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Objective: This study aimed to identify immune infiltration characteristics and new
immunological diagnostic biomarkers in the cerebrovascular tissue of moyamoya
disease (MMD) using bioinformatics analysis.

Methods: GSE189993 and GSE141022 were downloaded from the GEO database.
Differentially expressed gene and PPI analysis were performed. After performing
WGCNA, the most significant module associated with MMD was obtained. Next,
functional pathways according to GSEA, GO, and KEGG were enriched for the
aforementioned core genes obtained from PPI andWGCNA. Additionally, immune
infiltration, using the CIBERSORT deconvolution algorithm, immune-related
biomarkers, and the relationship between these genes, was further explored.
Finally, diagnostic accuracy was verified with ROC curves in the validation dataset
GSE157628.

Results: A total of 348 DEGs were screened, including 89 downregulated and
259 upregulated genes. The thistlel module was detected as the most significant
module associated with MMD. Functional analysis of the core genes was chiefly
involved in the immune response, immune systemprocess, protein tyrosine kinase
activity, secretory granule, and so on. Among 13 immune-related overlapping
genes, 4 genes (BTK, FGR, PTPN11, and SYK) were identified as potential diagnostic
biomarkers, where PTPN11 showed the highest specificity and sensitivity.
Meanwhile, a higher proportion of eosinophils, not T cells or B cells, was
demonstrated in the specific immune infiltration landscape of MMD.

Conclusion: Immune activities and immune cells were actively involved in the
progression of MMD. BTK, FGR, PTPN11, and SYK were identified as potential
immune diagnostic biomarkers. These immune-related genes and cells may
provide novel insights for immunotherapy in the future.
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Introduction

Moyamoya disease (MMD) shows stenosis or obstruction at the
terminal portion of the internal carotid artery in angiography and also
an abnormal vessel network formed at the base of the brain (2012).
Epidemiologically, this rare and chronic cerebral vascular disease has a
higher prevalence predominantly in Japan and East Asia (Kim, 2016).
Patients chiefly suffering from MMD include children (from 5 years
to 9 years) and young adults (from 35 to 45 years) (Kim, 2016).
However, the pathogenesis of cerebral vascular disease still remains
unclear (Bang et al., 2016; Fox et al., 2021).Microarray technology was
used to detect genetic alterations, and bioinformatics analysis tools
were used to explore the potential etiology and pathogenesis at the
genome level. It is an effective method in large-scale research of gene
expression. There is increasing evidence that genetic factors have a
crucial role in the progression of MMD (Wang X. et al., 2020), and
previous studies have shown that the disease is commonly associated
with neurofibromatosis type I (Koc et al., 2008), Down syndrome
(Fukuyama et al., 1992), and other inherited diseases. Additionally,
RNF213 has been identified as the first susceptible gene for MMD
using a genome-wide linkage and exome analyses by two independent
studies (Kamada et al., 2011; Liu et al., 2011). Moreover,
transcriptomic study (Xu et al., 2022) and the lncRNA–mRNA co-
expression pattern (Zhao et al., 2022) have been investigated to
provide new insights into the pathogenesis of MMD. Hence, gene
expression profile analysis could be used to better unveil the genetic
and molecular mechanisms associated with MMD development.
Immune cell infiltration provides a new perspective for exploring
the immune mechanism of diseases, and several non-tumor studies

have revealed the unique role in the occurrence, development, and
prognosis of diseases (Deng et al., 2020; Liu et al., 2020; Maekawa
et al., 2021; Hou et al., 2022). However, due to the low incidence rate of
diseases and the difficulty in obtaining samples, only few previous
research studies have analyzed the genetic alterations, the landscape of
overall immune infiltration, and the relationship of hub genes and
immune cells in microarray data.

In our study, the microarray datasets GSE189993 and
GSE141022 were downloaded and combined. After analyzing the
data between MMD and the control group, we obtained the
differentially expressed genes (DEGs), and another
GSE157628 was downloaded and utilized as an external
validation dataset. The current work conducted WGCNA based
on MMD analysis first, and we explored the 22 infiltrating immune
cell components for the first time using the combined dataset of
Gene Expression Omnibus (GEO). The project aims to explore
immune infiltration characteristics and identify new immunological
diagnostic biomarkers. This study sheds new light on the
pathogenesis and diagnosis of MMD. Bioinformatics analysis
workflows of the study are shown as follows (Figure 1).

Materials and methods

Data collection and preprocessing

We searched and selected two microarray datasets in the GEO
database. GSE189993 and GSE141022 were downloaded, and the
gene expression data of the middle cerebral artery were analyzed.

FIGURE 1
Workflows of bioinformatics study.
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GSE189993 consists of 21 MMD and 11 non-MMD patients, and
GSE141022 consists of four MMD and four non-MMD patients.
After normalization, we used the SVA package in R script for
background correction, and the ComBat function was used to
remove the batch effects. After correction, the distribution of the
data was visualized by principal component analysis (PCA), and
PCA illustrated that different batches were at the same level. We
used the mean as the unique expression value for duplicate gene
symbols and the limma package to identify DEGs. p < 0.05 was
considered significant. |log2 FC (fold change) | >1 was the criterion
for identifying DEGs.

Gene set enrichment analyses (GSEA) of the
expression matrix

GSEA is a bioinformatics tool used to analyze enriched gene sets,
KEGG pathways, and immunological signatures, as well as for
analyzing genome-wide expression data. Genes in the gene set
share the same function and other features. GSEA could screen the
functional enrichment score for all expression profiles rather than
different expression genes alone. A good score was presented in terms
of rank-based and p-value-based pathway enrichment, and no false
prediction was found (Nguyen et al., 2019). GSEA software was
obtained from the official website (Subramanian et al., 2005). All

gene expression profiles were divided into two groups, and the
c2.cp.kegg.v7.4.symbols.gmt subset obtained from MsigDB
(Liberzon et al., 2011) was used to evaluate molecular mechanisms.
The minimum and maximum number of gene sets ranged from 5 to
5000, and 1000 was set as the threshold of permutations. p < 0.05 and
FDR<0.25 were considered significant. To further explore the
immune pathways, the c7.immunesigdb.v7.4.symbols.gmt subset
was also obtained from MsigDB to evaluate immune-related
pathways. The minimum and maximum number of gene sets
ranged from 5 to 5000, and 1000 was set as the threshold of
permutations. p < 0.01 and FDR<0.1 were considered significant.

Protein–protein interaction (PPI) network
and hub gene analysis

We used the STRING online database to construct the PPI
network (von Mering et al., 2003). The network was drawn by
Cytoscape based on the results of the STRING analysis, and the most
important module was identified by MCODE plugin (Bader and
Hogue, 2003), and hub genes were identified by the hub gene plugin.
The top 50 genes were selected as hub genes from five algorithms,
namely, Closeness, Degree, MCC, MNC, and EPC. The real core
genes were obtained from the intersection of the result. The default
parameters for MCODE were selected as the criterion.

