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In genetic association studies, the multivariate analysis of correlated phenotypes
offers statistical and biological advantages compared to analyzing one phenotype
at a time. The joint analysis utilizes additional information contained in the
correlation and avoids multiple testing. It also provides an opportunity to
investigate and understand shared genetic mechanisms of multiple
phenotypes. Bivariate logistic Bayesian LASSO (LBL) was proposed earlier to
detect rare haplotypes associated with two binary phenotypes or one binary
and one continuous phenotype jointly. There is currently no haplotype association
test available that can handle multiple continuous phenotypes. In this study, by
employing the framework of bivariate LBL, we propose bivariate quantitative
Bayesian LASSO (QBL) to detect rare haplotypes associated with two
continuous phenotypes. Bivariate QBL removes unassociated haplotypes by
regularizing the regression coefficients and utilizing a latent variable to model
correlation between two phenotypes. We carry out extensive simulations to
investigate the performance of bivariate QBL and compare it with that of a
standard (univariate) haplotype association test, Haplo.score (applied twice to
two phenotypes individually). BivariateQBL performs better than Haplo.score in all
simulations with varying degrees of power gain. We analyze Genetic Analysis
Workshop 19 exome sequencing data on systolic and diastolic blood pressures
and detect several rare haplotypes associated with the two phenotypes.
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1 Introduction

Information on multiple phenotypes is often collected in health-related studies to obtain
a bigger picture of patients’ health conditions (Teixeira-Pinto and Normand, 2009). Studies
have found variants at numerous genetic loci to be associated with these phenotypes
(Solovieff et al., 2013). Sometimes, a genetic variant is associated with more than one
phenotype, a phenomenon known as pleiotropy. Recent studies have confirmed the
widespread presence of pleiotropy in the human genome, thus showing the underlying
common genetic mechanisms of numerous traits (Solovieff et al., 2013; Gratten and
Visscher, 2016; Buniello et al., 2019; Watanabe et al., 2019). Investigating and
understanding pleiotropy can uncover additional associations, redefine disease
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classification, and expand our understanding of the genetic basis of
complex diseases with wide-ranging implications for healthcare
(Hackinger and Zeggini, 2017; Lee et al., 2019; Lee et al., 2021).

The most common way of the testing trait–variant association is
to consider one phenotypic trait at a time and test its association
with genotypic variants under study. However, such a univariate
statistical approach ignores valuable additional information
contained in the joint distribution of the phenotypes. Even more
importantly, such an approach amounts to a lost opportunity to
investigate potential pleiotropy and shared genetic mechanisms. It
may also result in a loss of power, especially with multiplicity
adjustment, for performing multiple univariate tests. Therefore,
considering a multivariate framework to model the phenotypes
jointly is appealing from both biological and statistical perspectives.

Several methods have been proposed that utilize a multivariate
framework to jointly model multiple correlated phenotypes,
including some recent gene-based approaches (Klei et al., 2008;
O’Reilly et al., 2012; Van der Sluis et al., 2015; Ray et al., 2016;
Hackinger and Zeggini, 2017; Kaakinen et al., 2017; Lee et al., 2017;
Ray and Basu, 2017; Deng et al., 2020). However, most of these
studies consider single-nucleotide polymorphisms (SNPs) or
variants (SNVs) as a genetic unit obtained from genome-wide
association studies (GWAS) or next-generation sequencing
(NGS) studies. Thus, when rare variants are of interest, one has
to rely on SNVs obtained from NGS as rare SNPs are not usually
genotyped in GWAS. Yet, most NGS data lack the adequate sample
size required for multivariate analysis of correlated phenotypes.
Hence, an alternative approach to multiple trait–rare variant
association tests that does not necessarily rely on NGS data is
warranted.

