
Integrating multiple machine
learning algorithms for prognostic
prediction of gastric cancer based
on immune-related lncRNAs

Guoqi Li1†, Diwei Huo2†, Naifu Guo3†, Yi Li1, Hongzhe Ma1, Lei Liu1,
Hongbo Xie1, Denan Zhang1, Bo Qu4* and Xiujie Chen1*
1Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical
University, Harbin, China, 2Department of General Surgery, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin, China, 3Department of Biological Science, College of Biological Science and
Technology, Harbin Normal University, Harbin, China, 4Department of Gastroenterology, The Second
Affiliated Hospital of Harbin Medical University, Harbin, China

Background: Long non-coding RNAs (lncRNAs) play an important role in the
immune regulation of gastric cancer (GC). However, the clinical application value
of immune-related lncRNAs has not been fully developed. It is of great significance
to overcome the challenges of prognostic prediction and classification of gastric
cancer patients based on the current study.

Methods: In this study, the R package ImmLncwas used to obtain immune-related
lncRNAs of The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD)
project, and univariate Cox regression analysis was performed to find prognostic
immune-related lncRNAs. A total of 117 combinations based on 10 algorithms
were integrated to determine the immune-related lncRNA prognostic model
(ILPM). According to the ILPM, the least absolute shrinkage and selection
operator (LASSO) regression was employed to find the major lncRNAs and
develop the risk model. ssGSEA, CIBERSORT algorithm, the R package
maftools, pRRophetic, and clusterProfiler were employed for measuring the
proportion of immune cells among risk groups, genomic mutation difference,
drug sensitivity analysis, and pathway enrichment score.

Results: A total of 321 immune-related lncRNAs were found, and there were
26 prognostic immune-related lncRNAs. According to the ILPM, 18 of 26 lncRNAs
were selected and the risk score (RS) developed by the 18-lncRNA signature had
good strength in the TCGA training set and Gene Expression Omnibus (GEO)
validation datasets. Patients were divided into high- and low-risk groups
according to the median RS, and the low-risk group had a better prognosis,
tumor immune microenvironment, and tumor signature enrichment score and a
higher metabolism, frequency of genomic mutations, proportion of immune cell
infiltration, and antitumor drug resistance. Furthermore, 86 differentially
expressed genes (DEGs) between high- and low-risk groups were mainly
enriched in immune-related pathways.

Conclusion: The ILPM developed based on 26 prognostic immune-related
lncRNAs can help in predicting the prognosis of patients suffering from gastric
cancer. Precision medicine can be effectively carried out by dividing patients into
high- and low-risk groups according to the RS.
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Introduction

Gastric cancer (GC) is a common tumor of the gastric mucosa.
In 2020, GC ranked fifth and fourth in terms of cancer incidence and
mortality worldwide, respectively (Sung et al., 2021). Nearly 90% of
GC cases are caused by Helicobacter pylori (Plummer et al., 2015;
Youn Nam et al., 2019). Currently, GC patients are mainly treated by
surgery, chemotherapy, radiotherapy, etc., but the prognosis is still
poor (Tan, 2019). The American Joint Committee on Cancer
(AJCC) classification, as a traditional and commonly used tool to
assess a patient’s condition based on the clinical stage, is often used
as a reference for patient treatment demand. However, the AJCC has
many limitations because it does not take into account molecular
biological characteristics (Edge and Compton, 2010; Amin et al.,
2017). Recently, immunotherapy represented by immune
checkpoint inhibitors (ICIs) has emerged in GC (Bang et al.,
2019a; Aoki et al., 2019; Bang et al., 2019b; Kulangara et al.,
2019; Masuda et al., 2019; Roviello et al., 2019; Sunakawa et al.,
2019). Programmed death-ligand 1 (PD-L1) expression, tumor
mutational burden (TMB), neoantigen load (NAL), and
mismatch repair deficiency (dMMR)/microsatellite instability-
high (MSI-H), as the candidate biomarkers for ICI treatment,
show good performance in small populations. Due to
spatiotemporal heterogeneity, the accuracy of these approaches is
very restrictive (Gibney et al., 2016; Cortes-Ciriano et al., 2017; Chan
et al., 2019). Hence, identifying reliable biomarkers in GC is the goal
of the current study.

