate Cox regression
analysis. Prognostic values of CRGs signature were evaluated by Kaplan-Meier
analysis, independent prognostic analysis and nomograph. The expression of
prognostic CRGs was verified by Real-time quantitative PCR (RT-qPCR) in HCC
cell lines. In addition, the relationships between prognostic CRGs expression and
the immune infiltration, tumor microenvironment, antitumor drugs response and
m6A modifications were further explored using a series of algorithms in HCC.
Finally, ceRNA regulatory network based on prognostic CRGs was constructed.

Results: The DEGs between high and low CRG expression groups in HCC were
mainly enriched in focal adhesion and extracellular matrix organization. Besides,
we constructed a prognostic model that consists of CDKN2A, DLAT, DLST, GLS,
and PDHA1 CRGs for predicting the survival likelihood of HCC patients. And the
elevated expression of these five prognostic CRGs was substantially in HCC cell
lines and associated with poor prognosis. Moreover, immune score andm6A gene
expression were higher in the high CRG expression group of HCC patients.
Furthermore, prognostic CRGs have higher mutation rates in HCC, and are
significantly correlated with immune cell infiltration, tumor mutational burden,
microsatellite instability, and anti-tumor drug sensitivity. Then, eight lncRNA-
miRNA-mRNA regulatory axes that affected the progression of HCC were
predicted.
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Conclusion: This study demonstrated that the CRGs signature could effectively
evaluate prognosis, tumor immune microenvironment, immunotherapy response
and predict lncRNA-miRNA-mRNA regulatory axes in HCC. These findings extend
our knowledge of cuproptosis in HCC and may inform novel therapeutic strategies
for HCC.

KEYWORDS

cuproptosis-related genes, hepatocellular carcinoma, prognosis, bioinformatics analysis,
immune microenvironment

Introduction

Hepatocellular carcinoma (HCC) accounts for approximately
90% of liver cancers and is a common cause of death in cancer
patients (Villanueva, 2019). The World Health Organization
estimates that more than 1 million patients will die of liver
cancer by 2030, according to annual projections (Villanueva,
2019). Liver cancer has a 5-year survival rate of 18% and is the
second most deadly cancer after pancreatic cancer (Jemal et al.,
2017). Effective treatments for advanced liver cancer are currently
unavailable, and most patients can only use a palliative therapy such
as chemoembolization. Therefore, it is necessary for us the
development of new methods to effectively treat liver cancer is of
utmost importance (Liver and Cancer, 2012; Llovet et al., 2016).

Previous studies showed that a variety of therapeutic methods
involving programmed cell death such as pyroptosis and ferroptosis
play an important role in inhibiting the occurrence and development
of tumors (Fang et al., 2020; Li and Li, 2020; Tan et al., 2020). Among
them, ferroptosis plays an important role in inhibiting tumor
growth, and the enrichment of intracellular iron ions enhances
the therapeutic effect of anti-cancer drugs (Li and Li, 2020).
Pyroptosis also has effects on tumor cell proliferation, invasion,
and metastasis, thereby affecting cancer prognosis (Fang et al., 2020;
Tan et al., 2020). Copper is an indispensable trace element involved
in various biological processes. The content of copper in the human
body under normal circumstances is maintained at a steady state,
but the content is modified under pathological conditions. For
example, the content of copper in tumor tissue and serum in
various cancers is significantly increased compared with the
content in normal tissues (Yaman et al., 2007; Baharvand et al.,
2014; Dragutinović et al., 2014; Kaba et al., 2015). The dysregulation
of copper storage induces oxidative stress and cytotoxicity, while the
effective regulation of copper content can affect cancer progression
(Davis et al., 2020; Golonka and Vijay-Kumar, 2021). Based on this
principle, a variety of copper chelators and copper ionophores have
been developed for the replacement of therapies against tumors
(Brady et al., 2014; Safi et al., 2014; Jemal et al., 2017; Roth and
Decaens, 2017).

Recently, Tsvetkov et al. (2022) discovered a new copper-
dependent mode of controlled cell death that differs from known
cell death forms: copper can bind directly to fatty acylation
components of the tricarboxylic acid cycle (TCA), leading to
proteotoxic stress and ultimately cell death. This process is called
cuproptosis, and cuproptosis-related genes (CRGs) were also
identified. The Cyclin-Dependent Kinase Inhibitor 2A/Multiple
Tumor Suppressor 1 (CDKN2A) gene, also known as P16 gene,
encodes multiple tumor suppressor 1 and belongs to the

INK4 family (Serrano, 1997). Dihydrolipoamide
S-acetyltransferase (DLAT) and dihydrolipoamide
S-succinyltransferase (DLST) are components of the pyruvate
dehydrogenase (PDH) complex. The oligomerization of DLAT is
due to the integration of copper and fatty acylated proteins in the
TCA (Tsvetkov et al., 2022). Glutaminase (GLS) is an enzyme that
converts glutamine to glutamate. Glutamine generates ATP by
entering the TCA cycle through the mitochondrial oxidative
phosphorylation or by recycling reducing equivalents through
lactate secretion (glutaminolysis), thereby contributing to the
production of energy and building blocks in cancer cells (Le
et al., 2012; Fendt et al., 2013; Zhang et al., 2019). Pyruvate
dehydrogenase E1 subunit alpha 1 (PDHA1) is a key component
of PDH, which converts pyruvate to acetyl-CoA (Ozden et al., 2014).
Deficiency of PDHA1 leads to mitochondrial dysfunction and
promotes glycolysis (Zhong et al., 2015). PDHA1 has an
important biological significance in a variety of human tumors
(Song et al., 2019). Seven genes (FDX1, LIAS, LIPT1, DLD,
DLAT, PDHA1, and PDHB) conferred resistance tocuproptosis,
while three genes (MTF1, GLS, and CDKN2A) sensitized the cells to
cuproptosis (Tsvetkov et al., 2022). Copper importers (SLC31A1)
and copper exporters (ATP7A andATP7B) are important factors in
keeping the intracellular copper concentration (Lutsenko, 2010).
Mutations in ATP7A and ATP7B genes were found to cause
Menke’s disease and Wilson’s disease (Nevitt et al., 2012).
NLRP3 may influence tumor immunity mainly by mediating
tumor-infiltrating lymphocytes and macrophages (Ju et al., 2021).
NFE2L2 pathway is an important modulator of cell homeostasis,
associated with enhanced tumor growth and aggressiveness (Hellyer
et al., 2021). However, only few studies on CRGs in HCC are
currently available. The study of the role of CRGs in HCC might
be potentially beneficial for the development of new targets in the
treatment of HCC.

This study comprehensively investigated the molecular
alterations and clinical relevance of CRGs in HCC. A total of
371 HCC patients were selected from The Cancer Genome Atlas
(TCGA) database, classified into 2 cuproptosis-related subtypes by
consensus clustering based on 19 CRGs, the signaling pathways of
differential gene enrichment in the two subtypes were analyzed, and
the differences in immune cell infiltration, important immune
checkpoints, and m6A methylation-related genes between the two
subtypes were measured. The CRGs associated with the prognosis of
HCC patients were also analyzed by logrank test and univariate
regression analysis. Gene and protein expression of prognostic
CRGs in HCC cells or tissues were also assessed, as well as their
association with anti-tumor drug sensitivity, m6A methylation-
related genes, and tumor microenvironment (TME). Prognostic
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models were developed to predict the overall survival (OS) and
progression-free survival (PFS) in patients with HCC. A competing
endogenous RNA (ceRNA) regulatory network was constructed to
screen the lnRNA-miRNA-mRNA network that affected the
prognosis of HCC patients. Our analysis highlighted the
importance of CRGs in HCC development and laid the
foundation for the therapeutic application of cuproptosis
regulators in HCC.

Materials and methods

Data sources and preprocessing

CRGs and clinical information of patients with HCC were
obtained from the TCGA database (https://portal.gdc.cancer.
Gov/) (Tomczak et al., 2015). A total of 371 HCC tissues and
50 paracancerous tissues were collected and used in this study. The
data used in this study were standardized data per million
transcripts, and the data distribution was close to normal
distribution. R software (v4.0.3) was used to extract gene
expression data, and a data matrix was constructed for further
analysis.

Identification of molecular subgroups

Nineteen CRGs were first extracted from the TCGA expression
matrix. According to the consistent clustering of these 19 genes, the
R software package Consensus-ClusterPlus (v1.54.0) was used for
the analysis of consistency, and the maximum number of clusters
was 6 (Wilkerson and Hayes, 2010). The TCGA-LIHCREAD cases
were then divided into 2 clusters based on the expression profiles of
CRGs. This process was repeated 500 times to ensure the stability
and reproducibility of the classification.

Identification and functional enrichment
analysis of DEGs

DEGs between C1 and C2 subgroups were obtained using
Limma package (version 3.40.2) in R software (Ritchie et al.,
2015). Adjusted p values were analyzed in the TCGA database to
correct for false positive results. “Adjusted p < 0.05 and log2 (fold
change) > 1 or log2 (fold change) < −1″ was defined as the criteria
for screening the differential expression of mRNA. GeneMANIA
(http://www.genemania.org), which is a software that elucidates the
relationship between genes and datasets by building gene interaction
networks (Warde-Farley et al., 2010), was used to visualize the gene
network of CRGs through physical interaction, co-expression,
prediction, co-localization, and genetic interaction, and to
evaluate their functions.

The GO function and the enrichment of KEGG pathways were
analyzed by the “clusterProfiler” package in R software (Yu et al.,
2012). Potential biological pathways were also identified by GSEA
(http://software.broadinstitute.org/gsea/index.jsp) (Powers et al.,
2018). According to the data of TCGA, the DEGs were divided
into upregulated and downregulated groups. Each analysis

performed 10,000 gene combination permutations to identify
signaling pathways with significant changes; the genes were
considered as enriched for meaningful signaling pathways when
p.adjust <0.05 and FDR (false discovery rate) < 0.25. Statistical
analysis and graphing were performed using the R package
clusterProfiler (3.18.0).

Immune infiltration, and immune
checkpoint-related genes expression in two
subgroups

The R software package immunedeconv was used for immune
score assessment to compare the degree of immune cell infiltration
in C1 (N = 252) and C2 (N = 119) subgroups by Wilcoxon test, by
integrating six state-of-the-art algorithms, including TIMER (Li
et al., 2016), xCell (Aran et al., 2017), MCP-counter (Becht et al.,
2016), CIBERSORT (Newman et al., 2015), EPIC (Racle et al., 2017)
and quantTIseq (Finotello et al., 2019; Sturm et al., 2020). The
expression of some immune checkpoint-related genes was also
analyzed. The results were visualized by the R (v4.0.3) packages
“ggplot2″ and “pheatmap".

Expression of CRGs and survival analysis

The expression of CRGs in 371 HCC tissues and 50 paired
adjacent tissues was analyzed using the TCGA database. In addition,
univariate Cox regression analysis was used to investigate the effect
of CRGs on the prognosis of HCC. Kaplan-Meier curves, p values,
and hazard ratios (HR) with 95% confidence intervals (CIs) were
obtained by logrank test and univariate Cox regression. Five CRGs
(CDKN2A, DLAT, DLST, GLS, and PDHA1) with higher hazard
ratios were screened from the Cox regression analysis plot. The
relationship between the prognostic CRGs and the OS rate in HCC
patients was also analyzed, and the AUC (Area Under Curve) under
the ROC curve was calculated.

Cell lines and culture conditions

The following HCC cell lines and hepatocyte were used in this
study: Hep3B, Huh7, HepG2, and L02 (Chinese Academy of
Medical Sciences, Beijing, China). All cell lines were maintained
in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand
Island, NY, United States) supplemented with 10% fetal bovine
serum (Gibco, Grand Island, NY, United States of), 100 U/ml
penicillin, and 100 U/ml streptomycin (Invitrogen, Carlsbad, CA,
United States) and incubated at 37°C in a humidified atmosphere
with 5% CO2.