Haplotype-based tests are powerful alternatives to SNP-based
genetic association tests (Bader, 2001; Wang and Lin, 2015).
Haplotypes are more biologically meaningful genetic variants as
compared to SNPs, which are not inherited independently.
Moreover, common SNPs can make up a rare haplotype in a
haplotype block, providing avenues to investigate the common
disease rare variant (CDRV) hypothesis. Thus, rare variants can
also be investigated using GWAS data through haplotype-based
tests, allowing the use of data from much larger sample sizes than
those of NGS. Several tests have been proposed to investigate the
CDRV hypothesis through haplotype-based tests (Guo and Lin,
2009; Li et al., 2010; Li et al., 2011; Biswas and Lin, 2012; Lin et al.,
2013), among which logistic Bayesian LASSO (LBL) is a well-studied
and powerful method (Biswas and Lin, 2012; Biswas and
Papachristou, 2014; Datta and Biswas, 2016; Papachristou and
Biswas, 2020). LBL was extended to incorporate
gene–environment interactions (Zhang et al., 2017a; Zhang et al.,
2017b; Papachristou and Biswas, 2020), data generated using
complex sampling designs (Zhang et al., 2017a), and family data
(Wang and Lin, 2014; Datta et al., 2018). LBL was also adapted to
accommodate two phenotypes, namely, bivariate LBL-2B for binary
phenotypes and bivariate LBL-BC for binary and continuous
phenotypes (Yuan and Biswas, 2019; Yuan and Biswas, 2021).
LBL and its extensions utilize regularization to decrease the
unassociated effects close to zero, which, in turn, helps the effect
of an associated haplotype, especially if it is a rare one, to stand out.
Bivariate LBL-2B and LBL-BC model the dependency between two
phenotypes via a latent variable. Notably, there is another

haplotype-based bivariate genetic association test for correlated
quantitative traits; it uses the haplotype trend regression
approach (Pei et al., 2009). However, it is only applicable for
testing associations with common haplotypes and hence cannot
be used for the CDRV hypothesis.

There is no haplotype-based association test currently available
that can detect rare haplotypes associated with multiple quantitative
phenotypes jointly. To fill this gap, we propose a new method,
bivariate quantitative Bayesian LASSO (QBL) to jointly model two
correlated continuous phenotypes. We borrow the well-studied
framework of bivariate LBL and make appropriate modifications
to accommodate quantitative traits. The properties of bivariate QBL
are investigated using extensive simulations under various
association scenarios, sample sizes, and the number of
haplotypes. We also compare its performance to a standard
univariate haplotype-based association test, Haplo.score (Schaid
et al., 2002). Finally, we apply our proposed method to exome
sequencing data from Genetic Analysis Workshop (GAW) 19. We
analyze haplotype blocks in several genes of interest (as per
literature) and detect rare haplotypes associated with systolic and
diastolic blood pressures (SBP and DBP) jointly.

2 Methods

2.1 Likelihood formulation

We closely follow the framework of bivariate LBL-2B and LBL-
BC and accordingly the notations used therein. Consider a sample of
n subjects with two continuous correlated (standardized)
phenotypes denoted by Yic and Yic′. Let Yc � (Y1c,Y2c,...,Ync),
Yc′ � (Y1c′,Y2c′,...,Ync′), and G � (G1, G2, . . . , Gn), where Gi

represents the ith individual’s observed genotype on the SNPs,
making up the haplotype block under study. Furthermore, let
S(Gi) be the set of haplotype pairs compatible with Gi as the
haplotype pair for an individual may not be unambiguously
determined from the genotype data; Zir denotes the rth element
of S(Gi). We introduce a latent variable ui to model the marginal
dependence between Yic and Yic′. Let ui ~ N(0, σ2u) for all i and
u � (u1, u2,...,un). We assume that although Yic and Yic′ are
marginally dependent, they are conditionally independent, given
ui. In other words, the latent variable induces conditional
independence between the two correlated outcomes. We also
assume that Zir is independent of ui. The likelihood can be
written as

L ψ( ) � ∏n
i�1

∑
ZirϵS Gi( )

P Yic, Yic′, Zir, ui( )

∝∏n
i�1

∑
ZirϵS Gi( )

P Yic, Yic′
∣∣∣∣Zir, ui( )P Zir, ui( )

∝∏n
i�1

∑
ZirϵS Gi( )

P Yic|Zir, ui( )P Yic′
∣∣∣∣Zir, ui( )P Zir( )P ui( ),

where ψ is the vector of model parameters, which includes
regression coefficients, variance parameters, and parameters
associated with haplotype frequencies (to be introduced soon).
Notably, bivariate QBL does not require specification of the
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haplotype pair for an individual (which is typically unknown due to
phase ambiguity); rather, it averages over all compatible haplotype
pairs for a person to incorporate uncertainty in haplotype pair
estimation. Suppose there are m possible haplotypes in the
haplotype block and population under study. In the following, we
model the probabilities in the aforementioned likelihood in terms of
the model parameters (the subscripts i and r are suppressed for
simplicity).