GC is a disease with high heterogeneity between and within
tumors. How to find the ideal biomarker is a question worthy of
study. Therefore, a multigene panel, especially messenger RNAs
(mRNAs) or microRNAs (miRNAs), based on microarray and
RNA-seq databases such as The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO), was used to develop a
prognostic gene signature by bioinformatics technology (Ren
et al., 2020a; Wen et al., 2020; Zheng et al., 2021a). However,
due to insufficient data utilization, single machine learning
methods, and lack of sufficient verification and comparison, these
studies’ results are difficult to apply in clinical settings (Bai et al.,
2020; Ren et al., 2020b; Ji et al., 2020). Recently, studies have
discovered that long non-coding RNAs (lncRNAs), with a length
of more than 200 nucleotides and transcripts with no protein-coding
capacity, can affect biological processes and the expression of
multiple genes (Lin and Yang, 2018; Gugnoni and Ciarrocchi,
2019). CRNDE (Zhang et al., 2021), THAP7-AS1 (Liu et al.,
2022), and UCA1 (Wang et al., 2019) can affect GC in different
ways. Thus, the integration of lncRNA into the prognostic
biomarker model of preclinical studies is quite necessary. Indeed,
review studies show that lncRNAs are closely related to the
tumorigenesis, metastasis, prognosis, and drug resistance of GC
(Gu et al., 2015). The lncRNA-based model has been established in
hepatocellular carcinoma (Sun et al., 2019), lung cancer (Zhou et al.,
2019), and pancreatic cancer (Zhang et al., 2019). However,
systematic studies on lncRNAs in GC are still few.

In this study, we obtained immune-related lncRNAs for gastric
cancer based on the ImmLnc method and integrated multiple

machine learning algorithms to construct a prognostic model for
gastric cancer patients. The prognostic model outperformed other
clinical features in both the training and validation sets. Patient
subtypes based on prognostic risk scores differ in a variety of
characteristics, including immune cell infiltration, drug
sensitivity, and mutational characteristics. This study may help in
improving the clinical prognosis and precise treatment of gastric
cancer patients.

Materials and methods

Public data collection and processing

Here, we downloaded the RNA-seq raw read count, mutation
data, and clinical data on stomach adenocarcinoma (STAD) from
The Cancer Genome Atlas (TCGA) database. The read count was
converted to transcripts per kilobase million (TPM) using the R
package GenomicFeatures and further log-2 conversion. We kept
the clinical information on age, grade, pathologic M stage,
pathologic N stage, pathologic T stage, gender, and AJCC stage.
Only samples with clinical information were retained. At the same
time, microarray expression profile data and clinical information for
two additional gastric cancer datasets GSE57303 and
GSE62254 were all extracted from the Affymetrix
GPL570 platform (Human Genome U133 Plus 2.0 Array) and
were downloaded from the Gene Expression Omnibus (GEO)
database. The raw data (.cel files) on GSE57303 and
GSE62254 were processed by the robust multi-array average
(RMA) algorithm via the R package Affy. We used the following
steps for processing: 1) the samples without clinical data were
removed; 2) the samples with no survival time, less than 0 days,
or no survival status were removed; 3) the probe name was
converted to the gene name; 4) the samples with multiple genes
corresponding to one probe were removed; and 5) the mean value of
multiple identical gene expression values was taken as the expression
value of the gene. Following the gene annotations from the
GENECODE (Homo sapiens GRCh38, releases V22),
17,450 protein-coding genes and 15,900 lncRNAs were included
in the TCGA-STAD. Meanwhile, the gene symbols of GPL570 have
annotated 17,912 protein-coding genes and 2415 lncRNAs.

