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Diagnostics require precision and predictive ability to be clinically useful.
Integration of multi-omic with clinical data is crucial to our understanding of
disease pathogenesis and diagnosis. However, interpretation of overwhelming
amounts of information at the individual level requires sophisticated
computational tools for extraction of clinically meaningful outputs. Moreover,
evolution of technical and analytical methods often outpaces standardisation
strategies. RNA is the most dynamic component of all -omics technologies
carrying an abundance of regulatory information that is least harnessed for use
in clinical diagnostics. Gene expression-based tests capture genetic and non-
genetic heterogeneity and have been implemented in certain diseases. For
example patients with early breast cancer are spared toxic unnecessary
treatments with scores based on the expression of a set of genes (e.g.,
Oncotype DX). The ability of transcriptomics to portray the transcriptional
status at a moment in time has also been used in diagnosis of dynamic
diseases such as sepsis. Gene expression profiles identify endotypes in sepsis
patients with prognostic value and a potential to discriminate between viral and
bacterial infection. The application of transcriptomics for patient stratification in
clinical environments and clinical trials thus holds promise. In this review, we
discuss the current clinical application in the fields of cancer and infection. We use
these paradigms to highlight the impediments in identifying useful diagnostic and
prognostic biomarkers and propose approaches to overcome them and aid efforts
towards clinical implementation.
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1 Introduction

Precision diagnosis recognises the individuality among patients in their clinical pathway by
the simultaneous analysis of multimodal data with artificial intelligence (Kline et al., 2022).
Precision molecular diagnostics also guide efficient, safe and cost-effective therapeutics (Ho et al.,
2020). Oncology has been at the epicenter of these developments (Wahida et al., 2023), while
precision approaches in infectious diseases at the research and clinical level may help in tackling
an imminent antibiotic crisis (Cook and Wright, 2022). The importance of molecular
technologies has been underlined in the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic (Berber et al., 2021; Wang et al., 2021), but it also highlighted the
need to increase our diagnostic capacity (McDermott et al., 2021).

There is an unprecedented abundance of heterogenous data available at the clinical
(electronic health records) and molecular (-omic databases) level, but occasionally
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phenotypic information is incomplete to assist interpretation of high
through-put data (Haendel et al., 2018). The interrogation of DNA
has been under investigation as a diagnostic modality for a few
decades with increasing translation into clinical care (Pirmohamed,
2023) and measurement of protein products is common practice.
For instance, a combination of gene markers and a panel of proteins
in CancerSEEK (Cohen et al., 2018) and methylation of circulating
tumour DNA (Jin et al., 2021) are breakthroughs in early detection
of solid tumours and colorectal cancer, respectively. However, other
molecular modalities of genetic information, such as RNA, have
been explored to a lesser extent for clinical application.

In the era of precision medicine, misdiagnosis is still common in
clinical practice. In a US national epidemiologic study, serious
diagnostic errors resulting in significant harm were higher for
certain conditions such as spinal abscess, aortic aneurysm and
dissection and lung cancer (rate per incident case of disease: 36%,
17%, and 14%, respectively) (Newman-Toker et al., 2021). A gold
standard test is widely accepted as the best available method to
determine the presence of a condition, but it often lacks true 100%
accuracy and it succumbs to advances in knowledge and technology
(Sox et al., 2013; Porta, 2016). A “good” diagnostic test should also be
scalable, cost-effective, and timely. There is no doubt that we need
improved diagnostic tools to guide personalised management of
patients and new technologies hold promise towards that direction
(Love-Koh et al., 2018). But new advances also lead to many challenges.
For instance, systems science, where coupling of the molecular world
with mathematics, allows the modelling of multiple components and
their interactions, has the potential to replace traditional reductionist
approaches focusing on a single molecule (Hasin et al., 2017). However,
such technologies generate vast amounts of raw large-scale data, which
is incomprehensible if not analysed, integrated and interpreted with
advanced bioinformatic methods and computational tools (Apweiler
et al., 2018). Such approaches may not only lead to more precise
diagnosis but will also generate accessory information that may enable
better understanding of mechanistic pathways, disease processes, new
biomarkers and druggable targets. The major challenge apart from
interpretation is how such technologies can be implemented into
clinical care (Green et al., 2020). But fortunately, there are some
sentinel areas where novel diagnostics have been introduced (Cohen
et al., 2018; Buus et al., 2021), and we need to learn lessons from the
implementation process to enable uptake of novel diagnostics in other
disease areas in the future.

This narrative review attempts to summarise the potential
benefits and challenges of implementation of transcriptomic-
based technologies into clinical settings. Cancer (in particular
breast cancer) and sepsis are the two areas where gene expression
tests have been developed from bulk RNA exploration. We use these
paradigms to highlight the impediments in identifying useful
diagnostic and prognostic biomarkers and propose ways to
circumvent difficulties in the translational pathway.

2 The transcriptome

2.1 The basics of the transcriptome

The transcriptome is the total set of expressed RNA in a cell or
population of cells at a specific time point. Mature messenger RNA

(mRNA), which is the interim carrier of information between the
genome and protein, is transcribed from a very small fraction (less
than 2% to 3%) of cellular DNA (International Human Genome
Sequencing Consortium, 2004). Multiple regulators decide the fate
and character of the message passed on to form proteins through
various mechanisms including alternative splicing and RNA editing
(de Hoon et al., 2015; Abascal et al., 2020). The regulation of the
whole machinery is extremely complex and involves long non-
coding RNAs (lncRNAs), microRNAs (miRNAs), transfer RNAs
(tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs),
small nucleolar RNAs (snoRNAs), short interfering RNAs (siRNAs)
and other transcripts. Furthermore, high throughput technologies
have identified a plethora of novel RNA molecules but their
involvement in various cellular activities is unclear (Pertea, 2012;
Palazzo and Koonin, 2020).

RNA is the most dynamic cellular component regulating gene
expression through complex processes including transcription,
maturation and degradation (Cao and Grima, 2020).
Transcription mostly occurs intermittently (on/off promoter
switches) and the size and frequency of transcription bursts
contribute to the molecular phenotype of a cell at a particular
time point (Eling et al., 2019). Deterministic factors drive the
mean expression of a gene without accounting for stochastic
processes (Kærn et al., 2005). However, intrinsic molecular
fluctuations (stochastic noise) have been linked to important
processes such as cell fate, immune plasticity, ageing and cancer
development. The combination of deterministic and stochastic
components drives non-genetic heterogeneity which is modulated
by gene-regulatory circuits and results in variability in transcript
abundance across seemingly homogenous cell populations (Eling
et al., 2019). Although there is an inverse correlation between mean
gene expression and fluctuation, it has been recently shown that
changes in transcriptional noise can initiate cell re-programming
and development while mean gene expression remains stable (Desai
et al., 2021). Collectively, therefore, RNA corresponds to a snapshot
of the cellular state and has enormous potential for application to
clinical diagnostics (Byron et al., 2016).