2.1.1 Modeling of P(Yc|Z,u) and P(Yc′|Z,u)
A haplotype pair Z consists of two haplotypes denoted as

zk/zk′ (k, k′ � 1, 2, . . . ,m). Let Xz � (1, x1, x2, . . . , xm−1) be a
(row) design vector with xk equal to the number of times zk
appears in the haplotype pair Z; k � 1, . . . ,m − 1, i.e., zk � 0, 1, or
2. The mth haplotype is assumed to be the baseline without loss of
generality. Let βc and βc′ be the vectors of regression coefficients
(including the intercept), i.e., they include the effects of haplotypes
on phenotypes Yc and Yc′, respectively. The slope coefficients have the
same interpretation as in a usual linear regression model, i.e., the
expected change in the quantitative trait if a person carries a copy of a
specific haplotype as opposed to the baseline haplotype. As Yc and Yc′
are two continuous phenotypes and u is the latent variable that induces
a correlation between them, we use the following linear models: Yc �
Xzβc + u + ϵc and Yc′ � Xzβc′ + u + ϵc′, where ϵc ~ N(0, σ2c ) and
ϵc′ ~ N(0, σ2c′). We assume ϵc, ϵc′, and u to be uncorrelated with

each other. Themarginal correlation coefficient betweenYc andYc′ can
be shown to be equal to σ2u				

σ2u+σ2c
√ 				

σ2u+σ2c′
√ and, thus, must be non-negative.

If the two traits are negatively correlated, then the values for one of them
should be multiplied by −1 before applying this method.

2.1.2 Modeling P(Z)
We model P(Z) in terms of two sets of parameters: f �

(f1, f2, . . . , fm), denoting the frequencies of m haplotypes in the
population, and d, the within-population inbreeding coefficient
(Weir, 1996).

For a given haplotype pair Z � zk/zk′

P(Z) � P Z � zk/zk′( ∣∣∣∣f , d) � δkk′dfk + 2 − δkk′( ) 1 − d( )fkfk′

where δkk′ � 1(0) if zk � zk′(zk ≠ zk′) and d ∈ (−1, 1) capture the
excess/reduction of homozygosity. The aforementioned expression
of P(Z) reduces to the assumption of Hardy–Weinberg equilibrium
(HWE) when d = 0, while other values of d allow for the
Hardy–Weinberg disequilibrium.

2.2 Prior distributions

There are many choices of shrinkage priors to regularize the
regression coefficients, such as LASSO, ridge, Student’s t-test,

TABLE 1 Haplotype settings and association scenarios (the effect of target haplotype is shown in boldface).

Setting Hap Freq Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

βc βc′ βc βc′ βc βc′ βc βc′ βc βc′

1 01100 0.300 0 0 0 0 0 0 0 0 0 0

10100 0.005 0 0 0 0 0 0 0 0 0 0

11011 0.010 1 1 −1 −1 1 −1 1 0 −1 0

11100 0.155 0 0 0 0 0 0 0 0 0 0

11111 0.110 0 0 0 0 0 0 0 0 0 0

10011 0.420 0 0 0 0 0 0 0 0 0 0

2 00111 0.070 0 0 0 0 0 0 0 0 0 0

01000 0.020 0 0 0 0 0 0 0 0 0 0

01011 0.050 0 0 0 0 0 0 0 0 0 0

01101 0.060 0 0 0 0 0 0 0 0 0 0

01110 0.140 0 0 0 0 0 0 0 0 0 0

10010 0.080 0 0 0 0 0 0 0 0 0 0

10100 0.005 0 0 0 0 0 0 0 0 0 0

11011 0.010 1 1 −1 −1 1 −1 1 0 −1 0

11101 0.090 0 0 0 0 0 0 0 0 0 0

11110 0.130 0 0 0 0 0 0 0 0 0 0

11111 0.100 0 0 0 0 0 0 0 0 0 0

10001 0.245 0 0 0 0 0 0 0 0 0 0

Hap, haplotype; Freq, haplotype frequency.
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FIGURE 1
Simulation results under sample size 500, setting 1 (six haplotypes), and ρ = 0.1. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.

FIGURE 2
Simulation results under sample size 500, setting 1 (six haplotypes), and ρ = 0.5. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.
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horseshoe, and spike and slab. However, their performances are
rather similar when the number of predictors (haplotypes) is
smaller than the sample size, as is the case in this study (Van Erp
et al., 2019). We choose Bayesian LASSO to regularize the
regression coefficients for its ease of implementation, following
previous LBL versions. Specifically, the prior for each slope
parameter in βc and βc′ is assigned a double exponential
distribution with mean 0 and variance 2

λ2c
and 2

λ2c′
, respectively.