Identification of prognostic immune-related
lncRNAs

ImmLnc was used in this study as an effective algorithm to
identify immune-related lncRNAs based on immune-related
pathways. The basic idea of the algorithm is as follows: 1) tumor
purity was evaluated by the ESTIMATE algorithm; 2) partial
correlation coefficients of mRNAs and lncRNAs were calculated
by removing the influence of tumor purity; and 3) all mRNAs
associated with a specific lncRNA were ranked according to the
correlation coefficient, and the sorted gene list was analyzed for gene
set enrichment analysis (GSEA). A default threshold of lncRES
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scores >0.995 and FDR <0.05 was used to screen immune-related
lncRNAs. Based on immune-related lncRNAs, we carried out a
univariate Cox regression analysis of immune-related lncRNAs with
the coxph function of R package survival to find (p < 0.05)
prognostic immune-related lncRNAs for prognosis.

Integration of multiple machine learning algorithms to
construct an optimized immune-related lncRNA prognostic
model (ILPM)

Here, we integrate 117 algorithm combinations from
10 machine learning algorithms to develop an ILPM with high
accuracy and robust performance. The 10 algorithms are random
survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise
Cox, CoxBoost, partial least squares regression for Cox (plsRcox),
supervised principal components (SuperPC), generalized boosted
regression modeling (GBM), and survival support vector machine
(survival-SVM), respectively. After that, the 117 algorithm
combinations were performed in the training dataset (TCGA-
STAD) and two validation datasets (GSE57303 and GSE62254).
In every model, Harrell’s concordance index (C-index) was
calculated both in the training and validation datasets. We
selected the model with the highest average C-index as the ILPM.
The risk score of each gastric cancer sample was obtained by the
ILPM, and the samples were divided into high- and low-risk groups
according to the median.

Estimation of the proportion of immune
infiltrating cells

The CIBERSORT algorithm of the R package IOBR was used
according to the expression profile of the TCGA-STAD dataset for
measuring the proportion of immune infiltrating cells. The
CIBERSORT algorithm is a method used to characterize the
composition of cells based on the gene expression profile of

complex tissues. We used the leukocyte characteristic gene matrix
LM22 composed of 547 genes to differentiate 22 immune cell types,
including myeloid subsets, plasma cells, naive and memory B cells,
natural killer (NK) cells, and seven T-cell types. CIBERSORT, in
combination with the LM22 characteristic matrix, was employed for
estimating the proportion of 22 cell phenotypes in the sample. The
sum of the proportions of all immune cell types in each sample was
equal to 1. Meanwhile, the single-sample gene set enrichment
analysis (ssGSEA) algorithm of the R package GSVA was
employed for computing the 28 immune cells in the TCGA-
STAD dataset.

Genomic mutation and drug sensitivity
analysis

A waterfall diagram was drawn using the R Package maftools to
depict the variation distribution of genes between high- and low-risk
groups. The R package pRRophetic and model gene expression data
were employed to predict the sensitivity (IC50 value) of
138 medications in the Genomics of Drug Sensitivity in Cancer
(GDSC) database. The IC50 value was used to determine how
sensitive lung adenocarcinoma patients were to medication
treatment. The Wilcoxon test examined the variations in IC50

values between high- and low-risk groups, and medications with
significant variations between the two groups were discovered.

Biological function and pathway enrichment analysis of
differentially expressed genes in high- and low-risk groups

Differentially expressed genes (DEGs) (p-value<0.05, log|FC|
>1) between high- and low-risk groups were used for further study.
Gene Ontology (GO) analysis is a common method for large-scale
functional enrichment studies, including biological process (BP),
molecular function (MF), and cellular component (CC). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a widely used

FIGURE 1
Workflow of this study.
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database of information about genomes, biological pathways,
diseases, and drugs. We used the R package clusterProfiler for
GO annotation analysis of DEGs. The entry screening criteria
included a p-value of <0.05, and the FDR value (q.vue) <
0.25 was considered statistically significant; p-values were
corrected by the Benjamini–Hochberg (BH) method. Gene set
enrichment analysis (GSEA) is a computational method to
analyze whether a particular gene set is statistically different
between two biological states. It is commonly used to estimate
changes in the pathway and biological process activities in
expression dataset samples. In this study, the clusterProfiler
package was used for the enrichment analysis of DEGs. The

parameters used in the GSEA were as follows: the number of
genes contained in each gene set was at least 10, and the number
of genes contained in each gene set was at most 500. The p-value
correction method used was the Benjamini–Hochberg (BH)
method. Downloaded from MSigDB database. The “c2. Cp. Kegg.
7.5.1. Symbols. gmt” and “c5. Go. 7.5.1. Symbols. gmt” were
downloaded from MSigDB database as a reference gene set.