Quantitative RT-PCR

First, TRIzol reagent (Invitrogen, CA, United States) was used to
extract total RNA from the samples. Then, the total RNA
concentrations were measured using a NanoDrop 2000c (Thermo
Fisher Scientific, Inc.). Next, cDNA was synthesized by reverse
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transcription using a miScript II RT kit (Qiagen, Germany). Finally,
a miScript SYBR Green PCR kit (Qiagen, Germany) was used to
detect the expression of target genes on a Lightcycler 480 Real-Time
PCR System (Roche Diagnostics GmbH, Mannheim, Germany).
The 20-μl reaction mixture included 10 μl 2X QuantiTect SYBR
Green PCR Master Mix, 0.8 μl 10X miScript universal Primer, 2 μl
cDNA template, 0.8 μl specific miRNA primer, and 7.4 μl RNase-
free water. Additionally, the thermocycling steps were as follows:
95°C for 15 min, followed by 40 cycles of 94°C for 15 s, 55°C for 30 s,
and 72°C for 30 s. The relative standard curve method (2−△△CT) was
employed to determine the relative mRNA expression, with the
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as the
reference. Supplementary Table S1 lists the polymerase chain
reaction primers used in this study.

Development of the CRG prognostic model

A prognostic model was constructed using LASSO-Cox
regression analysis based on the above CRGs associated with the
prognosis of HCC patients. According to the results of the
multivariate Cox regression analysis, the prognostic CRG risk
score was calculated as follows: Risk score = ∑i
Cofficient(mRNAi) × Expression (mRNAi). Then, TCGA-LIHC
patients were divided into low-risk and high-risk subgroups
according to the average risk score, Kaplan-Meier analysis was
used to compare the OS rates of the two subgroups, and
timeROC analysis was performed to predict the accuracy of the
model. Each variable (including the p-value, and HR with 95% CI)
was displayed by univariate and multivariate cox regression analysis
and using forest plots by the “forestplot” package. The “rms”
package was used to build a Nomogram model for predicting 1,
3, and 5-year OS and PFS based on the results of multivariate cox
proportional hazards analysis.

Tumor staging analysis of HCC

GEPIA is a newly developed interactive website for analyzing
RNA sequencing expression data from 9736 tumors and
8587 normal samples from TCGA and Genotype-Tissue
Expression databases, such as differential expression analysis of
tumor/normal tissues, tumor type or pathological stage, patients’
survival analysis, similar gene detection analysis, and dimensionality
reduction analysis (Tang et al., 2017). The expression data of
prognostic CRGs in different stages of HCC were obtained using
the “Stage Plot” module in the GEPIA2 database (http://gepia2.
cancer-pku.cn/#index). The UALCAN database (http://ualcan.path.
uab.edu/) is an interactive portal containing TCGA RNA
transcriptome data and clinical data from 31 cancer types.
TISIDB (http://cis.hku.hk/TISIDB) is a portal for assessing
tumors and the immune system that integrates multiple
heterogeneous data types including genomics, transcriptomics,
and clinical data from TCGA of 30 cancer types (Ru et al., 2019).
The UALCAN and TISIDB databases were used to confirm the
association between prognostic CRGs and the clinical stage of HCC
patients. p < 0.05 was considered statistically significant.

Immunohistochemistry of prognostic CRGs
in HCC

Immunohistochemical images of CRGs were collected from the
Human Protein Atlas (https://www.proteinatlas.org) database to
assess the differences in CRG expression between HCC and
adjacent tissues (Sun et al., 2021).

Mutation analysis of CRGs

cBioPortal (http://www.cbioportal.org/) provides visualization
tools for analyzing cancer genetic data. The genomic maps of CRGs
were analyzed using cBioPortal based on the TCGA database to
understand the mutation frequency in HCC (Gao et al., 2013). In
this study, 372 LIHC samples was selected to explore the impact of
prognostic CRGs on survival of HCC patients. In addition, the
effects of CRG mutations on cancer signaling pathway expression,
TMB, MSIsensor scores, and hypoxia-related scores (Ragnum
Hypoxia Score, Buffa Hypoxia Score, and Winter Hypoxia Score)
were examined. p < 0.05 was considered statistically significant.

Effects of prognostic CRGs on immune cell
infiltration and immune checkpoint
expression

The effects of prognostic CRGs on the abundance of infiltrating
immune cells in tumors were analyzed by the TIMER (https://
cistrome.shinyapps.io/timer/) database (Li et al., 2017). The detected
immune cells included tumor purity, B cells, CD4+ T cells, CD8+

T cells, neutrophils, macrophages, and dendritic cells. In addition,
the infiltration of immune cell types was quantified by the R package
“GSVA” single sample gene set enrichment analysis (ssGSEA)
(Hanzelmann et al., 2013). Next, the Spearman method was used
to explore the correlation of prognostic CRGs with the level of
immune cell infiltration. Finally, the relationship between
prognostic CRGs and checkpoints (CD274, CTLA4, and PDCD1)
was examined.

TMB, microsatellite instability and drug
sensitivity

The Spearman’s method was used to analyze the correlation
between prognostic CRGs and MSI in HCC. The
chemotherapeutic response was predicted for each sample
using the GDSC database (https://www.cancerrxgene.org/)
(Yang et al., 2013). The R package pRRophetic was used to
predict the half maximum inhibitory concentration (50%
inhibition of the concentration, IC50) of the chemotherapeutic
drugs, in which the IC50 of the sample was estimated by ridge
regression. All parameters were set by default, using the batch
effect of combat and the organization types of all, and
summarizing the replicate gene expression as an average. Drug
sensitivity and gene expression profiling data from cancer cell
lines in the GDSC database were integrated in this study.
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m6A-related gene expression analysis

The correlation between 19 CRGs and m6A-related genes
expression and prognostic in 371 HCC samples was analyzed by
R (4.0.3) packages “ggplot2.” The difference in m6A-related gene
expression between C1 group (N = 252) and C2 group (N = 119) was
investigated. The m6A-related genes analyzed included METTL3,
YTHDC1, YTHDC2, METTL14, RBM15, RBM15B, IGF2BP1,
IGF2BP2, IGF2BP3, VIRMA, WTAP, YTHDF1, YTHDF2,
YTHDF3, ZC3H13, HNRNPA2B1, HNRNPC, RBMX, FTO, and
ALKBH5.

Single cell analysis

The effect of prognostic CRGs on the expression of single cell
subsets in the TME was investigated using TISCH (http://tisch.
comp-genomics.org/) (Sun et al., 2021). TISCH is a scRNA-seq
database focused on the TME, providing detailed cell-type
annotation at the single-cell level, which is beneficial for
exploring the TME in different cancer types. In this dataset, three
main cell types are present, such as immune cells, stromal cells, and
malignant cells. In this study, the t-distributed stochastic
neighborhood embedding (t-SNE) map of LIHC_GSE125449_

FIGURE 1
The flowchart of the present study.
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aPDL1aCTLA4 and the heatmap of LIHC_GSE125449_
aPDL1aCTLA4 were displayed through the TISCH database to
demonstrate the effect of CRGs on the TME of HCC.

Competing endogenous RNA network
construction

Potential miRNA targets of prognostic CRGs were predicted
using the ENCORI (http://starbase.sysu.edu.cn/) database (Li et al.,
2014), RNAInter (http://www.rnainter.org/) (Lin et al., 2020) and
RNA22 (https://cm.jefferson.edu/rna22/interactive) database
(Loher and Rigoutsos, 2012), and the prognostic value of these
potential miRNA targets in HCC was confirmed using ENCORI,
Kaplan-Meier Plotter and TCGA-LIHC cohort. Then, the lncRNAs
potentially binding to prognostic miRNAs were predicted by the

miRNet (http://www.mirnet.ca/) database (Chang et al., 2020).
Subsequently, a miRNA-lncRNA regulatory network was
established by Cytoscape (version 3.7.1; http://www.cytoscape.org/
) software (Shannon et al., 2003). In addition, the prognostic value of
these potential lncRNA targets in HCCwere further verified. Finally,
a lncRNA-miRNA-mRNA regulatory network was established.

Results

Identification and analysis of cuproptosis-
related gene clusters in HCC

The flowchart of the study is illustrated in Figure 1. A total of
371 HCC carcinoma samples were clustered in the TCGA database
using consensus clustering T = to identify potential CRG clusters. All

FIGURE 2
Identification of common clusters based on the expression of CRGs. (A) Cumulative distribution function (CDF) (k = 2–6). (B) Relative change of the
area under the CDF curve (k = 2–6). (C)Consensus clustering matrix (k = 2). (D)Heat map of cuproptosis-related gene expression in different subgroups;
red for high expression and blue for low expression.
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FIGURE 3
DEGs and functional enrichment analysis. (A)DEGs’ volcano plot between C1 and C2 subtypes. (B)DEGs’ heatmap between C1 and C2 subtypes. (C)
Gene Interaction Network. (D) Enriched item in gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). (E)
Enrichment plots from GSEA. BP, biological process; CC, cellular composition; MF, molecular function.

Frontiers in Genetics frontiersin.org07

Qin et al. 10.3389/fgene.2023.1094793

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094793


tumor samples were divided into k (k = 2–6) distinct clusters based
on the expression of 19 CRGs in HCC (Figures 2A,B). Then, the
number of clusters was selected as 2 according to the cluster analysis
results, indicating that the patients with HCC were accurately
divided into two clusters (Cluster 1 had 252 patients and Cluster
2 had 119 patients) (Figure 2C). Figure 2D shows the heat map of
cuproptosis-related gene expression in different subgroups.

Differentially expressed genes and
functional enrichment analysis

The study included 421 liver HCC samples consisting of
371 tumor samples and 50 adjacent normal samples. The DEGs
identified between the C1 and C2 subtypes contained
5044 upregulated genes and 52 downregulated genes. Then, a
volcano map (Figure 3A) and a heat map (Figure 3B) were
constructed based on these DEGs. The results of GeneMANIA
revealed that the functions of the significant genes co-expressed
in this network (DLD, GLS, NFE2L2, DLST, LIAS, ATP7B, PDHA1,
SLC31A1, FDX1, DBT, GCSH, LIPT1, CDKN2A, DLAT, NLRP3,
ATP7A, PDHB, LIPT2, andMTF1) were related to several processes,
including oxidoreductase complex, tricarboxylic acid cycle enzyme
complex, cellular amino acid catabolic process, dihydrolipoyl
dehydrogenase complex, acyl-CoA metabolic process, acetyl-CoA
biosynthetic process and thioester metabolic process (Figure 3C).
The identified up and downregulated DEGs were then further
subjected to GO and KEGG enrichment analysis. The results of
biological process (BP) analysis showed that the DEGs were mainly
enriched in extracellular matrix tissues, regulation of DNA
metabolism, response to transforming growth factor β, activation
of protein kinase activity, and cell cycle G1/S phase transition. The
results of cellular component (CC) analysis showed that the DEGs
were mainly enriched in focal adhesions, cell-matrix adhesion
junctions, extracellular matrix components, collagen-containing
extracellular matrix, and fibrous collagen trimers. The results of
molecular function (MF) analysis showed that the DEGs were
mainly enriched in several functions including cell adhesion
molecule binding, extracellular matrix structural components,
growth factor binding, protein serine/threonine kinase activity,
and collagen binding. The KEGG analysis showed that the DEGs
were mainly enriched in focal adhesion, extracellular matrix-
receptor interaction, PI3K-Akt signaling pathway, TGF-β
signaling pathway, HCC, cell cycle, NOD-like receptor signaling
pathway, PD-L1 expression and the PD-1 checkpoint pathway in
cancer (Figure 3D). The results of Gene Set Enrichment Analysis
(GESA) showed that CRGs were closely related to cancer pathways
in HCC, including focal adhesions, cell cycle, T cell receptor
signaling pathway, JAK STAT signaling pathway and MAPK
signaling pathway. The activation of these pathways increased the
risk of tumorigenesis and tumor progression (Figure 3E).