FIGURE 2
(A) Pre-processing PCA of two selected datasets. (B) Post-processing PCA of two selected datasets. (C) Volcano plot depicting the DEGs between
two groups, genes significantly upregulated in the MMD group are indicated by red dots, genes significantly downregulated in the MMD group are
indicated by blue dots, and black dots indicate non-DEGs. (D) Heat map of DEGs; each column represents a sample, and each row represents a DEG.
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WGCNA

WGCNA is usually used to analyze the gene expression patterns.
According to the WGCNA algorithm, we performed Pearson’s
correlation and average linkage first. β was known as the soft-
thresholding parameter, and it emphasized strong correlations
between genes and penalized weak correlations. Next, we
transformed the adjacency matrix into a topological overlap matrix
(TOM) and calculated the corresponding dissimilarity (1-TOM) after
confirming the soft-thresholding power. A gene’s network connectivity
could be measured by TOM. To classify the genes sharing similarity
into gene modules, we then carried out average linkage hierarchical
clustering in accordance with TOM-based dissimilarity, and gene
dendrograms should have had a minimum size of 30. To further
explore these modules, the dissimilarity of the module eigengenes was
computed, and we merged some modules in the module dendrogram
after choosing a cut line. Last, the relationship between specific clinical
features and the modules was analyzed.

Function analysis of core genes

Gene Ontology (GO) and KEGG are the most important
bioinformatics tools for the analysis of gene annotation and
biological processes. First, the identified PPI hub genes and
WGCNA gene set were merged together to obtain the combined
core genes. Based on these core genes, GO terms and KEGG pathway
enrichment were performed, respectively. Next, we obtained immune
gene symbol lists from the website. In order to identify immuneDEGs,
ImmPort (The Immunology Database and Analysis Portal database)

was selected to identify immune-related genes. The ImmPort gene set
contains 2,489 immune-related genes. The overlapping genes were
obtained from the intersection of three datasets, hub genes of DEGs,
and hub genes of the most important molecular and immune-related
gene set. GO terms and KEGG pathways were analyzed as well based
on these immune-related core genes. p < 0.05 was considered
significant for GO terms and KEGG pathway analysis.

Evaluation of immune-related biomarkers
and ROC curves

Finally, another dataset (GSE157628) was utilized to validate
immune-related core genes.

Expression values from the original combined expression matrix
in samples of GSE189993 and GSE141022 were extracted.
Expression values of the same genes from microarray data in
samples of GSE157628 were extracted as well. The expression
pattern was compared between the two groups. To evaluate
diagnostic accuracy, the receiver operating characteristic (ROC)
curve was applied, and we calculated the area under the curve
(AUC). Ideally, the AUC should be 1, and values over 0.5 are
considered predictive.

CIBERSORT analysis and correlation with
immune biomarkers

The cell-type identification by estimating relative subsets of the
RNA transcript algorithm, also called CIBERSORT (Newman et al.,

FIGURE 3
KEGG enrichment analysis by GSEA. The linemeans enrichment profile. Peak 6 appears at the front of the sequenced gene set (ES > 0) indicating that
the pathway is upregulated, and when it appears at the back (ES < 0), it indicates that the pathway is downregulated. The vertical line marks the position of
each member in the gene set in the gene sequencing list. The red part represents overexpressed genes in the experimental group, whereas the blue part
represents overexpressed genes in the control group. The gray area diagram shows the distribution of all gene rank values after sequencing.
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2015), is widely used in evaluating cell fractions. Based on our gene
expression profile, we selected the computational method to
calculate the score of immune infiltrating cells. The fractions of
22 types of infiltrating immune cells in each sample were visualized
by a bar graph, and the correlation between immune cell subtypes
and gene expression was visualized by a correlation heat map.

To further confirm immune-related genes as potential
diagnostic immune biomarkers, we divided the 60 samples into
the MMD and non-MMD groups; the MMD group had 35 patients
and the non-MMD group had 25 patients. The immune scores of
22 infiltrating immune cell subtypes were compared. After analyzing
immune infiltration, we performed Spearman’s correlation to
determine the relationship between the expression levels of
identified immune biomarkers and 22 subtypes of infiltrating
immune cells.

Statistical analysis

Data analysis and statistical analysis were conducted by R Studio
(version 4.1.2). R package “ggplot2” and “pheatmap” and other
packages were used to generate the pictures of volcano plots, heat
maps, and principal component analysis. Box plots were drawn by
GraphPad Prism 7.0 software using the Mann–Whitney U test. The
ROC curve was performed with SPSS 17.0 software. The results were
imported into Sangerbox (Shen et al., 2022), and the data were
visualized. In the statistical analysis, we selected False Discovery Rate

(FDR) for multiple corrections, and p < 0.05 was considered
statistically significant.

Results

Data preprocessing and DEG analysis

The raw data were processed, and the results showed that the
samples from each dataset were comparable (Figures 2A, B). After
normalization, we found 348 DEGs between MMD and control
groups, which consisted of 89 upregulated genes and
259 downregulated genes. The analysis results of the expression
matrix are depicted in the volcano plot (Figure 2C). The top 50 and
last 50 DEG genes are depicted in the heat map (Figure 2D)
(Supplementary Table S1).

Gene Set Enrichment Analysis

As expected, the exported results of GSEA-based enrichment
analysis illustrated a strong correlation between immune cells and
immune activities. According to the KEGG enrichment analysis,
there were 15 enriched terms, and they were all upregulated (p <
0.05 and FDR<0.25), mainly involving primary immune-related
pathways, including natural killer cell-mediated cytotoxicity,
antigen processing and presentation, primary immunodeficiency,

FIGURE 4
Immunological signature enrichment analysis by GSEA. (A) Enriched immunological signature gene sets in the activated pathway. (B) Enriched
immunological signature gene sets in the suppressed pathways.
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and the Fc epsilon RI signaling pathway; pathways related to
immune-associated diseases include autoimmune thyroid disease,
type-I diabetes mellitus, graft versus host disease, asthma, and
allograft rejection; pathways related to cytokine activation include
cytokine–cytokine receptor interaction and neuroactive ligand
receptor interaction. The immune-related pathways results are
visualized in Figure 3 (Supplementary Table S2).

To further characterize the signature of immune activities
related to the pathology of MMD, GSEA was used again to
identify the immunological pathways enriched in immune
signature gene sets. The criteria p < 0.01 and FDR <0.15 showed
that 20 prominent immune pathways were enriched totally. There
were 6 activated pathways (Figure 4A) and 14 suppressed pathways
(Figure 4B) among them. The gene sets in CD4 T cell, CD8 T cell,
Th1 cells, monocytes, mast cells, dendritic cells (DCs), and
peripheral blood mononuclear cells were mainly enriched
(Supplementary Table 3).