Gene set variation analysis (GSVA) is a non-parametric
unsupervised analytical method, which is mainly evaluated by
transforming the expression matrix of genes among different
samples into the expression matrix of genes among samples.
Transcriptome gene set enrichment results were analyzed to

FIGURE 2
Calculation of the C-index of 117 integrated machine learning algorithms. (A) ImmLnc identified a total of 321 lncRNAs significantly associated with
immune-related pathways. (B)Univariate Cox regression analysis of OS obtained 26 prognostic immune-related lncRNAs in the TCGA-STAD dataset (n =
296). Data are presented as a hazard ratio (HR) ± 95% confidence interval [CI]. (C) C-index of 117 kinds of prediction models was calculated across two
validation datasets.

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2023.1106724

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1106724


FIGURE 3
Lasso result diagram of TCGA training set and prognostic efficacy of the model across all datasets. (A) Multivariable Cox regression analysis
(direction = forward) of OS in the TCGA-STAD dataset (n = 296), with no culling of variables. Data are presented as a hazard ratio (HR) ± 95% confidence
interval [CI]. (B)Changing track of the Lasso regression independent variable; the abscissa represented the logarithm of the independent variable lambda,
and the ordinate represented the coefficient of the independent variable. (C) Confidence interval under each lambda of Lasso. (D–I) Kaplan–Meier
curve of OS according to the ILPM in the TCGA-STAD (n = 296, log-rank test: p <0.001): (D)GSE57303 (n = 68, log-rank test: p = = 0.029); (F)GSE62254
(n = 298, log-rank test: p <0.001); and (H) corresponding ROC curves for predicting OS at 1, 3, and 5 years in TCGA-STAD (E), GSE57303 (G), and
GSE62254 (I).
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assess whether different metabolic pathways are enriched between
different samples. To study the biological process variation between
high- and low-risk groups, we used the R package “GSVA” to
conduct gene set variation analysis based on the TCGA-STAD
gene expression profile dataset. The reference gene set
“h.all.v2022.1. Hs.symbols.gmt” which downloaded from MSigDB
database was used to compute dataset every sample enrichment of
reference genes in each set of scores, GSVA scores between high-
and low-risk group, and t-test p-value is less than 0.05 is considered a
significant difference.

Statistical analysis

The Wilcoxon test was used in significance labeling for comparing
the differences between the two groups of samples, and the
Kruskal–Wallis test helped in comparing the differences between
multiple groups of samples. Here, ns indicates p ≤ 0.05, * indicates
p ≤ 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.001, and ****indicates
p ≤ 0.0001. Among them, p < 0.05 was significant, and the difference
was statistically significant. The receiver operating characteristic curve
(ROC) was implemented via the pROC package. The time-dependent
area under the ROC curve (AUC) for survival variables was proved by
the timeROC package. The Kaplan–Meier survival analysis and
univariate and multivariate analyses with Cox proportional hazard
regression for overall survival (OS) and disease-free survival (DFS)
were carried out using R packages survivalROC and survminer. All the
statistical analyses were performed in R 4.1.1 software.

Results

Obtaining immune-related lncRNAs from
the ImmLnc algorithm

The workflow of this study is shown in Figure 1. According to
the expression profile data on mRNAs and lncRNAs, ImmLnc can
obtain immune-related lncRNAs according to immune-related
pathways. The assumption is that, if a lncRNA plays an
important role in immune regulation, its related genes will be
enriched in the upper or lower part of immune-related pathways.
In this study, 321 immune-related lncRNAs were identified using
the ImmLnc algorithm, and these lncRNAs are significantly
correlated with “Cytokine Receptors,” “Cytokines,”
“Antimicrobials,” and “Antigen Processing and Presentation”
pathways (Figure 2A).