2.2 Technologies measuring the
transcriptome

Technological advancements have enhanced our understanding
of the transcriptome. Reverse transcriptase polymerase chain
reaction (RT-PCR) is considered a gold standard for detecting
qualitatively and quantitatively a limited number of transcripts
(Dramé et al., 2020). Microarrays have revolutionised our
approach to RNA measurement by using probes on a solid
surface that hybridise with thousands of transcripts (Schena
et al., 1995). They were recognised as a key tool in advancing
personalised medicine (Shi et al., 2006), but despite 25+ years of
development, their clinical utility remains limited (Piccart et al.,
2021). Variation in sample preparation decreases reproducibility
and background noise obscures the detection of low signal transcript
expression. RNA sequencing (RNA-seq) technologies are more
powerful tools as pre-defining RNA targets is not required and
they have a greater dynamic range. RNA-seq allows the detection of
the diversity in the transcriptome through the quantification of
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known and novel transcripts regardless of their abundance,
including non-coding RNA, single nucleotide variants, fusion
genes and splice variants (Byron et al., 2016). Moreover, RNA-
seq at the level of single cell (scRNA-seq) allows the detection of
previously unexplored processes such as transcriptional noise (Eling
et al., 2019; Desai et al., 2021). Although RNA-seq outperforms
microarrays in assessing complex gene expression profiles,
prediction of clinical endpoints is not affected by the platform
(Zhang et al., 2015), and data based on microarray experiments
have driven a plethora of discoveries. A caveat of whole RNA
sequencing is its relatively poor ability to identify and quantify
low abundance transcripts. Probe-based assays targeting genes of
interest, such as RNA CaptureSeq have been developed to fill this
gap along with sophisticated bioinformatic algorithms aiming to
increase detectability of unknown sequences (Grioni et al., 2019).

Gene expression profiling provides an enormous amount of
high-resolution data from a single experiment. The size of the
human transcriptome remains debatable with the majority of it
referred to as “dark matter” because its function is unknown
(Kapranov and St Laurent, 2012). RNA-seq exceeds the size of
the human genome by generating up to six billion short reads and
their assembly into the transcriptome is a challenging task (Pertea,
2012). Complex computational algorithms are deployed at multiple
stages of data analysis and require bioinformatics expertise
(Kukurba and Montgomery, 2015). The analytical pipelines
attempt to identify a set of informative genes to guide the
elucidation of novel molecular mechanisms, the development of
prognostic and predictive biomarkers and the identification of
druggable targets.

2.3 Clinical utility of the transcriptome

Over 100 genetic tests for 30 conditions in the field of oncology,
haematology, genetic disorders and pharmacogenetics, have
received FDA approval to date. Less than ten tests are based on
RNA measurement and only four utilise gene expression profiles
with more than two RNA targets (FDA, 2021).

Molecular diagnostics focusing on the genome suffer from a
limited ability to reflect accurately the in vivo variability within a
condition at a particular time-point and among patients. The
hallmark of acute lymphoblastic leukaemia (ALL), for instance, is
numerous genetic aberrations stratifying patients into prognostic
and therapeutic groups (Pui et al., 2019). However, multiple
mutations identified at the genome level may not be contributing
to the disease. Transcriptome sequencing characterises clinically
relevant genomic alterations and variants in real time with higher
sensitivity compared to whole-genome sequencing and it has been
crucial in the discovery of novel subtypes and therapy tailoring
(Roberts and Mullighan, 2015). Gene expression studies identified
the Philadelphia chromosome-like ALL subtype and the
downstream involvement of kinases guiding the use of tyrosine
kinase inhibitors (TKI) (Inaba et al., 2017).

Transcriptomics is explored as a complementary method to
genomic testing for precision-based treatments in cancer patients
(Lee et al., 2021; Tsimberidou et al., 2022). The Worldwide
Innovative Network (WIN) study to select rational therapeutics
based on the analysis of matched tumour and normal biopsies in

subjects with advanced malignancies (WINTHER, NCT01856296)
was the first large-scale prospective clinical trial that allowed a
fraction of patients with no actionable DNA alterations to have
RNA-guided treatments using a novel algorithm (Rodon et al.,
2019). The Individualised Therapy For Relapsed Malignancies in
Childhood (INFORM) registry collects real-world clinical and
multi-omic data from routine biopsies to translate them to
precision treatments and inform future clinical trials (van Tilburg
et al., 2021). The first trial (NCT03838042) is ongoing and
investigates the combination of Nivolumab and Entinostat in
children and adolescents with refractory high-risk malignancies.
Stratification of patients in accordance with their tumour genetic
mutation and gene expression profiles will serve for the purposes of
biomarker development and to minimise unnecessary risks in
patients (van Tilburg et al., 2020).

Liquid biopsy of extracellular RNA (exRNA) has been embraced
as a promising tool for screening and disease monitoring purposes
and as an alternative to invasive methods of diagnosis such as tissue
biopsy (Heitzer et al., 2019; Zhou et al., 2020; Wu et al., 2022).
Although studies investigating exRNA in clinical application are
scarce, recent developments in oncology are paving the way by
enabling the distinction between tumour-specific RNA and total
circulating extracellular transcriptome (Vermeirssen et al., 2022;
Zong et al., 2023). Moreover, analysis of intracellular RNA of
circulating tumour cells and peripheral blood mononuclear cells
(PBMC) has identified prognostic pathways for response to
treatment in patients with metastatic castration-resistant prostate
cancer (Zhang et al., 2022).

3 Cancer

3.1 Transcriptomics in early breast cancer

In breast cancer, patient stratification based on expression of
tumour markers (e.g., ER, PR andHER2 in breast cancer) has guided
treatment strategies for over 30 years (Cardoso et al., 2016) laying
the foundation for remarkable advances in molecular diagnostics
(Buus et al., 2021). Early breast cancer (Supplementary Box S1)
represents a successful paradigm of the applied knowledge accrued
from transcriptomics in clinical practice. Only a small proportion of
patients with oestrogen receptor positive (ER+) and lymph node
negative (LN-) breast cancer benefit from adjuvant chemotherapy.
Unfortunately, clinicopathological features poorly characterise ER+/
LN- tumours and immunohistochemical techniques cannot be
relied on to make treatment decisions (Fitzgibbons et al., 2000;
Eifel et al., 2001). The standard practice has been to use a
combination of hormonal and chemotherapy regimens, despite
evidence suggesting that around 80% of patients were overtreated
and unnecessarily exposed to chemotherapy and the potential
toxicity (van ’t Veer et al., 2002). Hence, identification of gene
expression signatures able to predict risk of recurrence, and
therefore stratify treatment, was a breakthrough in early breast
cancer management (Schaafsma et al., 2021).

Commercially available assays, such as Oncotype DX (Genomic
Health), MammaPrint (Agendia), EndoPredict (Myriad Genetics)
and Prosigna (Nanostring Technologies) are endorsed by the UK
National Institute for Health and Care Excellence (NICE) and
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TABLE 1 Examples of commercialised gene expression tests and their characteristics.

Diseasea Trade name
[manufacturer] (reference)

No of genes in
signature

Platform Clinical use Guidelinesb

Early breast
cancer

Oncotype Dx (Genomic Health, now
Exact Sciences) Paik et al. (2004),
Sparano et al. (2018), Syed (2020)

21 (16 cancer-related and
5 reference genes)

RT-PCR Prognostic of 10-year distant recurrence
risk and predictive of adjuvant
chemotherapy benefit in HR+/HER2-/
LN ≤ 3

ASCO, ESMO [I, A], NCCN (Category
1) and NICE recommendation Cardoso
et al. (2019), Henry et al. (2019),
National Comprehensive Cancer
Network (2021a), NICE (2018a)

MammaPrint (Agentia) Cardoso
et al. (2016), Piccart et al. (2021), van
’t Veer et al. (2002)

70 Microarray Prognostic of distant recurrence in
women older than 50 years with HR+/
HER2-/LN ≤ 3/T ≤ 5 cm

ASCO, ESMO [I, A] and NCCN
(Category 1) recommendation (NICE
does not recommend as it was not
found to be cost-effective) Cardoso
et al. (2019), Henry et al. (2019),
National Comprehensive Cancer
Network (2021a), NICE (2018a)

Endopredict (Myriad Genetics) 12 (8 cancer-related and
3 reference genes)

RT-PCR Prognostic of 10-year distant recurrence
risk in HR+/HER2-/LN ≤ 3 treated with
endocrine therapy alone

ESMO [I, B], NCCN (Category 2A) and
NICE recommendation Cardoso et al.
(2019), National Comprehensive
Cancer Network, (2021a), NICE,
(2018b)

Prosigna (NanoString Technologies) 50 (+5 reference genes) N-Counterc Prognostic of 10-year distant recurrence
in postmenopausal women with ER+/
HER2-/LN ≤ 3.