Analysis of the correlation with immune
infiltration and immune checkpoints

The TCGA-LIHC cohort was downloaded to explore the
difference in immune cell infiltration between the C1 and

C2 subtypes to explore the role of CRGs in the immune response
in HCC. Six state-of-the-art algorithms were then integrated for a
reliable immune score assessment. quantTIseq, EPIC,MCP-counter,
CIBERSORT, xCell and TIMER showed the expression of CRGs was
correlated with uncharacterized cell, Neutrophil, NK cell,
Macrophage M1, T cell regulatory (Tregs), Macrophage M2,
B cell (Figures 4A,B); Macrophage, uncharacterized cell, T cell
CD4+, NK cell (Supplementary Figure S1A); NK cell, B cell,
Myeloid dendritic cell, Monocyte, Macrophage/Monocyte,
Neutrophil, Endothelial cell (Supplementary Figure S1B);
Macrophage M2, T cell CD8+, T cell follicular helper, Mast cell
activated, Neutrophil (Supplementary Figure S1C); Macrophage
M2, Endothelial cell, Mast cell, T cell CD8+ naive, T cell CD4+

memory, Plasmacytoid dendritic cell, T cell CD4+ naive, Common
lymphoid progenitor, T cell NK, T cell CD4+ Th1 (Supplementary
Figure S1D); T cell CD4, Neutrophil, Macrophage, T cell CD8+,
B cell, Myeloid dendritic cell (Supplementary Figure S1E)
respectively. Finally, the difference between the two subgroups in
the expression of eight immune checkpoint-related genes was
explored, and the results showed that CD274 (p < 0.01), HAVCR
(p < 0.01), PDCD1LG2 (p < 0.01), TIGIT (p < 0.05) and SIGLEC15
(p < 0.05) were highly expressed in the C1 subgroup than in the
C2 subgroup (Figure 4C).

DEGs and prognostic models

The expression of 19 CRGs in HCC and normal tissues was
investigated using the TCGA dataset; among them, 15 CRGs were
up- or downregulated. The expression of ATP7A, SLC31A1, LIAS,
LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A,
and DLST was upregulated, while NLRP3 and DBT were
downregulated in cancer tissues than in the normal tissues
(Figure 5A). Most of the 19 CRGs in the HCC samples were
positively correlated, while 6 pairs were negatively correlated,
showing a strong correlation between them (Figure 5B).
Univariate Cox regression analysis was then performed to screen
CRGs with a prognostic value (Figure 5C). The mRNA expression of
five prognostic CRGs was significantly upregulated (p < 0.001) in
HCC cell lines (Hep3B, Huh7 and HepG2) compared to their
expression in the hepatocyte cell line (L02) (Figure 5D). Finally,
five genes with a prognostic value were identified from the results.
The Kaplan-Meier survival curves are shown in Figure 5E. HCC
patients had a lower survival rate when CDKN2A (HR = 1.75, p =
0.002), DLAT (HR = 1.7208, p = 0.0024), DLST (HR = 1.5484, p =
0.0141), GLS (HR = 1.5001, p = 0.0222) and PDHA1 (HR = 1.4981,
p = 0.0226) were highly expressed.

Construction of a prognostic CRG model

A prognostic gene model based on prognostic CRGs was
constructed by LASSO Cox regression analysis (Figures 6A,B).
The risk score was calculated as follows: (0.1242)*CDKN2A+
(0.2058)*DLAT + (0.0795)*GLS. HCC patients were divided into
two groups according to the risk score distribution, survival status,
and expression of GLS, DLAT, and CDKN2A (Figures 6C,D).
Patients had an increased risk of death and decreased survival
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time as the risk scores increased (Figure 6C). The Kaplan-Meier
curves showed that HCC patients with high-risk scores had a lower
probability of OS than patients with low-risk scores (median time =

3.4 years vs. 5.8 years, p = 0.00106) (Figure 6D). The area under the
ROC curve (AUC) in the 1-year, 3-year and 5-year ROC curves was
0.737, 0.646 and 0.634, respectively (Figure 6E). The results of our

FIGURE 4
Immune infiltration estimated by quantTIseq algorithm and the expression distributions of 8 immune checkpoint-related genes in HCC subgroups.
(A) Immune cell score heat map. (B) Proportions of 11 types of immune cells shown for each HCC patient by a histogram. (C) The expression distributions
of 8 immune checkpoints-related genes in HCC subgroups. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 5
DEGs and prognostic models. (A) The expression of 19 CRGs in HCC and paracancerous tissues; the upper and lower ends of the box represent the
interquartile range of the values. The line in the box represents the median. (B)Correlation between the expression of cuproptosis regulators. (C) Analysis
of five prognostic CRGs from univariate Cox regression analysis plots. (D)mRNA expression of prognostic CRGs in HCC cell lines. (E) Prognostic value of
five CRGs (CDKN2A, DLAT, DLST, GLS, and PDHA1) in HCC patients (OS curve of high/low expression group).

Frontiers in Genetics frontiersin.org10

Qin et al. 10.3389/fgene.2023.1094793

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094793


constructed cuproptosis-related risk profile showed a significant
association with survival in patients with HCC.

Building of a predictive nomogram

Considering the clinicopathologic features and prognostic
CRGs, a predictive nomogram was also built to predict the
survival probability. The results of the univariate and multivariate
analysis showed that CDKN2A expression and pT stage were
independent factors affecting the prognosis of HCC patients
(Figures 7A,B; Supplementary Figure S2). The predictive
nomogram suggested that the 3-year and 5-year OS rates and

PFS rates were predicted enough accurately compared with an
ideal model in the entire cohort (Figures 7C,D; Supplementary
Figure S2).

Correlation between prognostic CRGs and
pathologic stage in HCC

Based on the above analysis, the correlation between the
expression of CRGs and the pathological stage of HCC was
analyzed by Gene Expression Profiling Interactive Analysis
(GEPIA) 2 database. The results showed that the expression of
CDKN2A, DLAT, GLS and PDHA1 were significantly correlated

FIGURE 6
Construction of a prognostic CRGmodel. (A) LASSO coefficient profiles of prognostic CRGs, (B) Plots of the ten-fold cross-validation error rates. (C)
Distribution of the risk score, survival status, and the expression of prognostic CRGs in HCC. (D, E)OS curves of HCC patients in the high-/low-risk group
and the ROC curve for measuring the predictive value.
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with the pathological stage of HCC (p < 0.05), while the correlation
between DLST and the pathological stage was not significant
(Supplementary Figure S3). The analysis of UALCAN database
revealed that the expression of prognostic CRGs in HCC patients
in stages 1–3 was significantly upregulated compared with their
expression in the normal group. The analysis of TISIDB database
revealed that the expression ofCDKN2A, DLST, andGLS in different
stages and scores of HCC patients was significantly different, while
DLAT and PDHA1 was slightly changed although not significantly
(Supplementary Figure S3).

Pathological expression of CRGs in HCC
tissues and normal livers

The protein expression of CRGs in 371 HCC and adjacent
tissues was measured using the Human Protein Atlas to
determine the difference in protein expression of the prognostic
CRGs in HCC tissues and normal liver. The results of the
immunohistochemical staining showed that the prognostic CRGs

were moderately or highly expressed in HCC tissues but were low in
paracancerous tissues (Figures 8A,B).

Association of genetic mutations in CRGs
with survival and clinical outcomes of HCC
patients

The genetic alteration of the prognostic CRGs were analyzed
using the cBio Cancer Genomics Portal (cBioPortal) online tool for
HCC. CDKN2A, DLAT, DLST, GLS, and PDHA1 were altered in
80%, 25%, 48%, 37%, and 32% of the 347 samples of the
372 sequenced patients, as shown in Figure 9A. The mRNA
expression z-scores of the prognostic CRGs relative to normal
samples are shown in Figure 9B. The survival analysis results
showed that the genetic alteration in prognostic CRGs was
significantly associated with shorter disease free survival (DFS)
(p = 0.0377, Figure 9D) and PFS (Figure 9E, p = 0.018) of HCC
patients. However, these two groups have little correlation with OS
(p = 0.0723, Figure 9C). In addition, the clinical analysis showed that

FIGURE 7
Construction of a predictive nomogram. (A, B) Hazard ratios and p-value of the constituents involved in univariate and multivariate Cox regression
analysis considering the clinical information and prognostic CRGs in HCC. (C) Nomogram to predict the 1-year, 3-year and 5-year OS rate of HCC
patients. (D) Calibration curve for the OS nomogrammodel in the discovery group. The dashed diagonal line represents the ideal nomogram. OS, overall
survival.
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HCC tissues with prognostic CRG mutations upregulated the
expression of cancer-related signaling pathways (p = 1.051 ×
10−3, Figure 9F), tumor burden mutation (TMB) (p = 1.490 ×
10−3, Figure 9G), MSIsensor Score (p = 1.426 × 10−3, Figure 9H),
as well as hypoxia scores, including Buffa Hypoxia Score (p = 2.329 ×
10−3, Figure 9I), RagnumHypoxia Score (p = 3.249 × 10−5, Figure 9J)
and Winter Hypoxia Score (p = 9.727 × 10−4, Figure 9K). Therefore,
the mutation of prognostic CRGs in HCC tissues significantly
affected the prognosis of HCC patients.

Prognostic CRGs interfere with immune cell
infiltration and immune checkpoint
expression in HCC

The above results demonstrated that CRGs play a crucial role in
the development of tumor immune microenvironment in HCC. The
present study further investigated the correlation between the
expression of CRGs (CDKN2A, DLAT, DLST, GLS, and PDHA1)
and immune infiltration in HCC using the TIMER database and
TCGA database. TIMER data showed that CDKN2A, DLAT, GLS
and PDHA1 were strongly and positively correlated with tumor
purity, B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and dendritic cells, while DLST was only positively correlated with
tumor purity, CD4+ T cells, neutrophils, and dendritic cells (Figures
10A–E). A total of 24 immune cell types infiltrating HCC were next
identified using single-sample GSEA, followed by Spearman analysis
to investigate the association between prognostic CRGs and immune
cell infiltration. The high expression of prognostic CRGs was

positively correlated with several cell types, including T helper
cells, Th1 cells, TFH, and aDC, while negatively correlated with
cytotoxic cells, DC, and pDC, as shown in Supplementary Figure S4.
In addition, the correlation between prognostic CRG expression and
important immune checkpoints (CD274, PD-L1 and CTLA4) was
further investigated. The results showed that CDKN2A was
significantly and positively correlated with CD274 (p = 2.41 ×
10−05, cor = 0.217), PD-L1 (p = 1.24 × 10−03, cor = 0.167) and
CTLA-4 (p = 3.62 × 10−05, cor = 0.213), and GLS was also positively
correlated with CD274 (p = 3.02 × 10−09, cor = 0.302), PD-L1 (p =
4.25e−07, cor = 0.259) and CTLA-4 (p = 8 × 10−05, cor = 0.203), while
DLAT (p = 3.27e−13, cor = 0.366), DLST (p = 3.71e−10, cor = 0.318)
and PDHA1 (p = 1.77e−07, cor = 0.267) were significantly and
positively correlated only with CD274 (Supplementary Figure S5).
These results indicated a significant correlation between prognostic
CRGs and tumor immune infiltration and showed that prognostic
CRGs might be predictive markers of anti-CD274 therapy.

TMB, microsatellite instability and drug
sensitivity analysis

Microsatellite instability (MSI) and TMB can be used as indicators
to predict the response of various tumors to immunotherapy (Rizzo
et al., 2021). The above results showed that the expression of CRGs was
closely related to tumor immune cell infiltration in HCC. Next, the
association of prognostic CRGs with TMB and MSI in HCC was
analyzed to determine whether CRGs can be considered as biomarkers
for immunotherapy. The results showed that PDHA1 was positively

FIGURE 8
Protein differential expression of prognostic CRGs in normal liver and HCC tissue. (A) Protein expression of prognostic CRGs in normal liver. (B)
Protein expression of prognostic CRGs in HCC tissue. Immunohistochemical data were obtained from the Human Protein Atlas (×200 magnification).
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correlated with MSI (p = 0.044) (Figure 11A). Furthermore, CDKN2A
(p = 1.64 × 10−04) was positively correlated with TMB, and GLS (p =
7.74 × 10−05) and negatively correlated with TMB (Figure 11B). Finally,
the data on the gene expression profiles of cancer cell lines were
integrated in the Genomics of Drug Sensitivity in Cancer (GDSC)
database for drug sensitivity to fully explore the potential value of
CDKN2A, DLAT, DLST, GLS, and PDHA1 genes as novel therapeutic
targets. A Pearson correlation analysis of the data was performed, which
showed that the expression of CDKN2A, DLAT, DLST, GLS, and
PDHA1 was positively correlated with Saracatinib, Selumetinib,
Serdemetan, Rucaparib, Roscovitine, Refametinib, Proteasome,

Palbociclib, Motesanib, Lapatinib, Imatinib and Erlotinib, but
negatively correlated with Tretinoin, Tipifarnib, Nilotinib,
Navitoclax, Doramapimod, CCT018159 and AICA_ribonucleotide
(Figure 11C).