Integrating machine learning algorithms to
construct the ILPM

First of all, according to the expression profile data on the
321 immune-related lncRNAs from TCGA-STAD, we identified
26 prognostic lncRNAs by the univariate Cox regression analysis
(Figure 2B). Then, we added these 26 lncRNAs into
117 integrated machine learning algorithms to develop the
ILPM. The C-index was calculated through the leave-one-out
cross-validation (LOOCV) framework both in the TCGA
training dataset and GEO validation datasets (Figure 1C). It is
worth noting that stepwise Cox (direction = forward) and Lasso
algorithm combined with the Lasso algorithm has the highest
average C-index (0.606) (Figure 2C). The average C-index
calculated by Lasso is the highest because the stepwise Cox
(direction = forward) algorithm does not eliminate lncRNAs,
which can be seen in Figure 3A. In the Lasso algorithm, after
removing duplicated genes with Lasso linear regression, the
ILPM was built, and 18 prognostic immune-related lncRNAs
(SNHG5, LINC01270, CHKB. AS1, NUTM2A.AS1,
MIR181A2HG, CCNT2.AS1, DLG3.AS1, LINC01134,
NIFK.AS1, RP11.443B7.1, LSAMP.AS1, HMGN3.AS1,
LPP.AS2, RP11.710C12.1, RP11.155O18.6, CASC15,
RP11.449P15.2, and FLJ16779) were discovered. Figures 3B, C
show the Lasso results and the weight coefficient of each lncRNA,
as shown in Table 1. Among the 18 lncRNAs, the single-factor
Cox regression p-value of MIR181A2HG is the smallest,
indicating that it has the best prediction effect. The
MIR181A2HG gene is a member of the MIR181A2 host gene,
which is located in the nucleus and expressed in most tissues of
the human body (Fagerberg et al., 2014). As an immune-related
lncRNA, the widespread expression of the MIR181A2HG gene in
human tissues may indicate that mir181A2Hg plays a very
important role in immune regulation. However, the current
research on MIR181A2HG is limited (Bonaldo et al., 1996;
Lytle et al., 2004; Oshikawa et al., 2011; Wang et al., 2021), so
MIR181A2HG has high research values and is worth further
analysis in subsequent studies. Then, a risk score (RS) for
each patient was calculated based on the Lasso algorithm for
18 lncRNA coefficients. All patients were divided into high- and

TABLE 1 Weight coefficients of 18 lncRNAs in Lasso.

LncRNA Weight coefficient

SNHG5 0.046406

LINC01270 0.002013

CHKB.AS1 0.082716

NUTM2A.AS1 0.042071

MIR181A2HG 0.130342

CCNT2.AS1 0.007713

DLG3.AS1 −0.1127

LINC01134 −0.11123

NIFK.AS1 0.153615

RP11.443B7.1 -0.20088

LSAMP.AS1 0.116342

HMGN3.AS1 0.029911

LPP.AS2 0.013745

RP11.710C12.1 0.093786

RP11.155O18.6 0.074202

CASC15 0.024295

RP11.449P15.2 0.003993

FLJ16779 0.054282
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low-risk groups according to the optimal cut-off value defined in
the R package survminer. Afterward, we assessed the impact of
the model scores developed by the 18 lncRNA signatures on the
overall survival of the training dataset. The outcomes are

illustrated in Figure 3D. Samples in the high-risk group had a
worse prognosis, and the KM curve of the high-risk group was p <
0.0001, showing that there were major variations in the prognosis
of the two groups. According to the developed ILPM, the ROC