We use standard normal priors for the intercepts β0c and β0c′. The
amounts of penalty for the slope coefficients are controlled by the
hyper-parameters λc and λc′. We let them follow gamma (a, b)
distribution with a = b = 20, following the original LBL method
and its extensions (Biswas and Lin, 2012; Yuan and Biswas, 2019;
Yuan and Biswas, 2021).

The prior for the frequency vector f is set to be non-
informative Dirichlet (1, . . ., 1) consisting of m values. We
consider a uniform prior for d. However, given that P(Z), as
shown in Section 2.1.2, must always be non-negative, d and f are
not independent. In particular, d must be greater than − fk

1−fk
for

all k values. Thus, the prior for d, given f, is set to be
Uniform(max k − fk

1−fk
{ }, 1). We use a weakly informative half-

Cauchy prior for σu with a fixed hyper-parameter A given by
π(σu)∝ (1 + (σuA)2)−1, where σu > 0, and set A � 10 (Yuan and
Biswas, 2019; Yuan and Biswas, 2021). A non-informative
uniform prior is used for σ2c and σ2c′, whose probability density
function is given by p(σ2)∝ σ−1, where σ2 > 0.

2.3 Posterior distributions

The joint posterior distribution of all parameters can be obtained
by combining the likelihood and prior distributions as follows:

π βc, βc′, λb, λc, f , d, σu, σ
2
c , σ

2
c′,Z

∣∣∣∣Y c,Y c′,G, u( )∝
L Ψ( ) π βc

∣∣∣∣λc( ) π βc′
∣∣∣∣λc′( ) π λc( ) π λc′( ) π d

∣∣∣∣f( ) π f( )
π σu( ) π σ2c( ) π σ2c′( )

where Z consists of all possible haplotype pairs for all n subjects. We
use Markov chain Monte Carlo (MCMC) methods to estimate the
posterior distributions of all parameters. Details of the MCMC
algorithm can be found in Supplementary Appendix A1. Notably,
we update the latent variable u at every MCMC iteration, and thus,
obtain its posterior distribution.

2.4 Association testing

We use the posterior distributions of regression coefficients
for testing the association of haplotypes with the two
phenotypes jointly. In particular, to test the association of
the jth haplotype with the two continuous phenotypes
jointly, the hypotheses are

H0 : βjc
∣∣∣∣∣ ∣∣∣∣∣≤ ϵ and βjc′

∣∣∣∣∣ ∣∣∣∣∣≤ ϵ vsHa : βjc
∣∣∣∣∣ ∣∣∣∣∣ > ϵ or βjc′

∣∣∣∣∣ ∣∣∣∣∣ > ϵ

FIGURE 3
Simulation results under sample size 500, setting 1 (six haplotypes), and ρ = 0.9. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.
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where we set ϵ to be 0.1 (Biswas and Lin, 2012; Yuan and Biswas,
2019; Yuan and Biswas, 2021). Notably, the alternate hypothesis
corresponds to the association with at least one phenotype.

To carry out this test, we calculated the Bayes factor (BF), which
is the ratio of the posterior odds to the prior odds in favor of the
alternative hypothesis. The prior odds can be found in
Supplementary Appendix A2.

The posterior odds are obtained from the estimated posterior
distributions. Once the BF for each haplotype in a block is obtained,
their maximum BF is recorded. If this maximum BF exceeds a
certain threshold, we conclude that the haplotype block is associated
with at least one of the two phenotypes. We calculated the
appropriate threshold following Yuan and Biswas (2019) and
Yuan and Biswas (2021)—to be described in detail in the
Simulation study and Application sections.

We compare the performance of bivariate QBL with a standard
haplotype association test, Haplo.score (Schaid et al., 2002). We use
the R package Haplo.stats to apply Haplo.score twice to the two
continuous phenotypes individually (Sinnwell and Schaid, 2022).

3 Simulation study

3.1 Data generation

We generate data under two haplotype settings and five
association scenarios to examine the properties of bivariate QBL

and compare with Haplo.score. The two haplotype settings consist
of 6 and 12 haplotypes (in a haplotype block under this study), as
shown in Table 1. Following the simulation studies conducted
previously for investigating univariate and bivariate LBL
methods, we formed each haplotype by combining five SNPs (to
allow easy comparison across various LBL versions). However, we
note that, in principle, bivariate QBL can handle haplotype blocks
with a larger number of SNPs at the expense of an increased
computational burden (this issue is discussed in the Discussion
section). Under each setting, the causal haplotype is 11011, a rare
haplotype of frequency 1%. This target haplotype can be associated
with one or both phenotype(s) and its effect(s), i.e., the
corresponding β coefficient(s) can be positive (risk) or negative
(protective). This leads to five association scenarios in total with the
non-zero β values (for 11011) chosen to ensure that the power of the
proposed method or Haplo.score at type I error rates of 0.5%–10% is
in a reasonable range. We assume other haplotypes in the block to be
null or non-associated, i.e., their β coefficients are equal to 0.