Correlation between CRGs and m6A
methylation-related genes in HCC

It is well known that m6A methylation modification affects gene
expression by regulating RNA metabolism and plays an important

FIGURE 9
Association of genemutations in prognostic CRGswith survival and clinical outcomes of HCC patients (cBioPortal). (A)Mutation rate of prognostic CRGs in
HCC patients. (B)mRNA expression z-score of prognostic CRGs in HCC tissue samples relative to normal samples. (C–E) CRGmutations in liver cancer tissues
associated with shorter OS, DFS, and PFS in HCC patients. (F–K) CRG mutations in HCC tissues upregulated cancer progression-related scores, including In
PanCan Pathway Analysis (F), TMB (G), MSIsenso Score (H), Buffa Hypoxia Score (I), Ragnum Hypoxia Score (J) and Winter Hypoxia Score (K).
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role in the occurrence and development of malignant tumors. The
potential correlation of CRGs with m6A modification in HCC was
evaluated, and the differential expression of 20 m6A-related genes
(RBM15B, VIRMA, IGF2BP29, HNRNPA2B1, IGF2BP1, YTHDF3,
IGF2BP3, HNRNPC4, RBM15, RBMX, METTL14, YTHDC2,
METTL3, ZC3H13, WTAP, YTHDF1, YTHDC1, FTO, YTHDF2)
were found between the C1 and C2 subgroups. The results showed
that except IGF2BP1, other m6A-related genes were significantly
different between the two groups (p < 0.01, Figure 12A). The
C1 group with higher expression of CRGs has also higher
expression of m6A methylation-related genes. In addition, the
correlation between prognostic CRGs and m6A-related genes was
analyzed by the TCGA dataset, and the results showed a significant
positive correlation between prognostic CRGs and m6A-related

genes (Figure 12B). The above results suggested that CRGs were
closely related to m6A modification in HCC.

Single-cell RNA data analysis

The TME is composed of extracellular matrix, cancer associated
fibroblasts (CAFs), myofibroblasts, immune cells and other factors.
The prognostic CRGs were assessed at a single-cell level expression
by Tumor Immunity Single Cell Center (TISCH, http://tisch.comp-
genomics.org/) to examine the relationship between prognostic
CRGs and the infiltration of immune cells, stromal cells, and
malignant cells. The HCC single-cell GSE dataset was explored
(LIHC_GSE125449_aPDL1aCTLA4). T cells, B cells, plasma cells,

FIGURE 10
Prognostic CRGs involved in immune infiltration in HCC. (A-E) Association between immune cell abundance in HCC and prognostic CRGs (TIMER
database).
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macrophages, endothelial cells, fibroblasts, malignant cells, and hepatic
progenitors were annotated by single-cell RNA sequencing analysis
(Figure 13A). The results showed that CDKN2A, DLAT, DLST, GLS,
and PDHA1 were correlated in single cell subsets such as immune cells,
stromal cells, and malignant cells, and were significantly expressed in
macrophages, fibroblasts, endothelial cells, and hepatic progenitor cells
(Figures 13B,C). CSFs and tumor-associatedmacrophages (TAMs) play
an important role in the occurrence and development of cancer (Rizzo
et al., 2021). Therefore, the association between prognostic CRGs and
biomarkers associated with CAFs and TAMs was further explored. The
results showed that prognostic CRGs were significantly and positively
correlated with CAF markers such as FAP, PDPN, S100A8, S100A9,
TGFB1, TGFB2, ACTA2, PALLD, TNC, and COL11A1 (Figure 13D).
Prognostic CRGs were also highly correlated with TAM-related
markers such as CCL2, CD68, and IL 10 (Figure 13E).

Prediction and validation of upstream key
miRNAs

Next, the upstream regulatory miRNAs of prognostic CRGs
were predicted using a comprehensive miRNA-related database.

Firstly, 27 pairs of CDKN2A-miRNAs, 63 pairs ofDLAT-miRNAs
and 172 pairs of GLS-miRNAs were obtained by the intersection
of ENCORI and RNAInter databases. A total of 110 pairs of
DLST-miRNAs and 39 pairs of PDHA1-miRNAs were obtained
by the intersection of ENCORI databases and RNA22 databases
(Figure 14A). Then, according to the classical mechanism of
miRNAs negatively regulating mRNA expression, a negative
correlation between the mRNA and the predicted miRNA was
expected. The ENCORI database was used to screen the
correlation, prognosis and expression of these candidate
miRNAs in HCC. Among these miRNA-mRNA interactions,
the results showed that 1 pair of miRNA-CDKN2A, 6 pairs of
miRNAs-DLAT, 3 pairs of miRNAs-DLST, 18 pairs of miRNAs-
GLS, and 2 pairs of miRNAs-PDHA1 were significantly and
negatively correlated (Figure 14B; Supplementary Figure S6).
Theoretically, miRNAs that bind to prognostic CRGs should
be downregulated and indicate poor prognosis in HCC.
Therefore, the prognostic role and expression of these
potential miRNAs in HCC were further confirmed using the
ENCORI database. The results showed that only the low
expressed hsa-miR-125b-5p, hsa-miR-101-3p and hsa-miR-23c
corresponded to a poor prognosis, and hsa-miR-125b-5p, hsa-

FIGURE 11
TMB,MSI and drug sensitivity. (A)Correlation between the expression of prognostic CRGs andMSI inHCC. (B)Correlation between prognostic CRGs
and TMB in HCC. (C) Correlation between prognostic CRGs and antitumor drugs in HCC. TMB, tumor mutational burden; MSI, microsatellite instability.
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miR-101-3p and hsa-miR-23c were significantly lower in HCC tissues
than in normal tissues (Figure 14C). All these results indicated that
CDKN2A-hsa-miR-125b-5p, GLS-hsa-miR-125b-5p, GLS-hsa-miR-

101–3, GLS-hsa-miR-23c and PDHA1-hsa-miR-125b-5p might
represent key pathways that mediated the occurrence and
development of HCC and were related to the prognosis of patients.

FIGURE 12
Correlation of CRG expression and m6A-related genes in HCC. (A)Differential expression of m6A-related genes between the C1 and C2 subgroups
in HCC. (B) Analysis of the relationship between prognostic CRGs and m6A-related genes by TCGA-LIHC cohort.
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FIGURE 13
Expression of CRGs in different immune cell types in HCC. (A)Cluster diagram of cell types in scRNA-seq data. t-SNE plot showing the expression of
different immune cells (LIHC_GSE125449_aPDL1aCTLA4) in liver cancer tissue. (B, C)Characteristic maps of prognostic CRGs obtained from scRNA-seq
data. (D)Correlation between prognostic CRGs andCAF-relatedmarkers. (E)Correlation between prognostic CRGs and TAM-relatedmarkers. **p <0.01;
CAF, cancer-associated fibroblasts; TAM, tumor-associated macrophage.
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Prediction and validation of key lncRNAs
binding to potential miRNAs

Previous studies showed that lncRNAs bind to miRNAs and
mediate the expression of target genes, thereby exerting biological
roles (Militello et al., 2017; Zhang and Lou, 2020). Based on the
above results, lncRNAs upstream of miRNAs were also predicted to
construct the miRNA-lncRNA axis. The lncRNAs potentially
binding to hsa-miR-101-3p, hsa-miR-125b-5p and hsa-miR-23c
were predicted by the intersection of ENCORI and miRNet
databases, and the results revealed 27 lncRNAs targeting hsa-
miR-101-3p, 47 lncRNAs targeting hsa-miR-125b-5p and
56 lncRNAs targeting hsa-miR-23c (Figure 15A). A miRNA-

lncRNA regulatory network was established by Cytoscape
software for a better visualization (Figure 15B). According to the
ceRNA hypothesis, lncRNAs can increase mRNA expression by
competitively binding to miRNAs. Therefore, lncRNAs were
negatively correlated with miRNAs or positively correlated with
mRNAs. The correlation between lncRNAs and hsa-miR-101-3p,
hsa-miR-125b-5p and hsa-miR-23c was detected by the ENCORI
database, and the results showed that 14 lncRNAs were significantly
associated with hsa-miR-101-3p and GLS, 9 lncRNAs were
significantly associated with hsa-miR-125b-5p and CDKN2A,
10 lncRNAs were significantly associated with hsa-miR-125b-5p
and GLS, 4 lncRNAs were significantly associated with hsa-miR-
125b-5p and PDHA1, and 12 lncRNAs were significantly associated

FIGURE 14
Identification of the potential miRNAs related to the prognosis of HCC. (A) Potential predicted miRNAs associated with CRGs by ENCORI, RNAInter
and RNA22 databases. (B) Potential mRNA-miRNA gene networks constructed using Cytoscape software. (C) Expression and prognostic value of miRNAs
(hsa-miR-125b-5p, hsa-miR-101-3p and hsa-miR-23c).
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FIGURE 15
Screening of the regulatory axis of lncRNA-miRNA-CRGs in HCC. (A) Potential lncRNAs associated with hsa-miR-125b-5p, hsa-miR-101-3p and
hsa-miR-23c predicted by miRNet and ENCORI databases. (B) Potential miRNA-lncRNA network constructed using Cytoscape software. (C) Expression
and prognostic value of six potential lncRNAs in HCC. (D) lncRNA-miRNA-mRNA triple regulatory network affecting the prognosis of HCC.
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with hsa-miR-23c and GLS (Supplementary Tables S2–6;
Supplementary Figure S7). Subsequently, the prognostic value of
lncRNAs in HCC was assessed by the Kaplan-Meier plotter, and the
expression of these lncRNAs in HCC were detected using the
TCGA-LIHC cohort. The results in combination with the
survival analysis and expression analysis, showed that GSEC,
PTPRG-AS1, CYTOR, DANCR, TRAF3IP2-AS1 and
DLEU2 were significantly upregulated in HCC, and their
upregulation was associated with poor prognosis in HCC patients
(Figure 15C). Finally, a key mRNA-miRNA-lncRNA triple
regulatory network associated with HCC prognosis was
established, which included 3 mRNAs (CDKN2A, GLS, and
PDHA1), 3 miRNAs (hsa-miR-125b-5p, hsa-miR-101-3p and
hsa-miR-23c) and 6 lncRNAs (GSEC, PTPRG-AS1, CYTOR,
DANCR, TRAF3IP2-AS1 and DLEU2). Eight lncRNA-miRNA-
mRNA networks were also constructed, including lncRNA
CYTOR/miR-125-5p/CDKN2A, lncRNA CYTOR/miR-125-5p/
GLS, lncRNA DANC R/miR-125-5p/GLS, lncRNA DANCR/miR-
125-5p/PDHA1, lncRNA DLEU2/miR-23c/GLS, lncRNA GSEC/
miR-101-3p/GLS, lncRNA PTPRG-AS1/miR-101-3p/GLS and
lncRNA TRAF3IP2-AS1/miR-23c/GLS regulatory axes.
(Figure 15D).

Discussion

Cuproptosis is a novel cell death mechanism that is
characterized by cell death induced by copper, which targets
proteins of the fatty acylated tricarboxylic acid cycle (Tsvetkov
et al., 2022). Wilson’s disease is a condition caused by copper
accumulation. Previous studies showed that humans or animal
models with Wilson’s disease have an increased incidence of
HCC, indicating that the accumulation of copper promotes the
malignant transformation, but the mechanism is not yet clear
(Czlonkowska et al., 2018). CRGs play a crucial role in the
development of kidney cancer (Bian et al., 2022). However, the
role of CRGs in HCC has not yet been elucidated. Therefore, a
bioinformatic analysis of public sequencing data of CRGs in HCC
was performed in this work to gain a deeper understanding of CRGs
expression, prognosis and their potential biological functions in
HCC and RT-qPCR was used for experimental validation to guide
future research.