ESMO [I, B], NCCN (Category 2A) and
NICE recommendation Cardoso et al.
(2019), National Comprehensive
Cancer Network (2021a), NICE
(2018b)

Prostate
cancer

Oncotype DX (Exact Sciences) 17 RT-PCR Prognostic of adverse pathology and 10-
year risk of metastasis

ASCO, NCCN Eggener et al. (2020),
National Comprehensive Cancer
Network (2021c)

Prolaris (Myriad Genetics; a
combination of a gene expression
score and a clinical score)

31 cell cycle progression genes
(+15 control genes)

RT-PCR Prognostic of 10-year risk of metastatic
disease and prostate cancer-specific
mortality

ASCO, NCCN and NICE advice
MIB65 Eggener et al. (2020), National
Comprehensive Cancer Network
(2021c), NICE (2016)

Decipher (Veracyte) 22 Microarray Prognostic of adverse pathology, 10-year
risk of metastasis and 15-year risk of
prostate cancer-specific mortality

ASCO, NCCN Eggener et al. (2020),
National Comprehensive Cancer
Network (2021c)

Colon
cancer

Oncotype DX (Exact Sciences) 12 (7 cancer-related and
5 reference genes)

RT-PCR Prognostic of recurrence in stage II and
III colon cancer

Not recommended National
Comprehensive Cancer Network
(2021b)

ColoPrint (Agentia) 18 Microarray Prognostic of recurrence in stage I
through III colon cancer

Not recommended National
Comprehensive Cancer Network
(2021b)

ColDx (Almac Diagnostic Services) 634 Microarray Prognostic of recurrence in stage II colon
cancer

Not recommended National
Comprehensive Cancer Network
(2021b)

Solid
tumours

Caris Molecular Intelligence (Caris
Life Sciences) CARIS, (2021)

HLA genotyping (55 fusions and
3 variant transcripts mostly
associated with cancer and
response to certain drugs)

RNA-seq Treatment recommendations based on a
multi-level molecular (DNA, RNA and
protein) profiling of locally advanced or
metastatic cancer

NICE advice MIB120d NICE (2017)

Uveal
melanoma

Decision DX-UM (Castle
Biosciences) Aaberg et al. (2020)

15 RT-PCR Predictive of 5-year metastatic risk
guiding surveillance

NCCN National Comprehensive
Cancer Network (2022)

aThe searches were conducted on databases (e.g., PubMed) and websites of guideline producers (e.g., NICE), leading authorities (e.g., The Centers for Medicare and Medicaid Services) and

health technology assessment agencies and the lists are non-exhaustive. Additional commercially available gene expression signatures for early breast cancer: Rotterdam signature (Veridex,

Johnson & Johnson), OncoMasTR, BluePrint (Agentia), Breast Cancer Index (Biotheranostics; complements histologic grading), Mapquant DX (also known as Genomic Grade Index; Ipsogen;

complements histologic grading), MammaTyper (Biontech; RT-PCR, as an alternative to immunohistochemistry for quantification of HER2, ER, PR, and marker of proliferation Ki-67 used in

molecular subtyping), Curbest 95GC, Breast Ca Gene Expression Ratio (Theros H/I), BreastNext, BreastOncPX, BreastPRS, combimatrix breast cancer profile, eXagen, Invasiveness Signature,

Insight DX, breast cancer profile, MammoStrat, NexCourse Breast IHC4, NuvoSelect eRx 200-Gene Assay, Randox Assay, SYMPHONY, genomic breast cancer profile, TargetPrint, TheraPrint,

The 41-gene signature assay, THEROS, Breast Cancer Index. Commercially available assays for other cancers: Lung RS, Oncomine Dx Target Test (lung), ExoDx Prostate EPI-CE, Afirma

(thyroid), ThyroSeq v3 Genomic Classifier, DecisionDx-Melanoma (Castle Biosciences), MYPATH, Melanoma assay (Myriad Genetics), Pigmented Lesion Assay (DermTech), MyPRS, Plus

GEP70 (multiple myeloma), MMprofiler (multiple myeloma), ResponseDX (cancer of unknown origin), Pathwork Test Kit (cancer of unknown origin), Oncofocus (cancer of unknown origin),

CancerTypeID (cancer of unknown origin), miRview (cancer of unknown origin), RosettaCX, cancer origin test, OneRNA (RNA-seq, based test assisting in cancer treatment selection regardless

of disease site). Other commercially available assays: AlloMap (heart transplant), TruGraf (kidney transplant), Corus CAD (obstructive coronary artery disease), SGES/CardioDX (coronary

artery disease), PredictSure-IBD.
bESMO (level of evidence, grade of recommendation).
cDirect mRNA, labelling with fluorescent probes and measuring with nCounter Digital Analyser.
dA Medtech Innovation Briefing (MIB) is not NICE, guidance but an objective description of the technology to aid clinical decision-making.

RT-PCR, Reverse transcriptase polymerase chain reaction; HR+, Hormone Receptor-positive; HER2-, Human Epidermal growth factor Receptor 2-negative; LN ≤ 3, Lymph Node-negative or

up to three-positive; T ≤ 5, Tumour size up to 5 cm; ASCO, american society of clinical oncology, ESMO, European society for medical oncology; NCCN, national comprehensive cancer

network; NICE, the national institute for health and care excellence; RNA-seq, RNA, sequencing.
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international guidelines (Table 1). Expression levels of specific genes
are measured in tumour samples with RT-PCR (Oncotype DX) or
microarrays (MammaPrint) and a prognostic score is calculated
with mathematical models in order to stratify patients into risk
groups (Sparano et al., 2018; Piccart et al., 2021). EndoPredict
produces a score based on both transcriptional and clinical
(tumour size and nodal status) features. Prosigna classifies breast
cancer into subtypes and calculates a score based on gene expression,
subtype, clinical parameters (tumour size and nodal status) and
proliferation pathways (Paik et al., 2006). Oncotype DX is based on a
21-gene signature which is independent of clinicopathological
factors (Sparano et al., 2018). It is the only multi-gene assay
which is validated to predict adjuvant chemotherapy benefit in
addition to prognosis (Syed, 2020).