FIGURE 4
Assessment of the ILPM. (A) C-index of the ILPM in all datasets. (B–D) Performance of the ILPM compared with other clinical variables in predicting
prognosis in TCGA-STAD (n = 296) (B), GSE57303 (n = 68) (C), and GSE62254 (n = 298) (D). (E) AUC value of the ILPM and five published signatures in
TCGA-STAD. (F–H) Multivariate Cox regression analysis of RS and other clinical variables in TCGA-STAD (F), GSE57303 (G), and GSE62254 (H). Data are
presented as the hazard ratio (HR) ± 95% confidence interval [CI].
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curve of the prognostic signature was drawn, as illustrated in
Figure 3E. The AUC values of 1/3/5 years were 0.715/0.8/0.809,
respectively, showing good prediction efficiency of the model
score. The capacity of RS to predict overall survival was then
tested using the validation datasets. In the validation datasets, the
samples were sorted into high- and low-risk groups using the
same technique as the TCGA training dataset. The prognosis of
the high-risk group was worse, as indicated in Figures 3F, H, and
there were substantial disparities in the prognosis of the high-
and low-risk groups. As shown in Figures 3G, I, the AUC of 1/3/
5 years in the GSE57303 validation dataset was 0.664/0.676/
0.684, and the AUC of 1/3/5 years in the GSE62254 validation
dataset was 0.607/0.622/0.616. The aforementioned results
indicate that the ILPM had a strong and stable efficiency for
survival prediction in the TCGA training dataset and GEO
validation datasets.

Checking the strength of the ILPM

First, we calculated the C-index [95% confidence interval],
which was 0.708 [0.683–0.733] in TCGA-STAD,
0.613 [0.565–0.661] in GSE57303, and 0.598 [0.575–0.622] in
GSE62254 (Figure 4A). Furthermore, we also calculated the
C-index of other clinical variables. In evidence, RS had
distinctly superior accuracy compared to the other variables

including age, grade, pathologic M stage, pathologic N stage,
pathologic T stage, gender, and AJCC stage in TCGA-STAD
(Figure 4B); age, grade, pathologic M stage, pathologic N stage,
pathologic T stage, and gender in GSE57303 (Figure 4C); and age,
pathologic M stage, pathologic N stage, pathologic T stage,
gender, and AJCC stage in GSE62254 (Figure 4D). In
addition, we compared the ILPM with five other models, such
as those by Cai et al. (2019), Zheng et al. (2021b), Lei et al.
(2022a), Li et al. (2021), and Takeno et al. (2010), for predicting
the prognosis of patients with gastric cancer and found that the
ILPM had the highest efficacy (Figure 4E). Second, independent
prognostic factors were chosen for multivariate Cox regression
analysis and discovered that RS, age, and gender in TCGA-STAD
(Figure 4F); RS and pathologic M stage in GSE57303 (Figure 4G);
and RS, age, pathologic M stage, pathologic N stage, and
pathologic T stage in GSE62254 (Figure 4H) were independent
prognostic factors. An interesting idea is to combine the ILPM
with independent prognostic factors to further elevate clinical
application. Therefore, we combined the ILPM with other clinical
features (multivariate Cox regression analysis: p < 0.05) to
predict patient prognosis and found that the combined model
could better predict the prognosis (Figures 5A, B), except that
there was a little difference in TCGA-STAD (Figure 5C). These
results explain that the combination of RS and other clinical
variables can significantly improve the ability to predict the
prognosis of patients. Finally, we intended to check the

FIGURE 5
C-index and AUC assessment of RS and clinical variables. (A–C) C-index analysis of RS and clinical variables in TCGA-STAD (n = 296) (A), GSE57303
(n = 68) (B), and GSE62254 (n = 298) (C). (D) Time-dependent ROC analysis for predicting OS in all datasets.
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strength of the ILPM by adjusting the interference of other
variables because clinical variables significantly associated with
prognosis can affect the predictive power of the ILPM. Here, we

generated three datasets of time-dependent ROC analysis for
predicting OS after adjusting age and gender in TCGA-STAD;
pathologic M stage in GSE57303; and age, pathologic M stage,

FIGURE 6
Molecular and genomic features between high- and low-risk groups in TCGA-STAD. (A–C) Box plot of metabolism signatures (A), TME signatures
(B), and tumor signatures (C) in high- and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (D–E) SNV waterfall of top 20 (mutation
frequency) genes in the high-risk group (n = 147) (D) and low-risk group (n = 147) (E).
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pathologic N stage, and pathologic T stage in GSE62254. The
AUC value of time-dependent ROC analysis was high in all
datasets (Figure 5D). In conclusion, the ILPM can effectively
predict the prognosis of patients in various situations.