The results showed that these 19 CRGs were mainly involved in
extracellular matrix organization, regulation of DNA metabolism,
cell-matrix adhesion junction, extracellular matrix components, cell
adhesion molecule binding, collagen binding and other biological
functions in HCC, and they were closely related to focal adhesion,
extracellular matrix-receptor interaction, HCC, cell cycle, PD-L1
expression, PD-1 checkpoint, PI3K-Akt, TGF-β, NOD-like receptor
and other signaling pathways. The results of GSEA enrichment
analysis showed that the potential biological processes and pathways
involved in CRGs in HCC included focal adhesion, cell cycle, T cell
receptor, JAK STAT, MAPK and other signaling pathways. These
pathways are closely related to tumorigenesis and tumor
progression. The adhesion of cancer cells to the extracellular
matrix promotes the resistance of cancer cells to
chemotherapeutic drugs, thereby promoting the occurrence and
development of tumors (Eke and Cordes, 2015). Signaling proteins

at focal adhesions include kinases such as focal adhesion kinase,
integrin-linked kinase, and phosphatases. Focal adhesion kinase is a
cytoplasmic tyrosine kinase identified as a key mediator of integrin
signaling (Seong et al., 2013). It plays an important role in tumor
progression and metastasis by regulating cancer cell functions such
as migration, invasion, and epithelial-mesenchymal transition, as
well as affecting the pericancer microenvironment such as
angiogenesis (Zhao and Guan, 2009). The focal adhesion kinase
inhibitor BI853520 inhibits the proliferation, migration, invasion
and epithelial-mesenchymal transition of cancer cells by affecting
the PI3K/AKT/mTOR signaling pathway (Zhang et al., 2020; Li
et al., 2021). Our results suggested that CRGs may affect the
occurrence and progression of HCC by affecting focal adhesion
and various cancer-related signaling pathways.

According to our results the expression of most CRGs in HCC
tissues was significantly higher than that in the adjacent tissues.
Quantitative RT-PCR results also confirmed that The expression of
CDKN2A, DLAT, DLST, GLS, and PDHA1 was higher in various
HCC cell lines than in the hepatocyte cell line (L02). The results of
prognostic analysis showed that HCC patients with higher
expression of CDKN2A, DLAT, DLST, GLS, and PDHA1 had
shorter OS, indicating that prognostic CRGs promoted the
progression of HCC. CDKN2A is highly expressed in various
cancer tissues such as liver cancer and kidney cancer and plays
an important prognostic role in many cancers (Ai et al., 2003; Zeng
et al., 2018; Christodoulou et al., 2020; Ji et al., 2020; Xande et al.,
2020). DLST is an E2 component of the α-ketoglutarate (αKG)
dehydrogenase complex, which governs the entry of glutamine into
the TCA for oxidative decarboxylation, thus promotes
neuroblastoma aggression (Anderson et al., 2021). Over
expression of glycolytic gene DLAT, which promoted glycolysis
but suppressed acetyl-CoA production and enhanced the
malignancy of non-small cell lung cancer (NSCLC) cells.
Clinically, high expression of DLAT was positively associated
with tumor size, poorer prognosis, and SUVmax values of 18F-
FDG-PET/CT scans in patients with NSCLC (Chen et al., 2022).
GLS the first enzyme in glutaminolysis, is overexpressed in
ibrutinib-resistant mantle cell lymphoma (MCL) cells, and that
its expression correlates well with elevated glutamine dependency
and glutaminolysis. Targeting glutaminase is therapeutically
effective in ibrutinib-resistant MCL (Li et al., 2022). PDHA1, a
subunit of the pyruvate dehydrogenase complex (PDC), inhibits
prostate cancer development in mouse and human xenograft tumor
models by affecting lipid biosynthesis (Chen et al., 2018). Therefore,
upregulated CRGs has an important biological significance in a
variety of human tumors.

Univariate Cox regression and LASSO Cox regression analysis
were subsequently used to analyze the five signature genes. The
prognostic value of these five genes was then tested, and the results
showed that HCC patients with high expression of these five CRGs
had decreased survival rates. Moreover, the higher expression of
GLS, DLAT, and CDKN2A increased the risk score, and the OS rate
of patients in the high-risk group was significantly shorter than that
of the patients in the low-risk group. In addition, CDKN2A was
found as an independent risk factor, and a valid nomogram was
constructed to predict the 1-, 3-, and 5-year survival rates of HCC
patients, suggesting that CDKN2A played an important role in the
occurrence and prognosis of HCC.
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Most malignancies are caused by somatic mutations within the
cancer genome, and mutational signatures correlate with mRNA
and protein expression in multiple cancer types (Weir et al., 2004).
Functional alterations due to somatic mutations in cancer genomes
are critical for identifying driver mutations and developing
molecularly targeted therapies (Jia and Zhao, 2017). In this study,
the analysis of the cBioPortal database showed that prognostic CRGs
had a high frequency of gene alterations in HCC patients, and the
survival rate of HCC patients with mutations in prognostic CRGs
was significantly reduced compared with those without mutations.
In other words, the mutation of prognostic CRGs in HCC
accelerated the progression of HCC, providing some directions
for the development of targeted drugs in the treatment of HCC
in the future.

The interaction of the tumor and the immune system also plays
an important role in the occurrence, development, and treatment of
cancer (Kong et al., 2020; Xiao et al., 2020). Immune cells are an
important part of the TME, and innate immune cells (including
macrophages, neutrophils, dendritic cells, and natural killer cells)
and adaptive immune cells (T cells and B cells) play an important
role in tumor progression (Thakkar et al., 2020). High CD10+/low
CD20+ immune cell infiltration ratio is an important prognostic
factor for lung squamous cell carcinoma (Kadota et al., 2015).
Immunomodulatory therapy of tumor-specific neutrophil and B
lymphocyte responses may be suitable in the treatment of lung
squamous cell carcinoma (Kadota et al., 2015) (65). Correale P’ team
investigated the prognostic value of tumor-infiltrating CD8+ T cells
expressing the chemokine receptor 7 [T(ccr7)], demonstrating that
patients with colorectal cancer with high T (ccr7) and T (reg)
invasion have a better prognosis (Correale et al., 2012). In the
present study, the expression of prognostic CRGs in HCC was
significantly and positively correlated with the infiltration of
immune cells. Therefore, the target of prognostic CRGs with the
aim of interfering with the function of immune cell infiltration in
HCC might provide a new solution for immunotherapy
against HCC.

At present, immunotherapy targeting immune checkpoints,
especially programmed cell death protein 1/programmed cell
death ligand 1 (PD-1/PD-L1) and CTLA-4 blockers have become
feasible in the treatment of manymalignant tumors (Cai et al., 2019).
PD-1 is a member of the CD28 family. PD-1 and its ligands are
widely expressed in T cells and play a broader immunoregulatory
role in T cell activation and tolerance (Cha et al., 2019). PD-L1 is a
transmembrane protein considered as a co-suppressor of the
immune response, and it binds to PD-1 to reduce the
proliferation of PD-1-positive cells, inhibits their cytokine
secretion and induce apoptosis. PD-L1 also plays an important
role in various malignancies, attenuating the host immune
response to tumor cells (Han et al., 2020). The PD-1/PD-L1 axis
is responsible for cancer immune escape and has a huge impact on
cancer therapy, and its inhibition is an effective treatment for many
cancers (Dermani et al., 2019). Previous studies found that copper
regulates a key signaling pathway that mediates PD-L1-driven
cancer immune evasion (Voli et al., 2020). Cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4) is a membrane
glycoprotein expressed by activated effector T cells and is
involved in the inhibition of T cell proliferation, cell cycle
progression and cytokine production (Zhao et al., 2018).

Antibodies targeting CTLA-4 or in combination with other
therapies significantly enhance the antitumor effects and improve
the prognosis in malignant diseases (Zhao et al., 2018). This study
found that the expression of prognostic CRGs in the TCGA-LIHC
cohort was positively correlated with the expression of PD-1
(PDCD1), PD-L1 (CD-274) and CTLA-4, suggesting that the
prognosis of HCC patients with high expression of CRGs should
be improved by immunotherapy targeting immune checkpoints.

The research on tumor immune checkpoint inhibitors in tumor
immunotherapy is the most developed. TMB and MSI are
considered potential predictive biomarkers involved in response
to ICIs (Dudley et al., 2016; Ritterhouse, 2019). High TMB is
associated with the response to ICI in multiple tumor types
(Weir et al., 2004). Our results showed that CDKN2A increased
the TMB score in HCC and PDHA1 increased the MSI score.
Furthermore, prognostic CRGs were positively or negatively
associated with multiple chemotherapeutic agents. These results
provide new potential therapeutic targets in the treatment of HCC.

N6-methyladenosine (m6A) is the most prevalent internal
mRNA modification in mammalian cells. RNA methylation is a
pervasive post-transcriptional modification that plays a key role in
regulating various biological processes, and its dysregulation is
closely related to the occurrence of human malignancies (Anita
et al., 2020; Chen and Wong, 2020; Han et al., 2021; Liu et al., 2021;
Zhang et al., 2021) through various mechanisms, providing more
possibilities for the early diagnosis and treatment of cancer (Sun
et al., 2019). METTL3 is involved in pancreatic carcinogenesis and is
a potential prognostic marker or therapeutic target (Xia et al., 2019).
HBXIP promotes the progression of gastric cancer via METTL3-
mediated MYC mRNA m6A modification (Yang et al., 2020).
Currently, the link between CRGs and m6A-related genes in
HCC has not been investigated, which was one of the aims of
the present study. Our result showed that m6A-related genes were
significantly upregulated in the C1 cluster with higher expression of
CRGs, and prognostic CRGs were significantly correlated with
m6A-related genes, suggesting that CRGs might affect the
progression of HCC through m6A modification. However,
further studies should be performed to confirm this result.

Stromal components, including CAFs and TAMs, play
important roles in cancer initiation and progression (Hanahan
and Coussens, 2012). Our results showed that prognostic CRGs
upregulated the expression of macrophages, fibroblasts, endothelial
cells, and hepatic progenitor cells in HCC. Furthermore, prognostic
CRGs were positively correlated with many markers of CAFs and
macrophages. Previous studies showed that CAFs promote the
progression of HCC (Ju et al., 2009; Affo et al., 2021). Clinical
studies and experimental mouse models also strongly suggest that
TAMs promote tumor progression (Qian and Pollard, 2010; Noy
and Pollard, 2014). The present study found that prognostic CRGs
upregulated the expression of macrophages, fibroblasts, endothelial
cells, and hepatic progenitor cells in HCC. Moreover, prognostic
CRGs were significantly and positively correlated with many
markers of stromal cells, especially CAFs and TAMs. Therefore,
prognostic CRGs might affect the progression of HCC patients by
altering the expression of CAFs and TAMs in the TME.

Eight lncRNA-miRNA-mRNA networks were also constructed,
lncRNA DANCR reduces the expression of miR-125b-5p and
regulates the proliferation and apoptosis of hepatoma cells (Yang
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et al., 2021). LncRNACYTOR affects the proliferation, cell cycle and
apoptosis of hepatoma cells by regulating the miR-125b5p/
KIAA1522 axis (Bo et al., 2021). LncRNA DLEU2 aggravates the
progression of HCC (Guo et al., 2019). Furthermore, the GSEC/
miR-101-3p/SNX16/PAPOLG axis of the ceRNA network axis is an
important factor associated with HCC prognosis and immune
infiltration (Hu et al., 2022). Our study revealed that these
mRNA-miRNA-lncRNA networks were associated with the
prognosis of HCC patients. All these pieces of evidence suggest
that these regulatory axes might play an important role in the
progression of HCC. However, further studies should be
performed to confirm this result.