Protein–protein interaction analysis

In order to identify the hub genes, 384 DEGs were analyzed with
the PPI network (Figure 5A). The three most significant modules
were clustered via MCODE (Figure 5B), module 1 was made up of
six DEGs, and module 2 and module 3 consisted of three DEGs.
According to five commonly used classification algorithms in
cytoHubba, the top 50 genes were identified by each algorithm.
Finally, we took the intersection of Closeness (top 50), Degree (top

50), MCC (top 50), MNC (top 50), and EPC (top 50) to acquire
30 hub genes (Figure 5C) (Supplementary Table S4).

Key module of WGCNA

The co-expression modules were generated after WGCNA.
Gene sets contained in co-expression modules frequently shared
high topological overlap similarity. To guarantee a scale-free
network, we chose the soft-threshold β = 4 (scale-free R2 = 0.87)
in the present study. The adjacency matrix was converted into a
TOM matrix (Figure 6A), which showed the similarity between
different nodes because the weighted correlation was considered in
the matrix. Ultimately, we obtained 34 co-expression modules by
WGCNA (Figure 6B). In order to select the most important clinical
module, we performed correlation analysis between the identified
modules and clinical traits (Figure 6C). Among these modules, the
thistlel module was selected, and it showed a strong correlation with
the MMD group (cor = 0.59 and p = 4.2 e–4). Automatically, all the
31 genes contained in this module were identified as the hub genes
(Figure 6D) (Supplementary Table S5).

Functional annotation analysis of hub genes

First, we obtained 61 core genes with the combination of the
aforementioned two hub gene sets (Figure 7A) (Supplementary
Table S6). In order to study the biological process of the core

FIGURE 5
PPI analysis. (A) PPI network of the interactions, where each dot represents each DEG, the color represents the degree of each DEGs, the redder the
larger degree, and the yellower the smaller degree. (B) Top three most significant modules. (C) Venn plot of different cytoHubba algorithms and the
identified thirty hub genes.
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FIGURE 6
Results of WGCNA. (A) Determination of soft-thresholding power, the scale-free index was analyzed, and the mean connectivity was depicted for a
variety of soft-threshold powers. (B)Hierarchical clustering tree and co-expression modules are depicted according to the measurement of dissimilarity
(1-TOM). Eachmodule was codedwith different colors, and a group of high related genes were contained in each color-codedmodule. (C) Identification
of modules highly related to the clinical traits, and heat map results showed the correlation between clinical characteristics and co-expression
modules. (D) Selected thistle module and its genes.

FIGURE 7
Venn plot of the hub genes. (A) Combination of two hub gene sets. (B) Overlapping of three gene sets.

Frontiers in Genetics frontiersin.org07

Cao et al. 10.3389/fgene.2023.1101612

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1101612


genes, GO and KEGG functional analyses were conducted. The
biological process analysis of the hub genes was mainly related to
the immune response, immune system process, regulation of the
immune response and immune system process, vesicle-mediated
transport, exocytosis, secretion, and so on (Figure 8A). Cell
component analysis of the hub genes was primarily enriched
in the extracellular matrix, cytoplasmic vesicle, intracellular
vesicle, secretory vesicle, secretory granule, plasma membrane
part, and so on (Figure 8B). Molecular function analysis was
primarily enriched in the protein tyrosine kinase activity,
phosphatidylinositol phosphate binding, phosphatidylinositol
binding, phosphorylated amino acid binding, ion channel
binding, titin binding, and so on (Figure 8C). KEGG analysis
revealed that the proteoglycans in cancer, human T-cell leukemia
virus I infection, phospholipase D signaling pathway, Jak-STAT
signaling pathway, Fc epsilon RI signaling pathway, and ErbB
signaling pathway were mainly enriched (Figure 8D). The results
of the functional analysis revealed that immune activities may be
mainly involved in the progression of MMD. The detailed results
are illustrated in Figure 8.

Subsequently, we identified 13 immune-related genes
overlapped in the PPI hub genes, WGCNA hub genes, and the
immune genes set, as shown in the Venn plot (Figure 7B), including
CTSS, NPPA, PTPN11, FGR, SYK, TLR8, IL13, CSF2RB, CCR1,

MAP2K1, CXCR1, and TGFB2. To screen biological differences of
the immune-related genes between MMD and the control group,
GO and KEGG functional analyses for the identified immune
genes were performed as well and showed results similar to those
of the core genes. GO analysis showed that these immune-related
hub genes mainly involved the immune response and immune
system process and their regulation, vesicle-mediated transport,
exocytosis, secretion in BP (Figure 9A), extracellular matrix,
cytoplasmic vesicle, intracellular vesicle, lysosome, mast cell
granule and immunoglobulin complex in CC (Figure 9B),
protein tyrosine kinase activity, signaling receptor binding,
cytokine receptor activity/binding, type-III transforming
growth factor beta receptor binding, and G protein-coupled
peptide receptor activity in MF (Figure 9C). KEGG analysis
revealed that these immune hub genes primarily involved
apoptosis, cytokine–cytokine receptor interaction,
phospholipase D signaling pathway, Jak-STAT signaling
pathway, NF-kappa B signaling pathway, HIF-I signaling
pathway, Fc epsilon RI signaling pathway, chemokine
signaling pathway, B-cell receptor signaling pathway, NK cell-
mediated cytotoxicity, platelet activation, and vascular smooth
muscle contraction (Figure 9D). The consistent results revealed a
close relationship between MMD and the immune mechanism.
The detailed results are illustrated in Figure 9.

FIGURE 8
Top 10GOand KEGG enrichment of core genes. (A)Circos plot of BP. (B)Circos plot of CC. (C)Circos plot ofMF. (D)Bubble plots of KEGGpathways,
and gene counts enriched in the signaling pathway are represented by dot size. The color indicates the significance of p-value.
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Verification and ROC of immune markers

Among the 13 immune-related hub genes, the expression of six
genes showed significant differences between the MMD and the
control groups. The results indicated that the expressions of BTK,
FGR, SYK, CSF2RB, and CXCR1 were upregulated in MMD,
whereas the expression levels of PTPN11 were downregulated
(Figure 10A). To verify the potential of immune-related hub
genes as diagnostic biomarkers, we further downloaded the
dataset GSE157628 as the external validation dataset. The
expression pattern of BTK, FGR, SYK, and PTPN11 showed
consistent results (Figure 10B). The results indicated that BTK,
FGR, SYK, and PTPN11 genes showed strong stability and that they
have the potential to be new diagnostic biomarkers. The
correlation/anti-correlation among the 13 differentially
expressed genes identified in the discovery cohorts was explored
(Figure 10C). A positive correlation was demonstrated between
CSF2RB and CCR1(r = 0.72) and CXCR1 and CCR1(r = 0.74),
whereas TGFB2 has a negative correlation with FGR (r = −0.48).
Moreover, GSEA was used to further explore the pre-defined
immune-associated pathways of the four immune biomarkers.
Single-gene GSEA results showed that several kinds of immune
cell pathways were mainly enriched in MMD, including NK cells,
monocyte cells, DC cells, and neutrophils (Figure 11).