The difference in the molecular and
genomic features

In the occurrence and development of cancer, a variety of
molecular characteristics will be accompanied by changes. Here,

we mainly study the signatures of the tumor immune
microenvironment (TIME), tumor metabolism, and the tumor
itself, which were collected by the R package IOBR. Of the
114 metabolism signatures collected, 64 (Figure 6A) were
significantly different between the high- and low-risk groups (35 of
119 TME signatures (Figure 6B) and 11 of 16 tumor signatures
(Figure 6C)). These findings suggest that there are multiple
characteristic differences between the high- and low-risk groups of
patients according to our RS. Subsequently, the mutation landscape of
the high- (Figure 6D) and low-risk (Figure 6E) groups of TCGA-
STAD in the genome was displayed. As is known, a gene mutation

FIGURE 7
Proportion of infiltration of 28 immune cells was evaluated based on ssGSEA. (A) Box plot of the proportion of immune infiltrating cells in high- and
low-risk groups. Green represents the high-risk group, and red represents the low-risk group. (B) RS and 28 immune cell correlation heat map. The cross
marks represent a non-significant correlation, where blue is positive and red is negative. (C) 18 lncRNAs and 28 immune cell correlation heat map, where
pink represents positive and green represents negative. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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might either promote or cause cancer, or it could coordinate and drive
cancer’s malignant progression. The research and development of
tumor-targeted medications and innovative tumor therapies relied
heavily on knowledge of genome-level mutation. As demonstrated in

Figures 6D, E, the distribution of somatic variation in each sample
between high- and low-risk groups, in which only the top 20 genes
with the highest mutation frequency were selected to draw a waterfall
diagram, was different.

FIGURE 8
Variations in drug sensitivity betweenmodel groups. (A–R) IC50 box diagram of 18 drugs with the significant difference in drug sensitivity in the high-
and low-risk groups, respectively, in which yellow represents the high-risk group and blue represents the low-risk group.
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The difference in the proportion of immune
infiltrating cells

Immune cells were the key categories of non-tumor
components in the tumor microenvironment, and they had
been postulated to be useful for tumor diagnosis and
evaluating the prognosis. In this study, according to the
signature genes of 28 immune cells, we calculated the
percentage of infiltrated immune cells based on ssGSEA.
Between the high- and low-risk groups, 16 of the 28 immune
cells were significant differences (Figure 7A), for example, Type
2 T helper cells, Type 17 T helper cells, and Type 1 T helper cells.
At the same time, the results of Spearman’s correlation analysis of
RS and immune cell contents showed that the content of most
immune cells was significantly correlated with RS (Figure 7B).
Furthermore, the 18 lncRNAs that were used to construct the
ILPM were also significantly correlated with most immune cell

contents (Figure 7C), indicating that these lncRNAs played an
important role in regulating the content of immune cells. To
more comprehensively assess the degree of immune cell
infiltration, we used the CIBERSORT algorithm to evaluate the
proportion of immune cell infiltration. Although the results were
significantly different from ssGSEA, the difference between
natural killer cell content in the high- and low-risk groups
and the significant correlation between the 18 lncRNAs and
the content of immune cells were consistent (Supplementary
Figure S4).

Predicting the sensitivity of drugs between
high- and low-risk groups

According to the expression profile data from TCGA-STAD,
the sensitivity IC50 value of 138 drugs in the Genomics of Drug

TABLE 2 Function and target of 18 drugs.

Drug Function Target

ABT-263 Targets the Bcl-2 family of proteins, the major negative regulators of apoptosis BCL2, BCL2L2, and BAD

AG.014699 Anticancer drug and poly (ADP-ribose) polymerase (PARP) inhibitor PARP1, PARP2, and PARP3

AMG.706 Receptor tyrosine kinase inhibitors VEGFR1, VEGFR2, VEGFR3, Kit, PDGF, and Ret

AP.24534 Multi-target kinase inhibitor ABL1, BCR, KIT, RET, TEK, FLT3, FGFR1, FGFR2, FGFR3, FGFR4, LCK,
SRC, LYN, KDR, PDGFRA, CYP3A4, CYP2C8, CYP2D6, CYP3A5, ABCB1,

and ABCG2

ATRA Naturally occurring derivative of vitamin A (retinol) RXRB, RXRG, RARG, ALDH1A1, GPRC5A, GPRC5A, ALDH1A2,
RARRES1, RARA, RARB, LCN1, OBP2A, RBP4, PDK4, RXRA, CYP26A1,