Conclusion

CRGs affected the infiltration of immune cells such as
macrophages and CD8+ T cells, promoted the expression of
immune checkpoints such as CD274 and HAVCR2, and promoted
the expression of various m6A-related genes in HCC. CRGs also
participated in multiple cancer-related signaling pathways in HCC. A
total of 19 CRGs that were highly expressed in HCC were analyzed,
and five CRGs (CDKN2A, DLAT, DLST, GLS, and PDHA1) that were
associated with the prognosis of HCC patients were identified. A
prognostic model of CRGs was established, which predicted more
accurately OS and PFS in HCC patients. Mutations in prognostic
CRGs led to poorer prognosis in patients withHCC. Prognostic CRGs
were positively correlated with B cells, T cells, macrophages, and other
immune cells, and were positively correlated with various
chemotherapeutic drugs. They affected the TME in HCC by
affecting CAFs and TAMs. Finally, eight lncRNA-miRNA-mRNA
regulatory axes that affected the progression of HCC were predicted.
Hence, our study laid the foundation for an in-depth understanding of
the role of CRGs in HCC.

Data availability statement

The datasets are available in TCGA database (https://portal.gdc.
cancer.gov/), GDSC database (https://www.cancerrxgene.org/),
GeneMANIA (http://www.genemania.org), GSEA (http://software.
broadinstitute.org/gsea/index.jsp), Human Protein Atlas database
(https://www.proteinatlas.org), cBioPortal (http://www.cbioportal.org/
), GDSC database (https://www.cancerrxgene.org/), GEPIA2 database
(http://gepia2.cancer-pku.cn/#index), TISIDB (http://cis.hku.hk/
TISIDB), TISCH database (http://tisch.comp-genomics.org/),
ENCORI database (http://starbase.sysu.edu.cn/), RNAInter database
(http://www.rnainter.org/), miRNet database (http://www.mirnet.ca/),
RNA22 database (https://cm.jefferson.edu/rna22/interactive) as well as
TIMER database (https://cistrome.shinyapps.io/timer/), UALCAN
database (http://ualcan.path.uab.edu/).

Author contributions

Conceptualization, HZ, JW and FY; methodology, QY and
YZ; software, GZ and SY; formal analysis, JW and YY;
investigation, HQ, WS and QW; data curation, YC and PZ;
writing—original draft preparation, HQ, WS, GZ;
writing—review and editing, FY, JY; supervision, FY, JW, JY;
funding acquisition, FY, JY. All authors have read and agreed to
the published version of the manuscript.

Funding

This research was continuously funded by National Natural
Science Foundation of China (No 82102568; 82172432 and
82001319), National and Local Joint Engineering Research Center
of Orthopaedic Biomaterials (XMHT20190204007), Shenzhen
High-level Hospital Construction Fund, Shenzhen Key Medical
Discipline Construction Fund (No. SZXK023), Shenzhen “San-
Ming” Project of Medicine (No. SZSM201612092), Research and
Development Projects of Shenzhen (No. Z2021N054), Shenzhen
Science and Technology Program (No. JCYJ20210324110214040
and JCYJ20190809152409606), Guangdong Basic and Applied Basic
Research Foundation (No. 2021A1515012586), Bethune Charitable
Foundation and CSPC Osteoporosis Research Foundation Project
(No. G-X-2020–1107–21), and The Scientific Research Foundation
of Peking University Shenzhen Hospital (No. KYQD2021099).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1094793/
full#supplementary-material

Frontiers in Genetics frontiersin.org23

Qin et al. 10.3389/fgene.2023.1094793

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cancerrxgene.org/
http://www.genemania.org
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://www.proteinatlas.org
http://www.cbioportal.org/
https://www.cancerrxgene.org/
http://gepia2.cancer-pku.cn/#index
http://cis.hku.hk/TISIDB
http://cis.hku.hk/TISIDB
http://tisch.comp-genomics.org/
http://starbase.sysu.edu.cn/
http://www.rnainter.org/
http://www.mirnet.ca/
https://cm.jefferson.edu/rna22/interactive
https://cistrome.shinyapps.io/timer/
http://ualcan.path.uab.edu/
https://www.frontiersin.org/articles/10.3389/fgene.2023.1094793/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1094793/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094793


References

Affo, S., Nair, A., Brundu, F., Ravichandra, A., Bhattacharjee, S., Matsuda, M., et al.
(2021). Promotion of cholangiocarcinoma growth by diverse cancer-associated
fibroblast subpopulations. Cancer Cell 39 (6), 866–882.e11. doi:10.1016/j.ccell.2021.
03.012

Ai, L., Stephenson, K. K., Ling, W., Zuo, C., Mukunyadzi, P., Suen, J. Y., et al. (2003).
The p16 (CDKN2a/INK4a) tumor-suppressor gene in head and neck squamous cell
carcinoma: A promoter methylation and protein expression study in 100 cases. Mod.
Pathol. 16 (9), 944–950. doi:10.1097/01.MP.0000085760.74313

Anderson, N. M., Qin, X., Finan, J. M., Lam, A., Athoe, J., Missiaen, R., et al. (2021).
Metabolic enzyme DLST promotes tumor aggression and reveals a vulnerability to
OXPHOS inhibition in high-risk neuroblastoma. Cancer Res. 81 (17), 4417–4430.
doi:10.1158/0008-5472.Can-20-2153

Anita, R., Paramasivam, A., Priyadharsini, J. V., and Chitra, S. (2020). The m6A
readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor
prognosis in breast cancer patients. Am. J. Cancer Res. 10 (8), 2546–2554.

Aran, D., Hu, Z., and Butte, A. J. (2017). xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 18 (1), 220. doi:10.1186/s13059-017-1349-1

Baharvand, M., Manifar, S., Akkafan, R., Mortazavi, H., and Sabour, S. (2014). Serum
levels of ferritin, copper, and zinc in patients with oral cancer. Biomed. J. 375, 331–336.
doi:10.4103/2319-4170.132888

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol. 17 (1), 218. doi:10.1186/s13059-
016-1070-5

Bian, Z., Fan, R., and Xie, L. (2022). A novel cuproptosis-related prognostic gene
signature and validation of differential expression in clear cell renal cell carcinoma.
Genes (Basel) 13 (5), 851. doi:10.3390/genes13050851

Bo, H., XiaoBo, Y., Xu, Y., and XinTing, S. (2021). LncRNA CYTOR affects the
proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the
miR-125b-5p/KIAA1522 axis. Aging(Albany NY) 13 (2), 2626–2639. doi:10.18632/
aging.202306

Brady, D. C., Crowe, M. S., Turski, M. L., Hobbs, G. A., Yao, X., Chaikuad, A., et al.
(2014). Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature
5097501, 492–496. doi:10.1038/nature13180

Cai, J., Wang, D., Zhang, G., and Guo, X. (2019). The role of PD-1/PD-L1 Axis in treg
development and function: Implications for cancer immunotherapy.Onco Targets Ther.
12, 8437–8445. doi:10.2147/OTT.S221340

Cha, J. H., Chan, L. C., Li, C. W., Hsu, J. L., and Hung, M. C. (2019). Mechanisms
controlling PD-L1 expression in cancer.Mol. Cell 76 (3), 359–370. doi:10.1016/j.molcel.
2019.09.030

Chang, L., Zhou, G., Soufan, O., and Xia, J. (2020). miRNet 2.0: network-based visual
analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48,
W244–W251. doi:10.1093/nar/gkaa467

Chen, J., Guccini, I., Di Mitri, D., Brina, D., Revandkar, A., Sarti, M., et al. (2018).
Publisher Correction: Compartmentalized activities of the pyruvate dehydrogenase
complex sustain lipogenesis in prostate cancer. Nat. Genet. 50 (9), 1343. doi:10.1038/
s41588-018-0181-1

Chen, M., and Wong, C. M. (2020). The emerging roles of N6-methyladenosine
(m6A) deregulation in liver carcinogenesis.Mol. Cancer 19 (1), 44. doi:10.1186/s12943-
020-01172-y

Chen, Q., Wang, Y., Yang, L., Sun, L., Wen, Y., Huang, Y., et al. (2022).
PM2.5 promotes NSCLC carcinogenesis through translationally and
transcriptionally activating DLAT-mediated glycolysis reprograming. J. Exp. Clin.
cancer Res. CR 41 (1), 229. doi:10.1186/s13046-022-02437-8

Christodoulou, E., Nell, Q. J., Verdijk, R. M., Gruis, N. A., Velden, P. A., and Doorn, R.
V. (2020). Loss of wild-type CDKN2A is an early event in the development of melanoma
in FAMMM syndrome. J. Invest. Dermatol 14011, 2298–2301.e3. doi:10.1016/j.jid.2020.
03.938

Correale, P., Rotundo, M. S., Botta, C., Del Vecchio, M. T., Ginanneschi, C., Licchetta,
A., et al. (2012). Tumor infiltration by T lymphocytes expressing chemokine receptor 7
(CCR7) is predictive of favorable outcome in patients with advanced colorectal
carcinoma. Clin. Cancer Res. 18 (3), 850–857. doi:10.1158/1078-0432.CCR-10-3186

Czlonkowska, A., Litwin, T., Dusek, P., Ferenci, P., Lutsenko, S., Medici, V., et al.
(2018). Wilson disease. Nat. Rev. Dis. Prim. 4 (1), 21. doi:10.1038/s41572-018-0018-3

Davis, C. I., Gu, X., Kiefer, R. M., Ralle, M., Gade, T. P., and Brady, D. C. (2020).
Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper
chelation. Metallomics 1212, 1995–2008. doi:10.1039/d0mt00156b

Dermani, F. K., Samadi, P., Rahmani, G., Kohlan, A. K., and Najafi, R. (2019). PD-1/
PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell Physiol. 234 (2),
1313–1325. doi:10.1002/jcp.27172

Dragutinović, V. V., Tatić, S. B., Nikolić-Mandić, S. D., Tripković, T. M., Dunđerović,
D. M., and Paunović, I. R. (2014). Copper as ancillary diagnostic tool in preoperative

evaluation of possible papillary thyroid carcinoma in patients with benign thyroid
disease. Biol. Trace Elem. Res. 1603, 311–315. doi:10.1007/s12011-014-0071-z

Dudley, J. C., Lin, M. T., Le, D. T., and Eshleman, J. R. (2016). Microsatellite instability
as a biomarker for PD-1 blockade. Clin. Cancer Res. 22 (4), 813–820. doi:10.1158/1078-
0432.CCR-15-1678

Eke, I., and Cordes, N. (2015). Focal adhesion signaling and therapy resistance in
cancer. Semin. Cancer Biol. 31, 65–75. doi:10.1016/j.semcancer.2014.07.009

Fang, Y., Tian, S., Pan, Y., Li, W., Wang, Q., Tang, Y., et al. (2020). Pyroptosis: A new
frontier in cancer. Biomed. Pharmacother. 121, 109595. doi:10.1016/j.biopha.2019.
109595

Fendt, S. M., Bell, E. L., Keibler, M. A., Olenchock, B. A., Mayers, J. R., Wasylenko, T.
M., et al. (2013). Reductive glutamine metabolism is a function of the alpha-
ketoglutarate to citrate ratio in cells. Nat. Commun. 4, 2236. doi:10.1038/ncomms3236

Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., et al. (2019).
Molecular and pharmacological modulators of the tumor immune contexture revealed
by deconvolution of RNA-seq data. Genome Med. 11 (1), 34. doi:10.1186/s13073-019-
0638-6

Gao, J. J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al.
(2013). Integrative analysis of complex cancer genomics and clinical profiles using the
cBioPortal. Sci. Signal. 6 (269), pl1. doi:10.1126/scisignal.2004088

Golonka, R. M., and Vijay-Kumar, M. (2021). Atypical immunometabolism and
metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv.
Cancer Res. 149, 171–255. doi:10.1016/bs.acr.2020.10.004

Guo, Y., Bai, M., Lin, L., Huang, J., An, Y., Liang, L., et al. (2019). LncRNA
DLEU2 aggravates the progression of hepatocellular carcinoma through binding to
EZH2. Biomed. Pharmacother. 118, 109272. doi:10.1016/j.biopha.2019.109272

Han, X., Wang, M., Zhao, Y. L., Yang, Y., and Yang, Y. G. (2021). RNA methylations
in human cancers. Semin. Cancer Biol. 75, 97–115. doi:10.1016/j.semcancer.2020.11.007

Han, Y. Y., Liu, D. D., and Li, L. H. (2020). PD-1/PD-L1 pathway: Current researches
in cancer. Am. J. Cancer Res. 10 (3), 727–742.