In addition, we constructed the diagnostic model by using the
logistic regression algorithm. ROC analysis was performed, and the
four immune-related genes were visualized by ROC curves. ROC
analysis confirmed that BTK, FGR, SYK, and PTPN11 could
distinguish MMD from control patients, and the accuracy of
AUC ranged from 0.699 to 0.859 (Figure 12A). For single genes,
PTPN11 had the highest accuracy, with an AUC of 0.80. The results
also revealed that the diagnostic model constructed by combined
genes had better diagnostic performance, and the highest AUC was
0.859. Furthermore, in the validation set, the diagnostic power was
much higher both in single and combined gene diagnostic models,
with an AUC between 0.808 and 0.970 (Figure 12B). The results of
the ROC analysis showed strong stability of the diagnostic
performance between the different datasets, and PTPN11
exhibited an excellent diagnostic capability. These identified four
immune-related genes might function as novel diagnostic
biomarkers and potential immunotherapeutic targets.

Analysis of infiltrating immune cells

According to the CIBERSORT algorithm, the state of immune
cell infiltration was reconstructed in MMD and the control
group. Then, the immune infiltration score of 22 immune cell

FIGURE 9
Top 10 GO and KEGG enrichment of immune-related genes. (A) Bubble plots of BP. (B) Bubble plots of CC. (C) Bubble plots of MF. (D) Lollipop chart
of KEGG pathways. The vertical axis shows the description of GO and KEGG enrichment, and the horizontal axis of GO and KEGG shows the gene ratio
and −log10 (p-value), respectively. The color intensity indicates the significance of p-value, and the circular area indicates gene counts.
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subtypes was obtained, and the proportions of immune cells in each
sample are illustrated in Figure 13. The immune score results
indicated that the fractions for eosinophils in the MMD group
were remarkably higher than those of the control (p = 0.03).
Compared with the control group, monocytes and neutrophils
were upregulated in the MMD group, whereas CD8+ T cells,
resting memory CD4+ T cells, and M0 macrophages were
downregulated; however, they were not significant (Figure 14A).
In addition, the correlation among the differentially infiltrated types
of immune cells was analyzed, and several pairs of immune cell
subtypes were found to have different degrees of positive or negative
correlation (Figure 14B). This result suggests that M1 macrophages
and resting DCs, M2 macrophages and activated mast cells, and
M0 macrophages and resting NK cells showed the most synergistic
effect. Together, resting NK cells and neutrophils, resting NK cells
and native NK cells, and M0 macrophages and neutrophils
represented the most competitive effect. Furthermore, the results
of the in-depth relationship between the core genes and immune cell
subtypes reported that BTK had a positive relationship with
neutrophil infiltration and a negative relationship with resting
NK cell infiltration, PTPN11 had a positive relationship with
neutrophil infiltration and a negative relationship with resting
CD8 T cell infiltration, FGR showed a weak relationship with all

the immune cell subtypes, and SYK had a positive relationship with
neutrophil infiltration and a negative relationship with T regulatory
cell (Tregs) infiltration (Figure 14C). These results fully indicated
that the expression of immune-related genes had a strong
correlation with immune infiltration.

Discussion

Though MMD has been studied in the past 70 years, the
underlying pathologies remain to be elucidated. The most
prominent histopathologic characteristics of lumen narrowing or
occlusion in MMD is the proliferation of smooth muscle cells and
altered wavy, duplicated internal elastic lamina in intima, as well as
progressive thinning of the tunica media (Suzuki and Kodama,
1983). In the past decades, autoimmune diseases have been
observed to be co-occurrent with MMD, including autoimmune
Graves’ disease, systemic lupus erythematosus, and type 1 diabetes
(Watanabe et al., 2005; Kim et al., 2010; Bower et al., 2013). In
addition, heavy deposition of immunoglobulins such as IgG and
IgM was found in the thickening intima of vascular walls (Suzuki
and Kodama, 1983), and an increased number of thyroid
autoantibodies was reported in MMD patients, though there was

FIGURE 10
Significantly expressed hub genes. (A) Expression values of BTK, FGR, PTPN11, and SYKwere extracted from the original expressionmatrix in samples
of GSE189993 and GSE141022. (B) Expression values of the same genes were extracted from microarray data in samples of GSE157628. (C) Correlation
matrix of the expression of 13 immune-related genes.
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no diagnosis of thyroid dysfunction (Kim et al., 2010). In addition,
165 significantly elevated autoantibodies were identified by the first
high-throughput analysis of autoantibodies in the serum of MMD
(Sigdel et al., 2013). Additionally, an integrated analysis of long non-
coding RNA-messenger RNA co-expression networks reported their
link to inflammatory response and the toll-like signaling pathway
(Wang et al., 2017). Therefore, an increasing amount of evidence has
showed that MMD is emerging as an immune-related angiopathy,
triggered by immune-related responses as a second hit (Asselman
et al., 2022). In our study, autoimmune thyroid disease and type-I
diabetes mellitus were significantly screened according to GSEA-
based enrichment, and they all suggested an underlying common
pathogenic mechanism in these diseases. Antigen processing and
presentation, primary immunodeficiency, and several other
immune-related pathways were also enriched according to GO
and KEGG enrichment of the identified hub genes. These results
were consistent with the transcriptome-wide analysis results
revealed by Kanamori F et al. of the upregulation of immune
responses within the intracranial artery of MMD (Kanamori
et al., 2021). The Fc epsilon RI signaling pathway and Jak-STAT
signaling pathway are two significant pathways mainly involved in
the progression of MMD. Emerging evidence reveals that
inflammatory or immune activities may present as a second hit
in the progression of MMD. Taken together, an increasing amount
of evidence suggests a close relationship between the immunity
reaction activities and development of MMD.

Subsequently, we screened the immune-related diagnostic
biomarkers for MMD and validated them in the external dataset.
As we know, biomarkers are biological fingerprints and could be

used to clarify a specific disease. A panel of urinary biomarkers
(Sesen et al., 2021), metabolic biomarkers (Geng et al., 2020),
radiographic biomarkers (Storey et al., 2017), circulating
endothelial progenitor cells and endothelial cells (Bao et al.,
2018), miRNAs (Dai et al., 2014; Wang G. et al., 2020; Wang
et al., 2021), and a series of potential molecules from blood or
cerebral spinal fluid (Smith, 2015) have been reported previously.
However, there is still no well-recognized biomarker for accurately
diagnosing and predicting the outcome of MMD. CD38, PTPN11,
NOTCH1, TLR7, KAT2B, and ISG15 were identified using machine
learning, and a reliable diagnostic model was developed by Li et al.
(2022). Except RNF213, UNC13D was previously identified as a key
biomarker with good specificity and sensitivity (Jin and Duan,
2022). In the present research, 13 immune genes were selected
from DEGs and the most significant module genes. BTK, FGR,
PTPN11, and SYK were identified as hub immune-associated genes.
Due to the lack of a recognized cellular model for MMD, the cell
functions of these genes were not verified in MMD research.
However, validation was performed in external data, and the
results showed strong predictive stability. They have the potential
to be diagnostic biomarkers for MMD. Among them,
PTPN11 showed a low expression pattern and the highest
diagnostic accuracy, and it also showed the highest degree
according to PPI network analysis, which was identified by Li
et al. (2022), as aforementioned. PTPN11 encodes a non-receptor
tyrosine phosphatase with 2 Src-homology 2 domains (Shp2) as well,
and it was identified as the first proto-oncogene. PTPN11 is
ubiquitously expressed in somatic cells and has important
functions in regulating cell proliferation, differentiation,