To generate a haplotype pair for a subject, we use the haplotype
frequencies, as shown in Table 1. Using those frequencies and
assuming HWE, the probabilities of all possible haplotype pairs
can be calculated. Based on those probabilities, we randomly
generate one haplotype pair, say Z, for each subject in the
sample, which corresponds to a design row vector XZ. After
assigning haplotype pairs to all subjects, we generate two
continuous phenotypes for each subject using the following
bivariate normal (BVN) distribution.

FIGURE 4
Simulation results under sample size 1,000, setting 1 (six haplotypes), and ρ = 0.1. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.

Frontiers in Genetics frontiersin.org06

Sajal and Biswas 10.3389/fgene.2023.1104727

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1104727


Yc

Yc′
( ) ~ BVN ( Xzβc

Xzβc′
),( σ2c ρσcσc′

ρσcσc′ σ2c′
)( ),

where βc and βc′ (excluding intercepts β0c and β0c′) are as shown in
Table 1; σc � σc′ � 1 and ρ are varied to be 0.1, 0.5, or 0.9. We set
β0c � β0c′ � 25.

We generate samples of sizes 500 and 1,000. For each sample size
and simulation setup, resulting from a combination of a haplotype
setting, a non-null association scenario, and a fixed ρ-value,
500 samples are generated. We also generate the corresponding
null scenarios, i.e., for each combination of sample size, haplotype
setting, and ρ-value, all βs are set to be equal to 0 and 1,000 samples
are generated. To each sample, we apply bivariate QBL to both
phenotypes jointly. The MCMC is run for a total of
3,00,000 iterations with 50,000 burn-in to achieve acceptable
convergence (Gelman et al., 2003). To declare significance, we
use appropriate cutoffs to the resulting BFs. The determination
of the cutoffs for both bivariate QBL and Haplo.score is discussed in
the following sub-section.

3.2 Calculation of cutoffs

The cutoffs for bivariate QBL are calculated in the following way.
For each sample, we obtain one BF value per haplotype. We record
the maximum of those BFs. Thus, we obtain 1,000 maximum BF
values from the 1,000 null scenario replicates. We sort these

1,000 values in a descending order and obtain the cutoff for a
specific type I error rate to be the corresponding percentile. It is to be
noted that by taking the maximum overall BF values from a
haplotype block, we adjust for multiple testing within that block.

We calculate cutoffs for Haplo.score in a slightly different way
because it is applied to each phenotype. For each sample, we obtain
two (global) p-values from two Haplo.score analyses. Then, we
record the minimum of these two p-values. Similar to bivariate
QBL, we obtain 1,000 minimum p-values from the 1,000 null
samples. We sort them in an ascending order and obtain the
cutoff of Haplo.score for a specific type I error rate by taking the
relevant bottom percentile.

Once the cutoffs are obtained in the aforementioned manner, we
use these cutoffs to calculate power for the corresponding non-null
setups described previously. The type I error rates and power obtained
by varying the cutoffs for a p-value (for Haplo.score) and BF (bivariate
QBL) are then plotted against each other to obtain receiver operating
characteristic (ROC)-type curves. For Haplo.score, the power is shown
for detecting associations with at least one of the two phenotypes, as well
as with each phenotype separately (in scenarios 1–3, where the target
haplotype is associated with both phenotypes).

3.3 Results

The results for settings 1 (six haplotypes) and 2
(12 haplotypes), sample sizes 500 and 1,000, and correlation

FIGURE 5
Simulation results under sample size 1,000, setting 1 (six haplotypes), and ρ = 0.5. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.
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coefficients 0.1, 0.5, and 0.9 are shown in Figures 1–12.
Notably, bivariate QBL outperforms Haplo.score in all
figures even though the margin of difference varies
depending on the combination of association scenarios and
ρ-values. Bivariate QBL shows the best performance in scenario
3, where the effect sizes of the target haplotype are in opposite
directions (one β positive and another β negative). In this
scenario, the power of bivariate QBL exceeds Haplo.score by
a substantial margin. This margin increases in favor of QBL as
the correlation coefficient increases. Bivariate QBL also
maintains this superior performance in scenarios 4 and 5,
where the target haplotype is unrelated to one phenotype
but has a positive (scenario 4) or negative (scenario 5)
association with the other phenotypes. Again, the power
gain margin of bivariate QBL increases as the correlation
between the two phenotypes increases. This outperformance
trend can be seen in all combinations of haplotype settings and
sample sizes considered in this study.