Hanahan, D., and Coussens, L. M. (2012). Accessories to the crime: Functions of cells
recruited to the tumor microenvironment. Cancer Cell 21 (3), 309–322. doi:10.1016/j.
ccr.2012.02.022

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7

Hellyer, J. A., Padda, S. K., Diehn, M., and Wakelee, H. A. (2021). Clinical
implications of KEAP1-nfe2l2 mutations in NSCLC. J. Thorac. Oncol. 16 (3),
395–403. doi:10.1016/j.jtho.2020.11.015

Hu, S., Zhang, J., Guo, G., Zhang, L., Dai, J., and Gao, Y. (2022). Comprehensive
analysis of GSEC/miR-101-3p/SNX16/PAPOLG axis in hepatocellular carcinoma. PLoS
One 17 (4), e0267117. doi:10.1371/journal.pone.0267117

Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J. M., Ryerson, A. B., et al.
(2017). Annual report to the nation on the status of cancer, 1975-2014, featuring
survival. J. Natl. Cancer Inst. 1099, djx030. doi:10.1093/jnci/djx030

Ji, Z., Huo, C., and Yang, P. (2020). Genistein inhibited the proliferation of kidney
cancer cells via CDKN2a hypomethylation: Role of abnormal apoptosis. Int. Urol.
Nephrol. 52 (6), 1049–1055. doi:10.1007/s11255-019-02372-2

Jia, P., and Zhao, Z. (2017). Impacts of somatic mutations on gene expression:
An association perspective. Brief. Bioinform 18 (3), 413–425. doi:10.1093/bib/
bbw037

Ju, M., Bi, J., Wei, Q., Jiang, L., Guan, Q., Zhang, M., et al. (2021). Pan-cancer analysis
of NLRP3 inflammasome with potential implications in prognosis and immunotherapy
in human cancer. Brief. Bioinform 22 (4), bbaa345. doi:10.1093/bib/bbaa345

Ju, M. J., Qiu, S. J., Fan, J., Xiao, Y. S., Gao, Q., Zhou, J., et al. (2009). Peritumoral
activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma
after curative resection. Am. J. Clin. Pathol. 131 (4), 498–510. doi:10.1309/
AJCP86PPBNGOHNNL

Kaba, M., Pirincci, N., Yuksel, M. B., Gecit, I., Gunes, M., Demir, M., et al. (2015).
Serum levels of trace elements in patients with testicular cancers. Int. Braz J. Urol. 416,
1101–1107. doi:10.1590/S1677-5538.IBJU.2014.0460

Kadota, K., Nitadori, J. I., Ujiie, H., Buitrago, D. H., Woo, K. M., Sima, C. S., et al.
(2015). Prognostic impact of immune microenvironment in lung squamous cell
carcinoma: Tumor-infiltrating CD10+ neutrophil/cd20+ lymphocyte ratio as an
independent prognostic factor. J. Thorac. Oncol. 10 (9), 1301–1310. doi:10.1097/
JTO.0000000000000617

Kong, X., Fu, M., Niu, X., and Jiang, H. (2020). Comprehensive analysis of the
expression, relationship to immune infiltration and prognosis of TIM-1 in cancer.
Front. Oncol. 10, 1086. doi:10.3389/fonc.2020.01086

Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., et al. (2012). Glucose-
independent glutamine metabolism via TCA cycling for proliferation and survival in
B cells. Cell Metab. 151, 110–121. doi:10.1016/j.cmet.2011.12.009

Frontiers in Genetics frontiersin.org24

Qin et al. 10.3389/fgene.2023.1094793

https://doi.org/10.1016/j.ccell.2021.03.012
https://doi.org/10.1016/j.ccell.2021.03.012
https://doi.org/10.1097/01.MP.0000085760.74313
https://doi.org/10.1158/0008-5472.Can-20-2153
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.4103/2319-4170.132888
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.3390/genes13050851
https://doi.org/10.18632/aging.202306
https://doi.org/10.18632/aging.202306
https://doi.org/10.1038/nature13180
https://doi.org/10.2147/OTT.S221340
https://doi.org/10.1016/j.molcel.2019.09.030
https://doi.org/10.1016/j.molcel.2019.09.030
https://doi.org/10.1093/nar/gkaa467
https://doi.org/10.1038/s41588-018-0181-1
https://doi.org/10.1038/s41588-018-0181-1
https://doi.org/10.1186/s12943-020-01172-y
https://doi.org/10.1186/s12943-020-01172-y
https://doi.org/10.1186/s13046-022-02437-8
https://doi.org/10.1016/j.jid.2020.03.938
https://doi.org/10.1016/j.jid.2020.03.938
https://doi.org/10.1158/1078-0432.CCR-10-3186
https://doi.org/10.1038/s41572-018-0018-3
https://doi.org/10.1039/d0mt00156b
https://doi.org/10.1002/jcp.27172
https://doi.org/10.1007/s12011-014-0071-z
https://doi.org/10.1158/1078-0432.CCR-15-1678
https://doi.org/10.1158/1078-0432.CCR-15-1678
https://doi.org/10.1016/j.semcancer.2014.07.009
https://doi.org/10.1016/j.biopha.2019.109595
https://doi.org/10.1016/j.biopha.2019.109595
https://doi.org/10.1038/ncomms3236
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1016/bs.acr.2020.10.004
https://doi.org/10.1016/j.biopha.2019.109272
https://doi.org/10.1016/j.semcancer.2020.11.007
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.jtho.2020.11.015
https://doi.org/10.1371/journal.pone.0267117
https://doi.org/10.1093/jnci/djx030
https://doi.org/10.1007/s11255-019-02372-2
https://doi.org/10.1093/bib/bbw037
https://doi.org/10.1093/bib/bbw037
https://doi.org/10.1093/bib/bbaa345
https://doi.org/10.1309/AJCP86PPBNGOHNNL
https://doi.org/10.1309/AJCP86PPBNGOHNNL
https://doi.org/10.1590/S1677-5538.IBJU.2014.0460
https://doi.org/10.1097/JTO.0000000000000617
https://doi.org/10.1097/JTO.0000000000000617
https://doi.org/10.3389/fonc.2020.01086
https://doi.org/10.1016/j.cmet.2011.12.009
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094793


Li, B., Severson, E., Pignon, J. C., Zhao, H., Li, T., Novak, J., et al. (2016).
Comprehensive analyses of tumor immunity: Implications for cancer
immunotherapy. Genome Biol. 17 (1), 174. doi:10.1186/s13059-016-1028-7

Li, D., and Li, Y. (2020). The interaction between ferroptosis and lipid metabolism in
cancer. Signal Transduct. Target Ther. 51, 108. doi:10.1038/s41392-020-00216-5

Li, H., Gao, Y., and Ren, C. (2021). Focal adhesion kinase inhibitor BI 853520 inhibits
cell proliferation, migration and EMT process through PI3K/AKT/mTOR signaling
pathway in ovarian cancer. Discov. Oncol. 12 (1), 29. doi:10.1007/s12672-021-00425-6

Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014). starBase v2.0: decoding
miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-
scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97. doi:10.1093/nar/gkt1248

Li, L., Nie, L., Jordan, A., Cai, Q., Liu, Y., Li, Y., et al. (2022). Targeting glutaminase is
therapeutically effective in ibrutinib-resistant mantle cell lymphoma. Haematologica.
Advance online publication. doi:10.3324/haematol.2022.281538

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). Timer: A web
server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77
(21), e108–e110. doi:10.1158/0008-5472.CAN-17-0307

Lin, Y., Liu, T., Cui, T., Wang, Z., Zhang, Y., Tan, P., et al. (2020). RNAInter in 2020:
RNA interactome repository with increased coverage and annotation.Nucleic Acids Res.
48 (D1), D189–D197. doi:10.1093/nar/gkz804

Liu, Z., He, J., Han, J., Yang, J., Liao, W., and Chen, N. (2021). m6A regulators
mediated methylation modification patterns and tumor microenvironment infiltration
characterization in nasopharyngeal carcinoma. Front. Immunol. 12, 762243. doi:10.
3389/fimmu.2021.762243

Liver, E. A., and Cancer, E. O. (2012). EASL-EORTC clinical practice guidelines:
Management of hepatocellular carcinoma. J. Hepatol. 564, 908–943. doi:10.1016/j.jhep.
2011.12.001

Llovet, J. M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M.,
et al. (2016). Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 71, 16018. doi:10.1038/
nrdp.2016.18

Loher, P., and Rigoutsos, I. (2012). Interactive exploration of RNA22 microRNA
target predictions. Bioinformatics 28 (24), 3322–3323. doi:10.1093/bioinformatics/
bts615

Lutsenko, S. (2010). Human copper homeostasis: A network of interconnected
pathways. Curr. Opin. Chem. Biol. 142, 211–217. doi:10.1016/j.cbpa.2010.01.003

Militello, G., Weirick, T., John, D., Döring, C., Dimmeler, S., and Uchida, S. (2017).
Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief.
Bioinform 18 (5), 780–788. doi:10.1093/bib/bbw053

Nevitt, T., Ohrvik, H., and Thiele, D. J. (2012). Charting the travels of copper in
eukaryotes from yeast to mammals. Biochim. Biophys. Acta 1823 (9), 1580–1593. doi:10.
1016/j.bbamcr.2012.02.011

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. methods 12 (5),
453–457. doi:10.1038/nmeth.3337

Noy, R., and Pollard, J. W. (2014). Tumor-associated macrophages: From
mechanisms to therapy. Immunity 41 (1), 49–61. doi:10.1016/j.immuni.2014.06.010

Ozden, O., Park, S. H., Wagner, B. A., Song, H. Y., Zhu, Y., Vassilopoulos, A., et al.
(2014). SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer
cells. Free Radic. Biol. Med. 76, 163–172. doi:10.1016/j.freeradbiomed.2014.08.001

Powers, R. K., Goodspeed, A., Pielke-Lombardo, H., Tan, A. C., and Costello, J. C.
(2018). GSEA-InContext: Identifying novel and common patterns in expression
experiments. Bioinformatics 34 (13), i555–i564. doi:10.1093/bioinformatics/bty271

Qian, B. Z., and Pollard, J. W. (2010). Macrophage diversity enhances tumor
progression and metastasis. Cell 141 (1), 39–51. doi:10.1016/j.cell.2010.03.014

Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., and Gfeller, D. (2017).
Simultaneous enumeration of cancer and immune cell types from bulk tumor gene
expression data. eLife 6, e26476. doi:10.7554/eLife.26476

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Ritterhouse, L. L. (2019). Tumor mutational burden. Cancer Cytopathol. 127 (12),
735–736. doi:10.1002/cncy.22174

Rizzo, A., Ricci, A. D., and Brandi, G. (2021). PD-L1, TMB, MSI, and other predictors
of response to immune checkpoint inhibitors in biliary tract cancer. Cancers (Basel) 13
(3), 558. doi:10.3390/cancers13030558

Roth, G. S., and Decaens, T. (2017). Liver immunotolerance and hepatocellular
carcinoma: Patho-physiological mechanisms and therapeutic perspectives. Eur.
J. Cancer 87, 101–112. doi:10.1016/j.ejca.2017.10.010

Ru, B., Wong, C. N., Tong, Y., Zhong, J. Y., Zhong, S., Wu, W. C., et al. (2019). Tisidb:
An integrated repository portal for tumor-immune system interactions. Bioinformatics
35 (20), 4200–4202. doi:10.1093/bioinformatics/btz210

Safi, R., Nelson, E. R., Chitneni, S. K., Franz, K. J., George, D. J., Zalutsky, M. R., et al.
(2014). Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res.
7420, 5819–5831. doi:10.1158/0008-5472.CAN-13-3527