FIGURE 11
Representative GSEA enrichment score plots of the four immune-related genes. The green line means enrichment profile.
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migration, and adhesion. Additionally, PTPN11 could positively or
negatively regulate the intracellular kinase-mediated signaling
pathways (Tajan et al., 2015), for example, upregulate or
downregulate the activities of PI3/AKT (Zhang et al., 2002) and
JAK/Stat signaling (Ke et al., 2006). Consistently, the JAK/Stat
signaling pathway was enriched by functional analysis. Especially,
mutations in PTPN11 have been reported in malignant
hematological diseases and solid tumors (Bentires-Alj et al., 2004;
Siegfried et al., 2017; Alfayez et al., 2021). Furthermore, the PTPN11
gene causes Noonan syndrome, accounting for approximately 50%
of cases of this genetic disorder (Tartaglia et al., 2002). Noonan
syndrome is known to cause moyamoya syndrome (MMS); the
association between the two diseases was described first in 1997
(Ganesan and Kirkham, 1997), and an increasing number of patients
have been reported recently (Tang et al., 1999; Yamashita et al., 2004;

Hung et al., 2011; Choi et al., 2015). However, the potential
molecular mechanisms of PTPN11 in MMD remain to be further
explored.

Finally, we performed the analysis of 22 types of immune cell
infiltrates in MMD tissue using CIBERSORT. In recent decades, the
role of immune infiltrates has become increasingly evident.
Although immune infiltration was not typical in the pathology of
MMD arteries, Masuda et al. did report immune cell infiltrating
components such as macrophages or T cells in the thickened
vascular wall (Masuda et al., 1993). Recently, Li et al. reported
the significant difference of immune infiltration in eosinophils,
natural killer T (NKT) cells, and Th2 cells between MMD and
controls (Li et al., 2022), whereas Jin and Duan (2022) demonstrated
an elevated abundance of neutrophils, monocytes, and natural killer
cells in MMD. However, the detailed mechanism of immune cell

FIGURE 12
ROC analysis of immune-related biomarkers for diagnosis of MMD. (A) Single and combined ROC curves of four genes, namely, BTK, FGR, PTPN11,
and SYK. Expression values of BTK, FGR, PTPN11, and SYK were extracted from the original expression matrix in samples of GSE189993 and GSE141022.
(B) Single and combined ROC curves of the same four genes, and expression values of the same genes were extracted frommicroarray data in samples of
GSE157628. The vertical axis means the specificity, and the horizontal axis means sensitivity.
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FIGURE 13
Bar charts of 22 immune cell proportions. Bar graph shows the percentage of immune cell subtypes between the two groups, where each color
indicates each immune cell population.

FIGURE 14
Landscape of immune infiltration. (A) Differential expression of immune cells between the MMD and control groups. (B) Correlation matrix of
22 immune infiltrating cell subtypes. (C)Correlation between intersecting core genes and 22 immune infiltrating cell subtypes. The vertical axis represents
the immune cell subtypes, and the horizontal axis represents the core genes.
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function in MMD was still largely unknown. In the present study,
the infiltrated immune cell populations of the MCA vascular wall
were compared, and the results showed a significant difference for
the presence of eosinophils, consistent with Li et al’s findings.
Eosinophils are white blood cells, and they take part in a series
of biologic processes. Eosinophils and their secretory products such
as granule proteins and chemical mediators are important in
maintaining physiological homeostasis in both normal physiologic
homeostasis and disease pathology (Wechsler et al., 2021). Their role
in the cardiocirculatory and the nervous system, respiration and
immune function, and tissue metabolism and remodeling has been
described recently (Idzko et al., 2014; Burnstock, 2017; Burnstock and
Gentile, 2018). Infiltrated eosinophils also respond to hypoxia by
increasing their viability and proangiogenic potential (Gonlugur and
Efeoglu, 2004). Due to their important role in innate immunity and
modulation of angiogenesis, an alternative treatment strategy
targeting eosinophils could represent a novel approach. Our
comparison of immune infiltration also showed that the MMD
group contained a higher number of monocytes and neutrophils,
in contrast to a lower level of CD8+ T cells, resting memory CD4+

T cells, and M0 macrophages. However, there was no significance
between both the number of increased and decreased immune
infiltrating cells. According to GSEA-based MSigDB enrichment,
several immunocyte subtypes were detected in the pathways,
including monocytes, neutrophils, DCs, NK cells, and
macrophages. The results were in line with those of immune
infiltration. In addition, the relationship between immune
infiltration and the immune-related core genes has been further
explored. As PTPN11 has the highest diagnostic accuracy, it was
found that PTPN11 was positively correlated with neutrophil
infiltration but negatively with the CD8 T cell.

Based on these findings of immune-related genes, immune
pathways, and immune infiltration, this research has offered a
new viewpoint on the immune infiltration of MMD. Therefore, it
is helpful for understanding the potential pathological mechanisms
of MMD and immunotherapy targets. Recently, bioinformatics
analysis has been found to be a functional tool in understanding
human diseases, and the potential effects of infiltrating immune cells
on MMD arteries should be investigated with modern
bioinformatics tools or even single-cell technologies. Despite the
great significance, there were some limitations in the study. First, the
research had a relatively small sample size, though it was the biggest
microarray data update. Next, we lacked further vitro cytology
experiments and verification of cell functions. Owing to the
complex functions of gene molecules, these possible variations of
bioinformatics results need to be further verified.

Conclusion

Our research provided a new viewpoint of the immune
landscape in the immune mechanism of MMD development.
Eosinophils revealed the greatest differences in the analysis of
immune infiltration. Immune response was mainly associated
with the pathogenesis of MMD. Four immune-related hub genes
(PTPN11, BTK, FGR, and SYK) were identified and further analyzed
as candidate biomarkers for MMD. These genes and immune cells

may perform crucial functions and were identified as novel targets
for immunotherapy.

Data availability statement

The datasets analyzed in this study were downloaded and
accessed from the Gene Expression Omnibus (GEO) database:
https://www.ncbi.nlm.nih.gov/geo/, with accession nos.
GSE189993, GSE141022, and GSE157628.