3.2 Development of Oncotype DX

The development of Oncotype DX was a gradual process
involving the use of data from large clinical studies and diligent
address of issues (Supplementary Box S2). Due to the remarkable
molecular diversity of breast tumours (Perou et al., 2000), numerous
clinical and immunohistochemical biomarkers and their
combinations had failed to guide treatment decisions (Hayes,
2000). Moreover, previous attempts to identify predictive and
prognostic gene expression signatures were based on single
studies which were neither standardised nor reproducible. The
21-gene signature in Oncotype DX was derived from a set of
250 genes which was selected from well-designed studies and
public databases utilising microarrays (Paik et al., 2004). The
250 candidate genes were narrowed down to 21 through three
independent clinical studies including almost 500 patients who
received adjuvant hormonal treatment plus chemotherapy or
hormonal treatment alone (Paik et al., 2003; Cobleigh et al.,
2005). An algorithm was developed to produce a continuous
variable, the Recurrence Score (RS) based on the expression of
these genes, which is comprehensible by clinicians and stratifies
patients into high and low risk groups for distant recurrence within
10 years of surgery (Paik et al., 2004). RS showed remarkable
statistically significant prognostic ability and predictive ability
and has been extensively validated in large prospective
randomised clinical trials and real-world data from population-
based registries (Paik et al., 2004; Nitz et al., 2017; Sparano et al.,
2018; Syed, 2020). Further analyses of these studies have identified
that pre-menopausal women would benefit from the addition of
clinical factors (age, tumour size, and histologic grade) along with RS
for shaping management strategies (Hunter and Longo, 2019;
Sparano et al., 2019).

Oncotype DX and the Decipher Genomic Classifier (21 and
22 expressed genes, respectively) have been shown to be cost-
effective approaches for guidance of treatment decisions (Lobo
et al., 2017; Berdunov et al., 2022). This results from a
combination of test accuracy in reducing unnecessary toxic
treatments such as chemotherapy and radiation while not
excluding patients from beneficial treatments (Lux et al., 2022).

Following on from the success of the oncotype Dx for early
breast cancer, the Oncotype DX Genomic Prostate Score has been
developed on the same principles and similar processes

(Supplementary Box S3). It aims to prevent unnecessary surgery
and radiation by stratifying patients into low-risk and aggressive
disease. However, there are no large prospective studies to validate
the prognostic performance of the assay for clinical outcomes
(Eggener et al., 2019; Brooks et al., 2021). Attempts to identify a
gene expression signature prognostic of prostate cancer are based on
tissue samples derived from needle-core biopsies and the limited
amount of tissue may be a constrain to characterise heterogeneity
(Supplementary Box S3).

Disease heterogeneity is a major caveat in the design of
diagnostic biomarkers. Inter-assay comparisons revealed
discordance in prognostic performance of gene expression-based
tests for stratification of patients with early breast cancer (Varga
et al., 2019; Abdelhakam et al., 2021; Buus et al., 2021). These
discrepancies may derive from the diversity in gene sets,
methodology and algorithms and design of studies. Of note,
there is only minor overlap of genes among predictive tests
(Supplementary Table S1). Heterogeneity in gene composition
reflects the variety of molecular mechanisms involved in disease
progression and it may not necessarily influence prognostic ability.
Currently, a prospective study is investigating the clinical validity of
Curebest 95GC, a microarray-based measurement of the whole
genome in tumour tissues (Naoi et al., 2021). The results are
anticipated to shed light on the number of transcripts required
for stratification of patients with early breast cancer. However, an
increased number of genes may be a major obstacle in the
development of a cost-effective marker and mechanistic studies
could assist with reducing the number (Gliddon et al., 2018).

3.3 Multi-layered heterogeneity at the tissue
level

Heterogeneity at the tissue level is multi-layered and not
confined to the oncogenic cells. Neoplastic cancer cells are
nurtured by neighbouring stromal cells comprising the tumour
microenvironment (TME). A diverse community of tumour
infiltrating immune cells is a major component of the stromal
microenvironment exerting both beneficial and detrimental
effects (Hanahan and Coussens, 2012). Growing evidence shows
that quantification of the proportion of leucocyte subsets can assist
in prognosis and therapy choice (Gentles et al., 2015). Traditional
methods such as immunohistochemistry and flow cytometry can
identify a limited number of pre-defined cell populations but fail to
discriminate unknown or closely related phenotypes.

By contrast, gene expression profiling coupled with
computational algorithms can characterise cell composition of
complex tissues (Finotello and Trajanoski, 2018; Xu et al., 2021).
Many tools have been developed based on two main methods:

• in silico deconvolution (CYBERSORT, TIMER, EPIC,
quanTIseq, DeconRNAseq, PERT, DSA, MMAD, ssKL); and

• gene set enrichment analysis (xCell, TIminer, MCP-counter)
(Finotello and Trajanoski, 2018).

Deconvolution is based on a linear model of the expression of a
gene in the different cell types. Digital dissection of the tumour into
the relative fractions of cell types is estimated against a library of cell-
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specific expression signatures (reference signature or matrix). The
matrix appears rigid considering the diversity of infiltrating immune
cells (extend, type, activation status, interactions, and closely related
cells) among tissues and cancer stages (Hanahan and Coussens,
2012; Newman et al., 2015). Refinement of the gene set enrichment
method attempts to circumvent the issue by producing enrichment
scores based on the expression levels of a set of cell-type-specific
marker genes by analysing various data sources (Aran et al., 2017).
However, performance is poorer in real mixtures compared to
simulated mixtures and statistical significance is not reported for
prediction of cell abundance (Newman et al., 2015; Aran et al.,
2017). Deconvolution algorithms which simultaneously estimate
relative cell fractions and produce a matrix of expression profiles
have been developed (MMAD, DSA, ssKL, ssFrobenius, and
deconf), but they are flawed by mathematical complexity and a
limited ability to quantify a higher number of immune cells
(Finotello and Trajanoski, 2018). Although several studies have
tested these computational approaches in simulated samples and
publicly available datasets showing good performance, evidence
about their clinical validity is scarce (Desmedt et al., 2018;
Newman et al., 2019; Waks et al., 2019; Craven et al., 2021).

It is unclear if gene signature enrichment and deconvolution
approaches accurately portray the complexity of cellular
heterogeneity in cancer samples and more work is warranted
before testing in clinical settings. Definition of reference
expression profiles is a fundamental caveat allowing for the
identification of only a few dozens of cell types which may not
reflect all heterogenic subsets in tumours. The effort should probably
be on revealing hallmark phenotypes with prognostic and predictive
capability in clinical settings to populate the reference matrix or
marker gene-sets. For instance, the role of exhausted (increased PD-
1 expression) CD8+ tumour infiltrating lymphocytes is well
established in melanoma, renal and non-small cell lung cancer
and it has guided the use of immune check point inhibitors
(ICIs) (Sade-Feldman et al., 2018; Thommen et al., 2018; Young
et al., 2018; McLane et al., 2019). Tumour-associated macrophages
are another interesting group of cells because of their abundance in
the tumour microenvironment. Unravelling of the complex
subpopulations has shown that the classical categorisation to
M1 and M2 polarised macrophages is an oversimplification of
their crucial role in cancer regulation (Mantovani and Longo,
2018; Duan and Luo, 2021; Xiang et al., 2021).

4 Sepsis

4.1 Dynamic heterogeneity: The sepsis
paradigm

Immune response to infection is initiated by a “genomic storm”

of both pro-inflammatory and anti-inflammatory cytokines
expressed concomitantly (Nakamori et al., 2020). In sepsis there
is acute cellular reprogramming and failure to restore balance
between immune activation and suppression can present with
life-threatening organ dysfunction (Singer et al., 2016; van der
Poll et al., 2017). Gene expression studies have revealed
remarkable heterogeneity in sepsis due to host parameters (e.g.,
genomic variation and co-morbidities), source of infection and stage

of illness. This may explain, at least partly, the reason for the failure
of numerous promising therapeutic agents in clinical trials
(Marshall, 2014; Davenport et al., 2016; Peters-Sengers et al.,
2022). The definition of sepsis has also been revised several
times, and each definition can dramatically alter the composition
of cohorts that are included in studies (Johnson et al., 2018). This
can also negatively impact model development, particularly where
retrospective data collection is required or data are pooled across
studies (Sauer et al., 2022).