Seong, J., Wang, N., and Wang, Y. (2013). Mechanotransduction at focal adhesions:
From physiology to cancer development. J. Cell Mol. Med. 17 (5), 597–604. doi:10.1111/
jcmm.12045

Serrano, M. (1997). The tumor suppressor protein p16INK4a. Exp. Cell Res. 237,
7–13. doi:10.1006/excr.1997.3824

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: A software environment for integrated models of
biomolecular interaction networks. Genome Res. 13 (11), 2498–2504. doi:10.
1101/gr.1239303

Song, L., Liu, D., Zhang, X., Zhu, X., Lu, X., Huang, J., et al. (2019). Low expression of
PDHA1 predicts poor prognosis in gastric cancer. Pathol. Res. Pract. 215, 478–482.
doi:10.1016/j.prp.2018.12.038

Sturm, G., Finotello, F., and List, M. (2020). Immunedeconv: An R package for unified
access to computational methods for estimating immune cell fractions from bulk RNA-
sequencing data.Methods Mol. Biol. 2120, 223–232. doi:10.1007/978-1-0716-0327-7_16

Sun, D., Wang, J., Han, Y., Dong, X., Ge, J., Zheng, R., et al. (2021). Tisch: A
comprehensive web resource enabling interactive single-cell transcriptome visualization
of tumor microenvironment. Nucleic Acids Res. 49, D1420–D1430. doi:10.1093/nar/
gkaa1020

Sun, T., Wu, R., and Ming, L. (2019). The role of m6A RNA methylation in cancer.
Biomed. Pharmacother. 112, 108613. doi:10.1016/j.biopha.2019.108613

Tan, Y. F., Wang, M., Chen, Z. Y., Wang, L., and Liu, X. H. (2020). Inhibition of
BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell
carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis. 114, 239.
doi:10.1038/s41419-020-2431-2

Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). Gepia: A web server for
cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res.
45, W98–W102. doi:10.1093/nar/gkx247

Thakkar, S., Sharma, D., Kalia, K., and Tekade, R. K. (2020). Tumor
microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A
review. Acta Biomater. 101, 43–68. doi:10.1016/j.actbio.2019.09.009

Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer genome Atlas
(TCGA): An immeasurable source of knowledge. Contemp. Oncol. Pozn. 19, A68–A77.
doi:10.5114/wo.2014.47136

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al.
(2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science
375, 1254–1261. doi:10.1126/science.abf0529

Villanueva, A. (2019). Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462.
doi:10.1056/NEJMra1713263

Voli, F., Valli, E., Lerra, L., Kimpton, K., Saletta, F., Giorgi, F. M., et al. (2020).
Intratumoral copper modulates PD-L1 expression and influences tumor immune
evasion. Cancer Res. 80 (19), 4129–4144. doi:10.1158/0008-5472.CAN-20-0471

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et al.
(2010). The GeneMANIA prediction server: Biological network integration for gene
prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220. doi:10.
1093/nar/gkq537

Weir, B., Zhao, X., andMeyerson, M. (2004). Somatic alterations in the human cancer
genome. Cancer Cell 6 (5), 433–438. doi:10.1016/j.ccr.2004.11.004

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery
tool with confidence assessments and item tracking. Bioinformatics 26 (12), 1572–1573.
doi:10.1093/bioinformatics/btq170

Xande, J. G., Dias, A. P., Tamura, R. E., Cruz, M. C., Brito, B., Ferreira, R. A., et al.
(2020). Bicistronic transfer of CDKN2A and p53 culminates in collaborative killing of
human lung cancer cells in vitro and in vivo. Gene Ther. 27 (1-2), 51–61. doi:10.1038/
s41434-019-0096-1

Xia, T., Wu, X., Cao, M., Zhang, P., Shi, G., Zhang, J., et al. (2019). The RNA m6A
methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion.
Pathol. Res. Pract. 215 (11), 152666. doi:10.1016/j.prp.2019.152666

Xiao, Z., Hu, L., Yang, L., Wang, S., Gao, Y., Zhu, Q., et al. (2020). TGFβ2 is a
prognostic-related biomarker and correlated with immune infiltrates in gastric cancer.
J. Cell Mol. Med. 24 (13), 7151–7162. doi:10.1111/jcmm.15164

Yaman, M., Kaya, G., and Simsek, M. (2007). Comparison of trace element
concentrations in cancerous and noncancerous human endometrial and ovary
tissues. Int. J. Gynecol. cancer official J. Int. Gynecol. Cancer Soc. 171, 220–228.
doi:10.1111/j.1525-1438.2006.00742.x

Yang, L., Jiang, M. N., Liu, Y., Wu, C. Q., and Liu, H. (2021). Crosstalk between
lncRNA DANCR and miR-125b-5p in HCC cell progression. Tumori 107 (6), 504–513.
doi:10.1177/0300891620977010

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2013). Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic
biomarker discovery in cancer cells.Nucleic Acids Res. 41, D955–D961. doi:10.1093/nar/
gks1111

Yang, Z., Jiang, X. D., Li, D. M., and Jiang, X. F. (2020). HBXIP promotes gastric
cancer via METTL3-mediated MYC mRNA m6A modification. Aging (Albany NY) 12
(24), 24967–24982. doi:10.18632/aging.103767

Frontiers in Genetics frontiersin.org25

Qin et al. 10.3389/fgene.2023.1094793

https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1038/s41392-020-00216-5
https://doi.org/10.1007/s12672-021-00425-6
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.3324/haematol.2022.281538
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1093/nar/gkz804
https://doi.org/10.3389/fimmu.2021.762243
https://doi.org/10.3389/fimmu.2021.762243
https://doi.org/10.1016/j.jhep.2011.12.001
https://doi.org/10.1016/j.jhep.2011.12.001
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1093/bioinformatics/bts615
https://doi.org/10.1093/bioinformatics/bts615
https://doi.org/10.1016/j.cbpa.2010.01.003
https://doi.org/10.1093/bib/bbw053
https://doi.org/10.1016/j.bbamcr.2012.02.011
https://doi.org/10.1016/j.bbamcr.2012.02.011
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.immuni.2014.06.010
https://doi.org/10.1016/j.freeradbiomed.2014.08.001
https://doi.org/10.1093/bioinformatics/bty271
https://doi.org/10.1016/j.cell.2010.03.014
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1002/cncy.22174
https://doi.org/10.3390/cancers13030558
https://doi.org/10.1016/j.ejca.2017.10.010
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1158/0008-5472.CAN-13-3527
https://doi.org/10.1111/jcmm.12045
https://doi.org/10.1111/jcmm.12045
https://doi.org/10.1006/excr.1997.3824
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.prp.2018.12.038
https://doi.org/10.1007/978-1-0716-0327-7_16
https://doi.org/10.1093/nar/gkaa1020
https://doi.org/10.1093/nar/gkaa1020
https://doi.org/10.1016/j.biopha.2019.108613
https://doi.org/10.1038/s41419-020-2431-2
https://doi.org/10.1093/nar/gkx247
https://doi.org/10.1016/j.actbio.2019.09.009
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.1158/0008-5472.CAN-20-0471
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1016/j.ccr.2004.11.004
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/s41434-019-0096-1
https://doi.org/10.1038/s41434-019-0096-1
https://doi.org/10.1016/j.prp.2019.152666
https://doi.org/10.1111/jcmm.15164
https://doi.org/10.1111/j.1525-1438.2006.00742.x
https://doi.org/10.1177/0300891620977010
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.18632/aging.103767
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094793


Yu, G., Wang, L., Han, Y., and He, Q. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters.OMICS 16 (5), 284–287. doi:10.1089/
omi.2011.0118

Zeng, H., Jorapur, A., Shain, A. H., Lang, U. E., Torres, R., Zhang, Y., et al. (2018). Bi-
Allelic loss of CDKN2A initiates melanoma invasion via BRN2 activation. Cancer Cell
34 (1), 56–68.e9. doi:10.1016/j.ccell.2018.05.014

Zhang, J., and Lou, W. (2020). A key mRNA-miRNA-lncRNA competing
endogenous RNA triple sub-network linked to diagnosis and prognosis of
hepatocellular carcinoma. Front. Oncol. 10, 340. doi:10.3389/fonc.2020.00340

Zhang, L., Yao, Y. X., Zhang, S. J., Liu, Y., Guo, H., Ahmed, M., et al. (2019). Metabolic
reprogramming toward oxidative phosphorylation identifies a therapeutic target for
mantle cell lymphoma. Sci. Transl. Med. 11, eaau1167. doi:10.1126/scitranslmed.
aau1167

Zhang, L., Zhao, D., Wang, Y., Zhang, W., Zhang, J., Fan, J., et al. (2020). Focal
adhesion kinase (FAK) inhibitor-defactinib suppresses the malignant progression of

human esophageal squamous cell carcinoma (ESCC) cells via effective blockade of
PI3K/AKT axis and downstream molecular network. Mol. Carcinog. 60 (2), 113–124.
doi:10.1002/mc.23273

Zhang, Z., Wang, Q., Zhang, M., Zhang, W., Zhao, L., Yang, C., et al. (2021).
Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal
cancer by MeRIP sequencing. Epigenetics 16 (4), 425–435. doi:10.1080/15592294.
2020.1805684

Zhao, J., and Guan, J. (2009). Signal transduction by focal adhesion kinase in cancer.
Cancer Metastasis Rev. 28 (1-2), 35–49. doi:10.1007/s10555-008-9165-4

Zhao, Y., Yang, W., Huang, Y., Cui, R., Li, X., and Li, B. (2018). Evolving roles for
targeting CTLA-4 in cancer immunotherapy. Cell Physiol. Biochem. 47 (2), 721–734.
doi:10.1159/000490025

Zhong, Y., Huang, R., Li, X., Xu, R., Zhou, F., Wang, J., et al. (2015). Decreased
expression of PDHE1α predicts worse clinical outcome in esophageal squamous cell
carcinoma. Anticancer Res. 35, 5533–5538.

Frontiers in Genetics frontiersin.org26

Qin et al. 10.3389/fgene.2023.1094793

https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.ccell.2018.05.014
https://doi.org/10.3389/fonc.2020.00340
https://doi.org/10.1126/scitranslmed.aau1167
https://doi.org/10.1126/scitranslmed.aau1167
https://doi.org/10.1002/mc.23273
https://doi.org/10.1080/15592294.2020.1805684
https://doi.org/10.1080/15592294.2020.1805684
https://doi.org/10.1007/s10555-008-9165-4
https://doi.org/10.1159/000490025
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094793

	Comprehensive analysis of cuproptosis-related prognostic gene signature and tumor immune microenvironment in HCC
	Introduction
	Materials and methods
	Data sources and preprocessing
	Identification of molecular subgroups
	Identification and functional enrichment analysis of DEGs
	Immune infiltration, and immune checkpoint-related genes expression in two subgroups
	Expression of CRGs and survival analysis
	Cell lines and culture conditions
	Quantitative RT-PCR
	Development of the CRG prognostic model
	Tumor staging analysis of HCC
	Immunohistochemistry of prognostic CRGs in HCC
	Mutation analysis of CRGs
	Effects of prognostic CRGs on immune cell infiltration and immune checkpoint expression
	TMB, microsatellite instability and drug sensitivity
	m6A-related gene expression analysis
	Single cell analysis
	Competing endogenous RNA network construction

	Results
	Identification and analysis of cuproptosis-related gene clusters in HCC
	Differentially expressed genes and functional enrichment analysis
	Analysis of the correlation with immune infiltration and immune checkpoints
	DEGs and prognostic models
	Construction of a prognostic CRG model
	Building of a predictive nomogram
	Correlation between prognostic CRGs and pathologic stage in HCC
	Pathological expression of CRGs in HCC tissues and normal livers
	Association of genetic mutations in CRGs with survival and clinical outcomes of HCC patients
	Prognostic CRGs interfere with immune cell infiltration and immune checkpoint expression in HCC
	TMB, microsatellite instability and drug sensitivity analysis
	Correlation between CRGs and m6A methylation-related genes in HCC
	Single-cell RNA data analysis
	Prediction and validation of upstream key miRNAs
	Prediction and validation of key lncRNAs binding to potential miRNAs

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