Author contributions

LC and YA designed the work, contributed to the conception of
the study, analysis and manuscript preparation, writing the initial
draft. YD, DL, HW, KS, and CW contributed to the methodology,
software, visualization and data curation. MZ and DY contributed to
the management activities, scrub data and maintain research data.
HL, GL, and BY contributed to conceptualization, review & editing
and supervision.

Acknowledgments

The authors thank the GEO database for providing their
platforms and contributors for uploading their meaningful
datasets. Meanwhile, the authors thank Liu (nucleobase
translocation of bioinformatics), Juan Zhang (Beijing Echobiotech
Technology Co., Ltd.), and Jin Wang (Department of Toxicology,
School of Public Health, Suzhou Medical College of Soochow
University, Suzhou 215123, China.) for generously sharing their
bioinformatics experience.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1101612/
full#supplementary-material

Frontiers in Genetics frontiersin.org14

Cao et al. 10.3389/fgene.2023.1101612

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2023.1101612/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1101612/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1101612


References

Alfayez, M., Issa, G. C., Patel, K. P., Wang, F., Wang, X., Short, N. J., et al. (2021). The
Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia
35 (3), 691–700. doi:10.1038/s41375-020-0920-z

Asselman, C., Hemelsoet, D., Eggermont, D., Dermaut, B., and Impens, F. (2022).
Moyamoya disease emerging as an immune-related angiopathy. Trends Mol. Med. 28,
939–950. doi:10.1016/j.molmed.2022.08.009

Bader, G. D., and Hogue, C. W. (2003). An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinforma. 4, 2. doi:10.1186/
1471-2105-4-2

Bang, O. Y., Fujimura, M., and Kim, S. K. (2016). The pathophysiology of moyamoya
disease: An update. J. Stroke 18 (1), 12–20. doi:10.5853/jos.2015.01760

Bao, X. Y., Fan, Y. N., Liu, Y., Wang, Q. N., Zhang, Y., Zhu, B., et al. (2018).
Circulating endothelial progenitor cells and endothelial cells in moyamoya disease.
Brain Behav. 8 (9), e01035. doi:10.1002/brb3.1035

Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al.
(2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene
in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64 (24),
8816–8820. doi:10.1158/0008-5472.Can-04-1923

Bower, R. S., Mallory, G.W., Nwojo, M., Kudva, Y. C., Flemming, K. D., andMeyer, F.
B. (2013). Moyamoya disease in a primarily white, midwestern US population:
Increased prevalence of autoimmune disease. Stroke 44 (7), 1997–1999. doi:10.1161/
strokeaha.111.000307

Burnstock, G., and Gentile, D. (2018). The involvement of purinergic signalling in
obesity. Purinergic Signal 14 (2), 97–108. doi:10.1007/s11302-018-9605-8

Burnstock, G. (2017). Purinergic signaling in the cardiovascular system. Circ. Res. 120
(1), 207–228. doi:10.1161/circresaha.116.309726

Choi, J. H., Oh, M. Y., Yum, M. S., Lee, B. H., Kim, G. H., and Yoo, H. W. (2015).
Moyamoya syndrome in a patient with Noonan-like syndrome with loose anagen hair.
Pediatr. Neurol. 52 (3), 352–355. doi:10.1016/j.pediatrneurol.2014.11.017

Dai, D., Lu, Q., Huang, Q., Yang, P., Hong, B., Xu, Y., et al. (2014). Serum miRNA
signature in Moyamoya disease. PLoS One 9 (8), e102382. doi:10.1371/journal.pone.
0102382

Deng, Y. J., Ren, E. H., Yuan, W. H., Zhang, G. Z., Wu, Z. L., and Xie, Q. Q. (2020).
GRB10 and E2F3 as diagnostic markers of osteoarthritis and their correlation with
immune infiltration. Diagn. (Basel) 10 (3), 171. doi:10.3390/diagnostics10030171

Fox, B. M., Dorschel, K. B., Lawton, M. T., andWanebo, J. E. (2021). Pathophysiology
of vascular stenosis and remodeling in moyamoya disease. Front. Neurol. 12, 661578.
doi:10.3389/fneur.2021.661578

Fukuyama, Y., Osawa, M., and Kanai, N. (1992). Moyamoya disease (syndrome) and
the Down syndrome. Brain Dev. 14 (4), 254–256. doi:10.1016/s0387-7604(12)80242-7

Ganesan, V., and Kirkham, F. J. (1997). Noonan syndrome and moyamoya. Pediatr.
Neurol. 16 (3), 256–258. doi:10.1016/s0887-8994(97)89980-8

Geng, C., Cui, C., Guo, Y., Wang, C., Zhang, J., Han, W., et al. (2020). Metabolomic
profiling revealed potential biomarkers in patients with moyamoya disease. Front.
Neurosci. 14, 308. doi:10.3389/fnins.2020.00308

Gonlugur, U., and Efeoglu, T. (2004). Vascular adhesion and transendothelial
migration of eosinophil leukocytes. Cell Tissue Res. 318 (3), 473–482. doi:10.1007/
s00441-004-0925-3

Hou, Y., Chen, Z., Wang, L., Deng, Y., Liu, G., Zhou, Y., et al. (2022). Characterization
of immune-related genes and immune infiltration features in epilepsy by multi-
transcriptome data. J. Inflamm. Res. 15, 2855–2876. doi:10.2147/jir.S360743

Hung, P. C., Wang, H. S., and Wong, A. M. (2011). Moyamoya syndrome in a child with
Noonan syndrome. Pediatr. Neurol. 45 (2), 129–131. doi:10.1016/j.pediatrneurol.2011.03.007

Idzko, M., Ferrari, D., Riegel, A. K., and Eltzschig, H. K. (2014). Extracellular
nucleotide and nucleoside signaling in vascular and blood disease. Blood 124 (7),
1029–1037. doi:10.1182/blood-2013-09-402560

Jin, F., and Duan, C. (2022). Identification of immune-infiltrated hub genes as
potential biomarkers of Moyamoya disease by bioinformatics analysis. Orphanet
J. Rare Dis. 17 (1), 80. doi:10.1186/s13023-022-02238-4

Kamada, F., Aoki, Y., Narisawa, A., Abe, Y., Komatsuzaki, S., Kikuchi, A., et al. (2011).
A genome-wide association study identifies RNF213 as the firstMoyamoya disease gene.
J. Hum. Genet. 56 (1), 34–40. doi:10.1038/jhg.2010.132

Kanamori, F., Yokoyama, K., Ota, A., Yoshikawa, K., Karnan, S.,Maruwaka,M., et al. (2021).
Transcriptome-wide analysis of intracranial artery in patients withmoyamoya disease showing
upregulation of immune response, and downregulation of oxidative phosphorylation and
DNA repair. Neurosurg. Focus 51 (3), E3. doi:10.3171/2021.6.Focus20870