To address individual variation in the response to sepsis, a
multi-layered approach, including at the molecular level, for
stratification in treatment subgroups is required. As a proof-of-
concept, machine learning algorithms which classify patients based
on routine clinical data have been shown to accurately predict
clinical outcomes and sepsis onset (Komorowski et al., 2018;
Seymour et al., 2019; Fleuren et al., 2020). Machine learning is a
very powerful tool for harnessing large-scale data with the aim of
identifying predictive biomarkers (Zhang et al., 2021). The use of
diverse methods analysing transcriptomic data in various conditions
has been previously reviewed (Vadapalli et al., 2022). Appreciation
of common pitfalls and focus on interpretable findings has
transformed these complex computational approaches into
comprehensive tools (Sidak et al., 2022; Whalen et al., 2022).
However, despite our increased understanding of sepsis
pathogenesis with new technologies, translation of research
knowledge to improvements in clinical practice has been
exceedingly difficult.

4.2 Stratification of patients with sepsis

Transcriptomic-based real-time subclassification of patients has
been developed and validated in individual studies (Table 2). The
Knight group investigated gene expression profiles in peripheral
blood leukocytes of patients on Intensive Care Units (ICU) with
faecal peritonitis and community acquired pneumonia (Davenport
et al., 2016). They proposed two sepsis phenotypes associated with
prognosis. Genes comprising the sepsis response signature (SRS)
demonstrated significant overlap between the two sources of
infection and with trauma patients, while gene expression and
SRS membership changed temporally (Burnham et al., 2017).
Single-cell multi-omics evaluation showed that an immature
immunosuppressive population of neutrophils together with
enrichment in the IL-1 pathway are the biological underpinnings
of the SRS1 group who experienced increased early mortality (Kwok
et al., 2022). In contrast, the immuno-competency of the
SRS2 endotype was compromised by corticosteroids in a
randomised clinical trial which showed an association between
hydrocortisone use and higher mortality in the SRS2 group but
not in the SRS1 group (Antcliffe et al., 2019). The SRS investigators
upgraded their classifier to the SepstratifieR framework which can be
applied to multiple infecting pathogens and data accruing from
different platforms (e.g., RNA-seq and RT-qPCR). SepstratifieR
utilises expression levels of signature genes, including an
extended 19-gene set expected to be robust to technological
variation, to align samples to a corresponding reference map and
returns the SRS endotype and a severity score (SRSq). SRSq reflects
immune deregulation and has the advantage of modelling patients as
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TABLE 2 A summary of studies identifying gene expression signatures to classify patients with critical illness due to infection.

First author,
year of
publication

Study design Condition/
Infection

Sample
type

Sample size Platform Classifier
training
approach

No
of
DEG

Biological
functions/
pathways

Patient
stratification

Gene
signature/
classifier

Davenport et al.
(2016)

Prospective
observational

CAP Peripheral
blood
leukocytes

Discovery: 265 Illumina Human-
HT-12 version
4 Expression
BeadChips

Unsupervised
hierarchical cluster
analysis, sparse
regression variable
selection

3,080 T-cell activation, cell
death, apoptosis,
necrosis, cytotoxicity,
phagocyte movement

SRS1: immuno-
compromised and high
mortality and
SRS2: immuno-
competency and low
mortality

DYRK2,
CCNB1IP1,
TDRD9, ZAP70,
ARL14EP, MDC1,
ADGRE3
(Davenport
signature)

Validation: 106

Burnham et al.
(2017)

Prospective
observational

Faecal
peritonitis (FP)

Peripheral
blood
leukocytes

Discovery: 67 Illumina Human-
HT-12 version
4 Expression
BeadChips

Unsupervised
hierarchical cluster
analysis, sparse
regression variable
selection

1,075 Cell death, apoptosis,
necrosis, T-cell
activation, endotoxin
tolerance

SRS1, SRS2, SRS1_FP and
SRS2_FP

Membership
assignment based
on expression of
the Davenport
signature, plus a
new six-gene
signature for FP

Validation: 53

Cano-Gamez et al.
(2022)

Prospective
observational

CAP, FP and
health

Peripheral
blood
leukocytes and
whole blood

Training: 909 Microarray Diffusion maps and
random forest

7,171 innate immune
pathways, glycolysis,
T-cell activation

SRSq: 0–1 with lower
values indicating a patient
is transcriptionally closer
to health and higher
values indicating
similarity to SRS1

Davenport genes
and FBXO31,
BMS1, SH3GLB1,
TTC3, USP5,
UBAP1, PGS1,
MRPS9, THOC1,
NAT10, DNAJA3,
SLC25A38

Test: 2,355 RNA-seq

RT-PCR

Scicluna et al. (2017) Prospective
observational

Probable or
definite infection

Whole blood Discovery: 306 Affymetrix
Human Genome
U219 96-array
plates

Hierarchical
consensus clustering
and random forest

9,699 PRR and cytokine
signalling, adaptive
immune functions,
heme biosynthesis,
lymphocyte signalling,
antigen presentation

Mars1-4 with
Mars1 having highest
mortality and
immunosuppression,
Mars3 being low risk and
Mars4 having variable
mortality among the
cohorts

140-gene set ->
BPGM:TAP2
(Mars1)
GADD45A:
PCGF5 (Mars2)
AHNAK:PDCD10
(Mars3) IFIT5:
GLTSCR2
(Mars4)

Validation1: 216

Validation2: 265

Scicluna et al. (2015) Prospective
observational

CAP Whole blood Discovery: 101 Affymetrix
Human Genome
U219 96-array
plates

Differential gene
expression analysis of
CAP vs. no-CAP,
followed by nearest
shrunken centroid
classification

2,459 eIF2 signalling, T-cell
receptor signalling and
mTOR signalling

N/A 78-gene set ->
FAIM3:PLAC8

Validation: 70

Wong et al. (2009)
and Wong et al.
(2011)

Prospective
observational

Septic shock Whole blood Discovery: 98 Affymetrix
Human Genome
U133 Plus
2.0 GeneChip

Differential gene
expression analysis,
unsupervised
hierarchical
clustering, analysis
functional
enrichment and
K-means clustering.

6,934 Adaptive immunity and
glucocorticoid receptor
signalling

Subclass A, B and C with
A having higher illness
severity and mortality and
repressed gene expression
patterns

100-gene set

Validation: 82

(Continued on following page)
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TABLE 2 (Continued) A summary of studies identifying gene expression signatures to classify patients with critical illness due to infection.