The performances of bivariate QBL and Haplo.score are the
closest in the first two scenarios only when the correlation coefficient
is high, i.e., 0.9, as shown in Figures 3, 6, 9. However, Figure 12
shows that even with ρ � 0.9, bivariate QBL is clearly much more
powerful than Haplo.score in these two scenarios. Moreover, when
the correlation between the two phenotypes is weak or moderate,
bivariate QBL outperforms Haplo.score in these scenarios at any
combination of haplotype setting and sample sizes.

4 Application to GAW 19 data

We consider two continuous phenotypes, SBP and DBP,
available in these data. They are moderately correlated (sample
correlation coefficient = 0.55) and likely share a common genetic
mechanism (Schillert and Konigorski, 2016). Typically, SBP and
DBP are combined to create a single binary phenotype referred to as
hypertension. More specifically, clinical thresholds are used for each
BP to classify it as high blood pressure (BP); a subject is a case of
hypertension if one of them is high (Datta and Biswas, 2016).
However, converting a quantitative phenotype to a binary
phenotype leads to a loss of information. Furthermore,
combining them into one binary phenotype is a lost opportunity
to investigate pleiotropy. As bivariate QBL can analyze the two
continuous phenotypes jointly, it can potentially provide additional
insight into these data.

There are 1,851 subjects in these data after discarding the
missing values. Following Yuan and Biswas (2019), we analyze
eight genes, namely, FBN3, HRH1, INMT, MAP4, SAT2, SHBG,
ULK4, and ZNF280D. There are 28 SNVs in FBN3, 10 in HRH1,
18 in INMT, 18 in MAP4, 7 in SAT2, 15 in SHBG, 70 in ULK4, and
30 in ZNF280D. We combine five successive SNVs, starting from the
first SNV, and create sliding haplotype blocks covering the whole
gene, that is, on each gene, the first haplotype block consists of SNVs
1–5, second block consists of SNVs 2–6, and so on. For example,
ULK4 has 66 haplotype blocks and MAP4 has 14 blocks.

FIGURE 6
Simulation results under sample size 1,000, setting 1 (six haplotypes), and ρ = 0.9. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.
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We apply bivariate QBL to each haplotype block with both
phenotypes jointly and Haplo.score to the same haplotype block
twice with SBP and DBP separately. We calculate appropriate (and
more general purpose) cutoffs for bivariate QBL and Haplo.score
based on both simulated data and permutating the
GAW19 phenotypes, as described in the following. We simulate
1,200 null samples, following setting 2 of Table 1. To match the
GAW19 data more closely, we generate sample sizes of 1,851 with
the correlation coefficient (between SBP and DBP) set to 0.55. As
GAW19 data are exome sequence and have far more rare
haplotypes than those considered in our simulations, we
complement 1,200 simulated null samples by GAW19 data with
permutated phenotype values. In particular, we permute the
phenotypes of all subjects while retaining the pairing between
SBP and DBP. Then, we combine the permuted phenotypes with
genotypes in the ULK4 gene to create a null sample. We repeat this
process 10 times to obtain 660 (66 × 10) blocks or null samples.
Similarly, the permuted phenotypes are also combined with
genotypes from MAP4 gene and repeated 10 times to provide
140 (14 × 10) blocks or null samples. The results from 800 null
samples obtained using permutations are combined with those
from 1,200 simulated null samples to calculate cutoffs.

The cutoffs based on 2000 null samples are calculated in the
same manner, as described in the simulation study section for both
bivariate QBL and Haplo.score. The cutoffs for type I error rates of
1% and 2.5% are found to be BFs of 10.91 and 4.65 for bivariate QBL
and p-values of 0.0004 and 0.0058 for the Haplo.score global test,
respectively.