Ke, Y., Lesperance, J., Zhang, E. E., Bard-Chapeau, E. A., Oshima, R. G., Muller, W. J.,
et al. (2006). Conditional deletion of Shp2 in the mammary gland leads to impaired
lobulo-alveolar outgrowth and attenuated Stat5 activation. J. Biol. Chem. 281 (45),
34374–34380. doi:10.1074/jbc.M607325200

Kim, J. S. (2016). Moyamoya disease: Epidemiology, clinical features, and diagnosis.
J. Stroke 18 (1), 2–11. doi:10.5853/jos.2015.01627

Kim, S. J., Heo, K. G., Shin, H. Y., Bang, O. Y., Kim, G. M., Chung, C. S., et al. (2010).
Association of thyroid autoantibodies with moyamoya-type cerebrovascular disease: A
prospective study. Stroke 41 (1), 173–176. doi:10.1161/strokeaha.109.562264

Koc, F., Yerdelen, D., and Koc, Z. (2008). Neurofibromatosis type 1 association with
moyamoya disease. Int. J. Neurosci. 118 (8), 1157–1163. doi:10.1080/
00207450801898279

Li, S., Han, Y., Zhang, Q., Tang, D., Li, J., and Weng, L. (2022). Comprehensive
molecular analyses of an autoimmune-related gene predictive model and immune
infiltrations using machine learning methods in moyamoya disease. Front. Mol. Biosci.
9, 991425. doi:10.3389/fmolb.2022.991425

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., and
Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27
(12), 1739–1740. doi:10.1093/bioinformatics/btr260

Liu, B., Li, A., Wang, H., Wang, J., Zhai, G., Ma, H., et al. (2020). Exploring the key
genes and pathways in the formation of corneal scar using bioinformatics analysis.
Biomed. Res. Int. 2020, 6247489. doi:10.1155/2020/6247489

Liu, W., Morito, D., Takashima, S., Mineharu, Y., Kobayashi, H., Hitomi, T., et al.
(2011). Identification of RNF213 as a susceptibility gene for moyamoya disease and its
possible role in vascular development. PLoS One 6 (7), e22542. doi:10.1371/journal.
pone.0022542

Maekawa, D., Whang, P., Riblet, S. M., Hurley, D. J., Guy, J. S., and García, M. (2021).
Assessing the infiltration of immune cells in the upper trachea mucosa after infectious
laryngotracheitis virus (ILTV) vaccination and challenge. Avian Pathol. 50 (6), 540–556.
doi:10.1080/03079457.2021.1989379

Masuda, J., Ogata, J., and Yutani, C. (1993). Smooth muscle cell proliferation and
localization of macrophages and T cells in the occlusive intracranial major arteries in
moyamoya disease. Stroke 24 (12), 1960–1967. doi:10.1161/01.str.24.12.1960

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 (5),
453–457. doi:10.1038/nmeth.3337

Nguyen, T. M., Shafi, A., Nguyen, T., and Draghici, S. (2019). Identifying significantly
impacted pathways: A comprehensive review and assessment. Genome Biol. 20 (1), 203.
doi:10.1186/s13059-019-1790-4

Research Committee on the Pathology and Treatment of Spontaneous Occlusion of
the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures
for Infractable Diseases (2012). Guidelines for diagnosis and treatment of moyamoya
disease (spontaneous occlusion of the circle of Willis). Neurol. Med. Chir. (Tokyo) 52
(5), 245–266. doi:10.2176/nmc.52.245

Sesen, J., Driscoll, J., Moses-Gardner, A., Orbach, D. B., Zurakowski, D., and Smith, E.
R. (2021). Non-invasive urinary biomarkers in moyamoya disease. Front. Neurol. 12,
661952. doi:10.3389/fneur.2021.661952

Shen,W., Song, Z., Zhong, X., Huang, M., Shen, D., Gao, P., et al. (2022). Sangerbox: A
comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 1
(3), e36. doi:10.1002/imt2.36

Siegfried, A., Cances, C., Denuelle, M., Loukh, N., Tauber, M., Cavé, H., et al. (2017).
Noonan syndrome, PTPN11 mutations, and brain tumors. A clinical report and review
of the literature. Am. J. Med. Genet. A 173 (4), 1061–1065. doi:10.1002/ajmg.a.38108

Sigdel, T. K., Shoemaker, L. D., Chen, R., Li, L., Butte, A. J., Sarwal, M.M., et al. (2013).
Immune response profiling identifies autoantibodies specific to Moyamoya patients.
Orphanet J. Rare Dis. 8, 45. doi:10.1186/1750-1172-8-45

Smith, E. R. (2015). Moyamoya biomarkers. J. Korean Neurosurg. Soc. 57 (6),
415–421. doi:10.3340/jkns.2015.57.6.415

Storey, A., Michael Scott, R., Robertson, R., and Smith, E. (2017). Preoperative
transdural collateral vessels in moyamoya as radiographic biomarkers of disease.
J. Neurosurg. Pediatr. 19 (3), 289–295. doi:10.3171/2016.9.Peds16161

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M.
A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102
(43), 15545–15550. doi:10.1073/pnas.0506580102

Suzuki, J., and Kodama, N. (1983). Moyamoya disease-a review. Stroke 14 (1),
104–109. doi:10.1161/01.str.14.1.104

Tajan, M., de Rocca Serra, A., Valet, P., Edouard, T., and Yart, A. (2015). SHP2 sails
from physiology to pathology. Eur. J. Med. Genet. 58 (10), 509–525. doi:10.1016/j.ejmg.
2015.08.005

Tang, K. T., Yang, W., Wong, J., and Lee, K. Y. (1999). Noonan syndrome associated
with moyamoya disease: Report of one case. Acta Paediatr. Taiwan 40 (4), 274–276.

Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., van der Burgt, I., et al.
(2002). PTPN11 mutations in noonan syndrome: Molecular spectrum, genotype-
phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet. 70 (6),
1555–1563. doi:10.1086/340847

von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003).
String: A database of predicted functional associations between proteins. Nucleic Acids
Res. 31 (1), 258–261. doi:10.1093/nar/gkg034