First author,
year of
publication

Study design Condition/
Infection

Sample
type

Sample size Platform Classifier
training
approach

No
of
DEG

Biological
functions/
pathways

Patient
stratification

Gene
signature/
classifier

Wong et al. (2015) Retrospective and
prospective
observational

Septic shock Whole blood Discovery: 168 NanoString
nCouter

100-gene set
reformulated as gene
expression mosaics
(GEDI) and
composite variability
scores

n/a Adaptive immunity and
glucocorticoid receptor
signalling

Subclass A and B with A
having worse outcomes
and lower Gene
Expression Score (GES)

100-gene set
summarised as an
expression mosaic,
GEDI

Validation (inter-
assay): 132

Sweeney et al. (2015) Meta-analysis of
publicly available
datasets

SIRS/trauma vs.
sepsis/infection

Whole blood
and buffy coat

Discovery: 9 cohorts
(n = 663)

Microarraysa Gene filtering by
effect-size and
Fisher’s method using
leave-one-data set-
out multi-cohort
analysis, followed by
greedy forward search
modelling

82 Downstream of IL-6
and JUN

Infection z-score derived
from the geometric mean
of the 11-gene set with
higher scores for infected
patients which peaked
within 1 day of diagnosis
and declined over time
similarly in infected and
non-infected patients

Sepsis MetaScore
(SMS):
CEACAM1,
ZDHHC19,
C9orf95, GNA15,
BATF, C3AR1,
KIAA1370,
TGFBI, MTCH1,
RPGRIP1, HLA-
DPB1

Validation:
15 independent
cohortsb

Sweeney et al.
(2018a)

Retrospective
analysis

Bacterial sepsis Whole blood Discovery:
14 datasets (n = 700)

Microarraysc Iterative clustering
algorithm
(COMMUNAL)
combining K-means
and consensus PAM
clustering,
significance analysis
for microarrays
(SAM), greedy
forward search then
multinomial logistic
regression on the
separation scores.

n/a IL-1 receptor, PRR
activity, complement
activation, adaptive
immunity and
interferon signalling,
platelet degranulation,
glycosaminoglycan
binding, coagulation
cascade

Inflammopathic cluster
(high mortality),
Adaptive (lower
mortality) and
Coagulopathic (high
mortality and older
patients)

33-gene set

Validation:
9 datasets (n = 600)

McHugh et al.
(2015)

Sepsis vs. non-
infective systemic
inflammation

Whole blood Discovery: 74 cases
vs. 31 controls
(n = 105)

Affymetrix
Human Exon
1.0 ST arrays
(modified) and
RT-PCR for the
validation cohorts

Recursive feature
elimination support
vector machines and
backwards
elimination random
forests, followed by
greedy search of log
gene-pair ratios

n/a Innate immunity SeptiScore: low values
correlated with low sepsis
probability (cut-off of 4)

SeptiCyte Lab:
PLA2G7/
PLAC8 and
CEACAM4/
LAMP1 ratiosValidation:

5 cohorts (n = 345)
from MARS

aAffymetrix Human Genome U133 Plus 2.0 Array (GPL570), Illumina Human-HT-12, version 4 Expression BeadChips (GPL10558) and Illumina HumanHT-12, V3.0 expression beadchip (GPL6947).
bn = 218 from the Glue Grant sorted-cells cohort, n = 215 from three longitudinally sampled cohorts, n = 446 from eight cohorts comparing infection vs. health, n = 274 of a cohort comparing bacterial infection vs. autoimmune inflammation or health.
cGPL96, GPL570, GPL571, GPL6106, GPL6244, GPL6947, GPL10332, GPL10558, and GPL13667.

DEG, Differentially expressed genes; CAP, Community acquired pneumonia; SRS, Sepsis response signature; FP, Faecal peritonitis; RNA-seq, RNA sequencing; RT-PCR, Reverse transcriptase polymerase chain reaction; PRR, Pattern recognition receptor; Mars,

Molecular diagnosis and risk stratification of sepsis; eIF2, eukaryotic initiation factor 2; mTOR, mechanistic target of rapamycin; GEDI, Gene expression dynamics inspector; SIRS, Systemic inflammatory response syndrome; IL, interleukin; COMMUNAL, Combined

mapping of multiple clUsteriNg algorithms.
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a continuum which is a better descriptor of molecular profiles
compared to classes (Cano-Gamez et al., 2022).

The Molecular Diagnosis and Risk Stratification of Sepsis
(MARS) project identified four endotypes (Mars1–4) in patients
with sepsis admitted to ICU in the Netherlands (Scicluna et al.,
2017). Biomarkers for each endotype were derived from a 140-gene
expression signature (Table 2). The authors proposed that patients
classified as Mars1 were the most clinically relevant group with
consistently increased mortality. Comparisons with the SRS revealed
an overlap between the low-risk groups SRS2 andMars3, but not the
expected enrichment of Mars1 patients within SRS1 (Scicluna et al.,
2017; Cano-Gamez et al., 2022). One explanation could be the
primarily leukocyte-based training data for SepstratifieR differing
from the whole blood-derived RNA used for MARS signatures. The
differences could also be attributed to variation in populations
utilised for classifier development, technical procedures,
bioinformatics analysis and study design (Table 3). At the gene
level though, similarities in differential expression and active
pathways were observed. Moreover, classification of MARS
patients into SRS endotypes showed that SRS1 had a higher
proportion of septic shock and elevated Sequential Organ Failure
Assessment (SOFA) scores, but not increased mortality, reflecting
the presence of unobserved variables preventing the severe sequelae
of sepsis (Cano-Gamez et al., 2022).

Paediatric patients with septic shock were categorised into three
groups based on a 100-gene set microarray-derived signature (Wong
et al., 2009; Wong et al., 2011). Two (A and B) of the three subclasses
were identified with the use of a different platform for mRNA
quantification (NanoString nCounter) which has the potential for
clinical application due to its decreased turnaround time and cost
(Wong et al., 2015). The authors noted that subjects in subclass B
and C demonstrated similar clinical phenotypes, whereas subclass A
patients had poorer outcomes. The previously reported association
between mortality and corticosteroid use among patients of a
specific endotype was also observed, but this time within the
subclass with increased mortality (subclass A, Wong et al., 2015).
Interestingly, when the Mars signature was applied to the original
paediatric population, only three of the four endotypes were stably
recognised and there was no association between endotype
categorisation and mortality (Scicluna et al., 2017). The search

for prognostic biomarkers in paediatric septic shock has led to
the development of the paediatric Sepsis Biomarker Risk Model
(PERSEVERE), which is a predictive tool of mortality and disease
severity (Jacobs et al., 2019; Wong et al., 2019). A panel of 117 gene
probes possibly associated with outcome in children with septic
shock was used to select 12 genes with a protein product which had a
mechanistic role in immune responses to infection and was readily
measured in serum. Classification and regression tree analysis
reduced the number of proteins to five and selected age among
various clinical parameters as the best combination of factors to
predict 28-day mortality (Wong et al., 2012). PERSEVERE
incorporates the protein products of those five genes and has
been tested as a predictor of sepsis-related organ dysfunction in
various cohorts (Wong et al., 2016; Yehya and Wong, 2018; Stanski
et al., 2020; Al Gharaibeh et al., 2022; Atreya et al., 2022). Clinical
utility is yet to be decided through large prospective validation
studies. Utilization of proteins identified through gene expression
exploratory studies may achieve better reproducibility among
cohorts, but correlation of mRNA and protein product is affected
by various biological and technical parameters and clinical
translation is yet to be decided.

4.3 Use of publicly available datasets and
validation

The aforementioned unsupervised clustering studies (Table 2)
defined novel molecular subgroups in sepsis and produced data-
driven classifiers with potential for clinical implementation.
Although such approaches are the foundation of precision
medicine, results are often non-reproducible because they accrue
in a method-specific computational manner and/or from
underpowered sample sizes. The availability of high-dimensional
data from various studies in public databases and meta-clustering
techniques have allowed the development of transcription-based
models with improved representation of disease and population
heterogeneity. A large pool of bacterial sepsis transcriptomic
datasets (23 datasets; n = 1,300) identified three clusters which
were descriptive of underlying molecular pathways, the
Inflammopathic, the Adaptive and the Coagulopathic (Table 2).