The haplotype blocks found to be significantly associated at a
type I error rate of 2.5% using at least one of the methods are shown
in Table 2. Bivariate QBL found a larger number of haplotype blocks
to be significant, and the findings are consistent with the literature
(Datta et al., 2016; Yuan and Biswas, 2019). For example,
Haplo.score could not detect the haplotype in FBN3, whose β̂

values for SBP and DBP are in opposite directions. All the
haplotype blocks found to be significant using Haplo.score are
also detected by bivariate QBL. At the type I error rate of 1%,
bivariate QBL identifies all haplotype blocks in ULK4, as shown in
Table 2, as significant, whereas Haplo.score identifies only one
haplotype block (39–43) as significant. Therefore, bivariate QBL
appears to perform better than Haplo.score in GAW19 data, which
is in agreement with our findings in the simulation study.

5 Discussion

Health-related studies usually collect multiple outcomes to
better assess patients’ health, understand complex diseases/traits,
and inter-connection between them, which, in turn, can help in
developing effective prevention and treatment strategies. These
outcomes are often correlated and may share a common genetic
etiology. A commonly used practice in genetic association studies is
to analyze these outcomes in a one-at-a-time manner. Such a
univariate approach essentially ignores the additional information
contained in the joint distribution of the outcomes. Also, it is a
missed chance to investigate the possibility of pleiotropy among

FIGURE 7
Simulation results under sample size 500, setting 2 (12 haplotypes), and ρ = 0.1. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.
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FIGURE 8
Simulation results under sample size 500, setting 2 (12 haplotypes), and ρ = 0.5. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.

FIGURE 9
Simulation results under sample size 500, setting 2 (12 haplotypes), and ρ = 0.9. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.
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these outcomes. Therefore, it is statistically and biologically more
beneficial to adopt a multivariate approach to analyze the outcomes
jointly. Moreover, analyzing haplotypes as genetic variants is
advantageous because they are biologically interpretable, and
haplotype-based tests can be performed on both NGS and
GWAS data. There is no haplotype-based association test
available that can detect rare variants associated with multiple
continuous phenotypes yet. To fill this void, we propose bivariate
QBL to detect the association of two quantitative traits with rare
(and common) haplotypes. Our findings from the simulation study
show that the method performs better than Haplo.score in all
simulation setups that we considered.

Bivariate QBL performs best when the two outcomes have high
positive correlation between them, and the target haplotype has
discordant effects on the two phenotypes, i.e., one positive β and
another negative β. This finding is consistent with the literature
(Liu et al., 2009a; Ferreira and Purcell, 2009; Galesloot et al.,
2014). In particular, to compare with Galesloot et al. (2014), we
note that the first two scenarios in our study (both βs of the same
sign) correspond to positive genetic correlation in their
terminology, scenario 3 (one positive β and another negative β)
corresponds to negative genetic correlation, and scenarios 4 and 5
(one β is 0) correspond to no genetic correlation. In scenarios 3–5,
with a negative or zero genetic correlation, bivariate QBL
outperforms Haplo.score at any combination of haplotype
settings, correlation, and sample sizes, and its power increases
as the positive residual correlation (i.e., ρ in our context)

increases. Bivariate QBL gains substantial power in these
scenarios with increasing residual correlation as it not only
avoids the burden of multiple testing but also incorporates the
additional information provided by the cross-trait correlation.
However, even with type I error rates of less than 1%, bivariate
QBL has power close to or practically 1, whereas Haplo.score has a
much lower power in these scenarios.

The performance of Haplo.score is close to that of bivariate
QBL only when both outcomes are highly correlated and the
target haplotype affects both outcomes in the same direction,
i.e., scenarios 1 and 2. In these scenarios, the power of bivariate
QBL increases as the correlation decreases. In the terminology of
Galesloot et al. (2014), this means when both genetic correlation
and residual correlation are of the same sign, the power of
bivariate QBL decreases as the positive residual correlation
increases. This phenomenon of bivariate QBL is also
consistent with other multivariate genetic association tests
that exist in the literature (Liu et al., 2009a; Ferreira and
Purcell, 2009). In practice, it is unlikely that two phenotypes
will have a very high correlation. On the other hand, we note that
bivariate QBL estimates haplotype frequencies (f) jointly with
the haplotype effects and other parameters. Haplotype
frequencies are estimated very well by bivariate QBL,
especially due to the fact that we set the starting values of f
in the MCMC algorithm to its maximum likelihood estimate
(obtained from the hapassoc package) (Burkett et al., 2006;
Burkett et al., 2015). Thus, there is practically no impact of

FIGURE 10
Simulation results under sample size 1,000, setting 2 (12 haplotypes), and ρ = 0.1. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12:
phenotype 1 or 2.