Frontiers in Genetics frontiersin.org15

Cao et al. 10.3389/fgene.2023.1101612

https://doi.org/10.1038/s41375-020-0920-z
https://doi.org/10.1016/j.molmed.2022.08.009
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.5853/jos.2015.01760
https://doi.org/10.1002/brb3.1035
https://doi.org/10.1158/0008-5472.Can-04-1923
https://doi.org/10.1161/strokeaha.111.000307
https://doi.org/10.1161/strokeaha.111.000307
https://doi.org/10.1007/s11302-018-9605-8
https://doi.org/10.1161/circresaha.116.309726
https://doi.org/10.1016/j.pediatrneurol.2014.11.017
https://doi.org/10.1371/journal.pone.0102382
https://doi.org/10.1371/journal.pone.0102382
https://doi.org/10.3390/diagnostics10030171
https://doi.org/10.3389/fneur.2021.661578
https://doi.org/10.1016/s0387-7604(12)80242-7
https://doi.org/10.1016/s0887-8994(97)89980-8
https://doi.org/10.3389/fnins.2020.00308
https://doi.org/10.1007/s00441-004-0925-3
https://doi.org/10.1007/s00441-004-0925-3
https://doi.org/10.2147/jir.S360743
https://doi.org/10.1016/j.pediatrneurol.2011.03.007
https://doi.org/10.1182/blood-2013-09-402560
https://doi.org/10.1186/s13023-022-02238-4
https://doi.org/10.1038/jhg.2010.132
https://doi.org/10.3171/2021.6.Focus20870
https://doi.org/10.1074/jbc.M607325200
https://doi.org/10.5853/jos.2015.01627
https://doi.org/10.1161/strokeaha.109.562264
https://doi.org/10.1080/00207450801898279
https://doi.org/10.1080/00207450801898279
https://doi.org/10.3389/fmolb.2022.991425
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1155/2020/6247489
https://doi.org/10.1371/journal.pone.0022542
https://doi.org/10.1371/journal.pone.0022542
https://doi.org/10.1080/03079457.2021.1989379
https://doi.org/10.1161/01.str.24.12.1960
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-019-1790-4
https://doi.org/10.2176/nmc.52.245
https://doi.org/10.3389/fneur.2021.661952
https://doi.org/10.1002/imt2.36
https://doi.org/10.1002/ajmg.a.38108
https://doi.org/10.1186/1750-1172-8-45
https://doi.org/10.3340/jkns.2015.57.6.415
https://doi.org/10.3171/2016.9.Peds16161
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1161/01.str.14.1.104
https://doi.org/10.1016/j.ejmg.2015.08.005
https://doi.org/10.1016/j.ejmg.2015.08.005
https://doi.org/10.1086/340847
https://doi.org/10.1093/nar/gkg034
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1101612


Wang, G., Wen, Y., Chen, S., Zhang, G., Li, M., Zhang, S., et al. (2021). Use of a
panel of four microRNAs in CSF as a predicted biomarker for postoperative
neoangiogenesis in moyamoya disease. CNS Neurosci. Ther. 27 (8), 908–918.
doi:10.1111/cns.13646

Wang, G., Wen, Y., Faleti, O. D., Zhao, Q., Liu, J., Zhang, G., et al. (2020a). A panel of
exosome-derived miRNAs of cerebrospinal fluid for the diagnosis of moyamoya disease.
Front. Neurosci. 14, 548278. doi:10.3389/fnins.2020.548278

Wang, W., Gao, F., Zhao, Z., Wang, H., Zhang, L., Zhang, D., et al. (2017). Integrated
analysis of LncRNA-mRNA Co-expression profiles in patients with moyamoya disease.
Sci. Rep. 7, 42421. doi:10.1038/srep42421

Wang, X., Wang, Y., Nie, F., Li, Q., Zhang, K., Liu, M., et al. (2020b). Association of
genetic variants with moyamoya disease in 13 000 individuals: A meta-analysis. Stroke
51 (6), 1647–1655. doi:10.1161/strokeaha.120.029527

Watanabe, C., Oishi, T., Yamamoto, T., Sasaki, K., Tosaka, M., Sato, T., et al. (2005).
Chorea and Broca aphasia induced by diabetic ketoacidosis in a type 1 diabetic patient
diagnosed as Moyamoya disease.Diabetes Res. Clin. Pract. 67 (2), 180–185. doi:10.1016/
j.diabres.2004.04.005

Wechsler, M. E., Munitz, A., Ackerman, S. J., Drake, M. G., Jackson, D. J., Wardlaw, A.
J., et al. (2021). Eosinophils in Health and disease: A state-of-the-art review.Mayo Clin.
Proc. 96 (10), 2694–2707. doi:10.1016/j.mayocp.2021.04.025

Xu, S., Wei, W., Zhang, F., Chen, T., Dong, L., Shi, J., et al. (2022). Transcriptomic
profiling of intracranial arteries in adult patients with moyamoya disease reveals novel
insights into its pathogenesis. Front. Mol. Neurosci. 15, 881954. doi:10.3389/fnmol.2022.
881954

Yamashita, Y., Kusaga, A., Koga, Y., Nagamitsu, S., and Matsuishi, T. (2004). Noonan
syndrome, moyamoya-like vascular changes, and antiphospholipid syndrome. Pediatr.
Neurol. 31 (5), 364–366. doi:10.1016/j.pediatrneurol.2004.05.015

Zhang, S. Q., Tsiaras, W. G., Araki, T., Wen, G., Minichiello, L., Klein, R., et al. (2002).
Receptor-specific regulation of phosphatidylinositol 3’-kinase activation by the protein
tyrosine phosphatase Shp2. Mol. Cell Biol. 22 (12), 4062–4072. doi:10.1128/mcb.22.12.
4062-4072.2002

Zhao, J., Qiu, C., Zhang, G., Chen, L., He, S., and Ma, J. (2022). LncRNA-mRNA Co-
expression profiles relative to vascular remodeling in moyamoya patients without
RNF213 mutation. World Neurosurg. 158, e880–e888. doi:10.1016/j.wneu.2021.11.104

Frontiers in Genetics frontiersin.org16

Cao et al. 10.3389/fgene.2023.1101612

https://doi.org/10.1111/cns.13646
https://doi.org/10.3389/fnins.2020.548278
https://doi.org/10.1038/srep42421
https://doi.org/10.1161/strokeaha.120.029527
https://doi.org/10.1016/j.diabres.2004.04.005
https://doi.org/10.1016/j.diabres.2004.04.005
https://doi.org/10.1016/j.mayocp.2021.04.025
https://doi.org/10.3389/fnmol.2022.881954
https://doi.org/10.3389/fnmol.2022.881954
https://doi.org/10.1016/j.pediatrneurol.2004.05.015
https://doi.org/10.1128/mcb.22.12.4062-4072.2002
https://doi.org/10.1128/mcb.22.12.4062-4072.2002
https://doi.org/10.1016/j.wneu.2021.11.104
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1101612

	Bioinformatics analysis reveals the landscape of immune cell infiltration and novel immune-related biomarkers in moyamoya d ...
	Introduction
	Materials and methods
	Data collection and preprocessing
	Gene set enrichment analyses (GSEA) of the expression matrix
	Protein–protein interaction (PPI) network and hub gene analysis
	WGCNA
	Function analysis of core genes
	Evaluation of immune-related biomarkers and ROC curves
	CIBERSORT analysis and correlation with immune biomarkers
	Statistical analysis

	Results
	Data preprocessing and DEG analysis
	Gene Set Enrichment Analysis
	Protein–protein interaction analysis
	Key module of WGCNA
	Functional annotation analysis of hub genes
	Verification and ROC of immune markers
	Analysis of infiltrating immune cells

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