TABLE 3 Differences between MARS and SRS discovery cohorts.

Parameter MARS discovery cohort (n = 306) SRS discovery cohort (n = 265)

Demographics Netherlands United Kingdom

Top comorbidities None (41%) Respiratory insufficiency (48%) and cardiovascular compromise (45%)

Source of infection Multiple with 42% lung and 26% abdominal Lung

SOFA score - Shock, % 6%–35% 6%–30%

AKI 43% 20%

Length of ICU stay, days 4 7

28-day mortality 28% 21%

Sample collection PAXgene blood RNA tubes Leukocyte separation at bedside (LeukoLOCK)

Microarray platform Affymetrix (49,386 probes) Illumina (47,231 probes)

Mars, Molecular diagnosis and risk stratification of sepsis; SRS, Sepsis response signature; SOFA: Sequential organ failure assessment; AKI, Acute kidney injury; ICU, Intensive care unit.
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Comparisons with previously published signatures showed that the
inflammopathic cluster tended to overlap with the paediatric septic
shock subclass B and SRS1 and the Adaptive cluster was associated
with SRS2 (Sweeney et al., 2018a). Identification of the same group
of sepsis patients in independent studies with separate techniques
supports the existence of molecular subtypes. The addition of a third
cluster in a bigger study underscores the importance of utilising
large public datasets. In a community-based approach, three
independent teams built four separate models to predict
mortality in sepsis using all available gene expression datasets
(Sweeney et al., 2018b). Despite common data inputs, there was
little overlap in predictive genes between groups due to differences in
analytical approaches. Still, the model performances were broadly
similar. Moreover, the combination of gene expression-based
predictors with routine clinical parameters was shown to improve
prognostic accuracy (Wong et al., 2014; Scicluna et al., 2017;
Sweeney et al., 2018b).

The predictive performance of candidate biomarkers attempting
to distinguish between the presence and absence of infection in
critically ill patients has historically been suboptimal (Pierrakos and
Vincent, 2010; Wacker et al., 2013). An informative biomarker
consisting of a gene expression ratio has been proposed to assist
in discriminating between community acquired pneumonia (CAP)
and non-CAP patients, but its relatively low negative predictive
value precludes it from being a stand-alone diagnostic test (Scicluna
et al., 2015). Similarly, the FDA approved SeptiCyte LAB
(Immunexpress, Seattle, WA), which provides a score based on
the expression of four genes, is intended to be used in conjunction
with clinical factors and clinical judgement to distinguish patients
with sepsis from non-infective systemic inflammation within 24 h of
ICU admission (McHugh et al., 2015). Different studies evaluating
the discriminative power of this novel biomarker have produced
conflicting results (McHugh et al., 2015; Zimmerman et al., 2017;
Koster-Brouwer et al., 2018). Comparison of three scores aiming to
distinguish between the presence or absence of infection in critically
ill patients (FAIM3:PLAC8, SeptiCyte LAB and MetaScore or SMS)
demonstrated similar performance with some superiority of the SMS
(Table 2) when applied to a different cohort of patients (Sweeney
and Khatri, 2017; Maslove et al., 2019). The absence of gold standard
reference test dictated the use of strict criteria to define cases and
controls for a supervised analytical approach for classifier
development (Table 2). As a result, the discovery cohort cannot
mirror the wide spectrum of heterogeneity which is inherent in
sepsis patients. It is likely that leveraging of clinical and technical
heterogeneity seen in larger publicly available datasets and extensive
validation may help in ameliorating limitations regarding
generalisability.

Transcriptomic and genomic samples are collected during most
clinical trials in cancer and other diseases (NIH, 2022). Their aim is
to increase our understanding of molecular mechanisms.
Investigators are not obliged to submit transcriptional data
deriving from interventional clinical trials to public databases
unless they are presented in a publication. Hence, a plethora of
interesting data may become available later or never. Clearly, it is
important for investigators to deposit data from their studies in a
standardised format into publicly available databases as such
democratisation of data undoubtedly accelerates the pace of
progress. We think that adequate progress from the translational

to the clinical stage can be achieved with combination of data from
different populations and to this purpose investigators should be
assisted in processing their raw data early and prompted to deposit
them in public databases.

4.4 Timing of sampling

Although 80% of the blood transcriptome shows differential
expression in critical illness, immune responses demonstrate
significant commonality leading to a remarkable overlap in
expressed genes in all-cause inflammation, regardless of the
presence of an infection or not (van der Poll et al., 2017). A
multicohort analysis of publicly available datasets showed that
there is a small proportion of distinct genes in patients with
sepsis compared to patients with a non-infective critical
condition in samples obtained within 48 h of admission (Sweeney
et al., 2015). These findings highlight the common trajectory of the
transcriptional storm that settles down during recovery
underscoring the importance of time-course-based approaches
(Sweeney and Wong, 2016). Gene expression signatures which
predict infection have been identified in the blood of hospitalised
patients up to 5 days prior to onset of symptoms and/or diagnosis
(Johnson et al., 2007; Cobb et al., 2009; Sweeney et al., 2015; Yan
et al., 2015; Lukaszewski et al., 2022). These findings highlight the
molecular events which occur before disease symptomatology. If the
immune response is not successful in clearing the pathogen(s)
during this period, more robust measures are deployed leading to
a transcriptional storm (Figure 1).

Tests based on gene expression thus describe “the moment in
time” which has the potential for guiding targeted therapies and
personalised management (van der Poll et al., 2017). However, there
is no way to match the expressed molecular moment to the exact
point of the disease (Figure 1) because the duration of each stage
varies significantly. As an example, many groups put their efforts
into identifying a classifier within 24 h of ICU admission. We may
assume that this is located within the transcriptional storm space,
but we cannot say whether it is in the beginning, middle, end of the
curve or even within the pre-disease space. The point of symptom
onset relative to the infection point potentially varies among
individuals and so does presentation and admission time. Hence,
despite the efforts of time-based approaches, sampling time can be
defined only clinically and not objectively across the gene expression
course, i.e. “one fits all” is unlikely to succeed. Challenge studies with
controlled infection and longitudinal designs could shed more light
on the importance of defining timing of sampling, but are complex
to perform and expensive, and need to have a careful ethical
framework.

4.5 Biomarkers for sepsis in the pipeline

There are few promising biomarkers currently in the pipeline. A
combination of three non-overlapping signatures identified from a
multi-cohort analysis (Sweeney et al., 2015; Sweeney et al., 2016;
Sweeney et al., 2018b) has led to TriVerity (formerly known as
InSepTM HostDxTMSepsis and Inflammatix) (Mayhew et al.,
2020). This 29-gene expression-based test with a turnaround time
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less than 30 min is expected to identify the presence, type (bacterial
or viral) and risk of mortality of infection (Mayhew et al., 2020;
Bauer et al., 2021; Safarika et al., 2021; Brakenridge et al., 2022;
Galtung et al., 2022). A Point-of-Care Test claiming to distinguish
bacterial from viral infections in children is in its infancy (Pennisi
et al., 2021). It is based on the expression of two genes (IFI44L and
FAM89A) which emerged from a microarray-based study in almost
500 febrile children (Herberg et al., 2016; Kaforou et al., 2017). There
is a repertoire of promising findings in children with infections such
as tuberculosis, bacterial pneumonia, rhinovirus and respiratory
syncytial virus (RSV) and the transfer of transcriptomics
knowledge to routine clinical care may be seen in the near future
(Mejias et al., 2021). Investigators have also adapted a mechanistic-
orientated approach to select a set of genes with known correlation
with sepsis outcome instead of a crude exploration of bulk RNA
(Chen et al., 2022; Kreitmann et al., 2022), but further consideration
of this is beyond the scope of this review.