Frontiers in Genetics frontiersin.org11

Sajal and Biswas 10.3389/fgene.2023.1104727

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1104727


haplotype frequency estimation on type I error and power of the
method.

In GAW19 data, SBP and DBP are moderately correlated
(0.55) (Datta et al., 2016; Yuan and Biswas, 2019). As another
example, Liu et al. (2009b) observed a correlation between the
body mass index and bone mineral density of 0.384 and 0.257,
respectively, in two datasets. When there is a weak-to-moderate
correlation, bivariate QBL outperforms Haplo.score by a
substantial margin. In our GAW19 data application, we
detected several rare haplotype blocks to be associated with
SBP and DBP jointly. Specifically, nine blocks were detected in
ULK4, one in MAP4, and another in FBN3. These results agree
with the findings from previous studies (Levy et al., 2009;
International Consortium for Blood Pressure Genome-Wide
Association Studies Ehret et al., 2011; Ehret and Caulfield,
2013). Notably, the correlation between SBP and DBP is
moderate and as per our simulation results, bivariate QBL is
far more powerful than Haplo.score in this situation. However,
many of those haplotype blocks could not be detected by
Haplo.score. This indicates that bivariate QBL can help
establish multiple trait–variant associations and identify
potential pleiotropic effects for further investigation.

Bivariate QBL has a limitation in terms of computing time. In
our simulation study, for a sample size of 500, bivariate QBL takes
86 and 166 s to finish 2,00,000 MCMC iterations for 6 and
12 haplotypes, respectively. This is for a machine with 3.50-GHz

Milan processor with 128 cores under the Linux operating system
and 256 GB RAM. However, it is faster than both bivariate LBL-2B
and LBL-BC. Bivariate QBL can handle a larger number of SNPs in a
haplotype at the expense of an increased computational burden. The
runtime of bivariate QBL almost doubles when we increase the
number of SNPs in a haplotype block from 5 (86 s) to 10 (158 s).
Another limitation is that the method can only accommodate two
continuous phenotypes at a time. We plan to extend the framework
of bivariate QBL (and LBL) to accommodate many correlated
continuous and/or binary phenotypes jointly. We also plan to
extend the framework to investigate gene–environment
interactions and develop a computationally efficient version of
this method.

Despite these limitations, we believe bivariate QBL is an
important addition to the existing genetic association tests,
especially because there is currently no rare haplotype association
test available that can analyze two correlated continuous phenotypes
jointly.

6 Software

An R package implementing the proposed bivariate QBL
method will be made available at https://www.utdallas.edu/~swati.
biswas/ and https://github.com/ihsajal/ as part of the existing
package LBL.

FIGURE 11
Simulation results under sample size 1,000, setting 2 (12 haplotypes), and ρ = 0.5. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12:
phenotype 1 or 2.
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FIGURE 12
Simulation results under sample size 1,000, setting 2 (12 haplotypes), and ρ = 0.9. Scenarios are shown in Table 1. HS, Haplo.score; phenotype12,
phenotype 1 or 2.

TABLE 2 Haplotype blocks significant at the 2.5% level on ULK4,MAP4, and FBN3 genes using the bivariate QBL or Haplo.score (significant BF or p-value is shown in
boldface).

Bivariate QBL Haplo.score

Gene Win Hap Freq β (SBP) β (DBP) BF p-value (SBP) p-value (DBP)

ULK4 3–7 h10101 0.0016 1.206 0.824 14.06 0.0292 0.0913

ULK4 4–8 h01010 0.0014 1.608 0.747 54.56 0.0056 0.1308

ULK4 5–9 h10101 0.0014 1.619 0.767 50.52 0.0033 0.1319

ULK4 6–10 h01010 0.0016 1.211 0.843 15.67 0.0011 0.0405

ULK4 7–11 h10100 0.0016 1.218 0.849 16.63 0.0007 0.0335

ULK4 8–12 h01000 0.0016 1.207 0.836 14.82 0.0009 0.0477

ULK4 9–13 h10000 0.0017 1.209 0.835 20.66 0.0012 0.0384

ULK4 39–43 h11100 0.0055 0.869 0.666 41.33 0.0001 0.2726

ULK4 40–44 h11000 0.0052 0.854 0.801 25.26 0.0791 0.2656

MAP4 11–15 h10000 0.0043 0.778 1.714 10.49 0.0301 0.7634

FBN3 24–28 h00010 0.0014 0.783 −0.54 10.41 0.0313 0.2224

Win, window; Hap, haplotype; Freq, haplotype frequency.
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