5 Considerations for transcriptome
biomarker data analysis

The promise offered by the transcriptome in diagnosing and
predicting disease status and progression is exemplified by the cancer
and sepsis studies discussed. Yet relatively few RNA-based genetic

tests have regulatory approval for clinical use (Table 1). This illustrates
the challenges when gaining robust insights from such complex
data—not least of which includes the analytical approaches that
might be taken. Though the costs of sequencing continue to
decrease, the number of samples in individual transcriptomic
studies tend to measure in the hundreds at most, in comparison to
thousands of measured RNA molecules (Levy and Myers, 2016). The
chosen statistical and machine learning methods employed to
produce predictive models vary greatly across studies. Table 2
provides an indication of the variety of techniques employed to
classify patients, in just one clinical context. Classification
approaches used include unsupervised clustering, iterative or
otherwise, regression analyses, tree-based classification methods,
functional enrichment and variable selection, among others. Often
a combination of these methods are employed. Sweeney et al. (2018b)
demonstrate this problem of choice acutely with their community-
based modelling of the same data sets. Four attempts were made
across three institutions to predict sepsis prognosis, yielding different
models that performed similarly but had few overlapping genes.
Correlations of ranked sample scores across research groups were
also moderate at best. Interestingly, on average the ensemble model
did not substantially differ from the individual models—suggesting
some form of plateau on classification accuracy had been reached.

The choice of analysis may also be guided by the final format that
the test will take in the clinic. Here the medical need, timing of the test

FIGURE 1
A theoretical schematic comparison of the size of gene expression trajectory before, during and after sepsis vs. gene expression response before,
during and after the same infection but without sepsis. Lines (A) and (B) represent gene expression responses to a pathogen(s) in a patient with sepsis and
without sepsis, respectively. The homeostasis balance (horizontal part of the lines) is disturbed in both cases by pathogen(s) but gene expression changes
during the immune response phase are larger and more delayed (transcriptional storm curb) in the patient with sepsis (A) compared to the patient
without sepsis (B). The transcriptional storm represents hyper-inflammation and immunosuppression pathways which reflect the immune dysregulation
in sepsis and result in organ damage (Nakamori et al., 2020). The onset of symptoms is not pointed in the diagram because the transcriptional response
precedes symptomatology and this interim probably varies among individuals (Lukaszewski et al., 2022). Also, recovery is more prolonged in sepsis ans
return to homeostasis may not achieved in some patients (Prescott and Angus, 2018). Findings of ongoing studies will shed light on the validity of the
proposed model (Fish et al., 2022).
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and costs should be considered. The proposed tests listed in Tables 1, 2
include RT-PCR assays, microarrays, Nanostring and RNA-seq
methods. For sepsis where classification tests might favour rapid
turnaround time, assays such as RT-PCR and Nanostring might be
favourable as they yield results in a matter of hours (Wong et al., 2015).
Other tests might be preferred where longer timeframes are acceptable.
These might prove more cost-effective at measuring many genes, or
provide robust results with convenient clinical samples such as FFPE
tissue. The studies described all present a refined panel of genes or
proteins as input for their classifiers, but the extent of refinement
should be determined by the final assay choice for use in the clinic.

Notably, some of the attempts to apply tests to new populations
find further model training is required, including the addition of
more genes (Burnham et al., 2017; Cano-Gamez et al., 2022). This is
perhaps to be expected given the heterogeneity of human samples
and the complexity of the clinical problems. The model for
Oncotype DX, approved for clinical use, was ultimately derived
from pooling three clinical trials’ results (Paik et al., 2014). In the
case of sepsis, attempts to use publicly available data to improve
robustness may similarly prove fruitful (Sweeney et al., 2018a;
Sweeney et al., 2018b; Cano-Gamez et al., 2022). Likewise, more
groups taking steps to ensure their analyses can be reproduced and
applied to new populations, by sharing code and data, should also
hasten this process (Heil et al., 2021).

Another common feature of the discussed models is their
propensity for improvement by the addition or stratification of
clinical variables (Sweeney et al., 2018b; Sparano et al., 2019). Where
possible, routinely collected clinical variables should be incorporated
early into analyses of transcriptomic data to improve the prospects of
the classifier in validation studies.

Advanced machine learning methods offer the ability to flexibly
model complex relationships in data. This propertymight be ideal when
considering transcriptomics in complex clinical contexts. The flexibility
may also come at a cost, in demanding greater numbers of samples than
comparatively simpler methods (van der Ploeg et al., 2014). In a study
comparing commonly used methods, neural network approaches failed
to demonstrate superiority over regression-based analyses for classifying
phenotypes from transcriptomic data (Smith et al., 2020). Another
benefit of relatively parsimonious models lies in the abundance of
established theory for calculating prospective study sample sizes (Riley
et al., 2020). Prospective validation of a final model is essential for
regulatory approval, and careful planning with realistic expectations of
model performance is essential to improve the chance of success.
Finally, many of the studies discussed focus on the discriminative
ability of their classifiers, but lack any calibration measures for the
predicted probabilities these models often estimate. These measures are
vital if the models are to be used for clinical decision making (Van
Calster et al., 2019). Aiming for good calibration as well as
discrimination will also reduce the risk of model overfitting, thereby
increasing the likelihood of prospective validation.

6 Discussion

The principles of traditional medicine should be upgraded to the
tailored approaches of precision medicine. Gene expression-based
tests are raw tools with a potential to be strategic for the diagnosis and
management of patients. The transcriptome carries a massive amount
of genetic and non-genetic information in time capturing cell, tissue,
disease and host heterogeneity. The identification of transcriptional

FIGURE 2
The road to implementing transcriptomics for biomarker development (spiral road image has been adapted fromVector: 13812147, standard licence
reference No: 43565764).
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changes which initiate cell reprogramming carry fundamental
prognostic and predictive value in cancer and sepsis diagnoses.
The enormous pace of evolvement of technological and analytical
methods precludes standardisation and increases variation which can
be circumvented with the use of large amounts of data including those
which are publicly available. The accruing plethora of data, not only
from a single experiment, but also from the combination of multi-
cohorts, instigates the use of open-frame approaches (e.g.,
unsupervised hierarchical clustering) and complex mathematical
algorithms resulting in computational chaos. Hence, findings
require vigorous confirmation with the use of conventional
methods to monitor (e.g., reference genes) processes or validate
results technically and clinically. To this point, study design is
paramount. Discovery studies should aim to address specific and
clinically relevant questions with patient stratification into prognostic
and/or treatment groups through novel diagnostic tools which
outperform standard practice. Validation should be driven by large
prospective randomised clinical trials and population-based studies.
Our increasing knowledge of the properties of the transcriptome and
its regulators is our ally in all steps of the journey of developing
improved diagnostic tools (Figure 2). Breast cancer and sepsis
represent exemplars for the successful development of prognostic/
predictive transcriptomics-based tests underscoring the optimisation
of identified gene expression signatures into clinically relevant and
feasible tests. Further development in both cancer and sepsis, and
indeed in other disease areas, should herald a new era of clinical
diagnostics and therapeutics.
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