CYP26B1, CYP26C1, and HPGDS

Axitinib Selectively blocks the tyrosine kinase receptors VEGFR-1 (vascular endothelial
growth factor receptor), VEGFR-2, and VEGFR-3

FLT1, KDR, and FLT4

AZD.0530 Src inhibitor Src, FAK, p-FAK, and pSTAT-3

BX.795 Selective inhibitors of PDK1 PDK1, TBK1, and IKKε

CCT007093 Effective protein phosphatase 1D (PPM1D Wip1) inhibitor WIP1

Elesclomol Acts through a novel mechanism of action FDX1

IPA.3 Selective non-ATP competitive PAK1 inhibitor PAK1

JNJ.26854165 Acts as an HDM2 ubiquitin ligase antagonist and also induces early apoptosis in
p53 wild-type cells and inhibits cellular proliferation, followed by delayed

apoptosis in the absence of functional p53

HDM2 and Mdm2

Lenalidomide Exerts immunomodulating effects by altering cytokine production, regulating T-
cell co-stimulation, and enhancing the NK cell-mediated cytotoxicity

CRBN, TNFSF11, and CDH5

PTGS2

Methotrexate Enters tissues and is converted to a methotrexate polyglutamate by
folylpolyglutamate

TYMS, ATIC, and DHFR

Nutlin.3a Can inhibit the interaction between MDM2-p53 and stabilize p53 protein, and
induce autophagy and apoptosis

MDM2-p53

OSI.906 IGF-1R stimulates proliferation, enables oncogenic transformation, and
suppresses apoptosis

INSR and IGF1R

PD.0332991 Cyclin-dependent kinase 4/6 (CDK4/6) inhibitor 1 that acts by binding to the
ATP pocket

CDK4 and CDK6

VX.702 Highly selective inhibitor of p38α MAPK, 14-fold higher potency against p38α
versus p38β

p38α MAPK
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Sensitivity in Cancer (GDSC) database was predicted, of which
18 drugs had significant differences between high-risk and low-
risk groups, which is displayed in Figure 8. These drugs work in
different ways to suppress tumor growth, and it can be seen that

patients in the high-risk group are more sensitive to these drugs,
indicating that the treatment of patients in the high-risk group
will be better. The functions and targets of 18 drugs are listed in
Table 2.

FIGURE 9
GO and KEGG enrichment analyses of DEGs. (A)Heatmaps of DEGs based on RS. (B) Volcano plot of DEGs based on RS. (C–E) Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, including biological process (BP) (C), molecular function
(MF) (D), and KEGG pathway (E). Count: number of genes related to the enriched GO or KEGG pathway. The color of the bar denotes the p-value. (F)
18 lncRNA and 86 DEG correlation heat map, where red represents positive and green represents negative. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.
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TABLE 3 DEGs between high- and low-risk groups.

Symbol logFC p-value Adj. p-value

C12orf73 −1.01536 1.79E–06 0.008568

RUFY2 −1.11769 5.01E–06 0.011618

POM121C −1.44039 1.20E–05 0.017033

UMAD1 −1.18662 2.46E–05 0.022458

DDX3X −1.55441 2.50E–05 0.022458

LIX1L −1.21549 2.91E–05 0.023438

SOCS7 −1.16048 5.71E–05 0.031613

KMT2B −1.27127 7.84E–05 0.036373

CLIC1 −1.4925 9.92E–05 0.039587

CCL5 −1.28863 0.000105 0.040205

PCMTD2 −1.10561 0.000109 0.040559

TMEM8A 1.241609 0.000113 0.041219

DNASE1 −1.07316 0.000122 0.042165

IL1RN 1.158774 0.000124 0.042595

SPIRE2 −1.10699 0.000125 0.042767

CEBPZOS −1.2383 0.000168 0.047219

C16orf13 1.065904 0.000178 0.048337

TM9SF2 1.313672 0.000191 0.050064

NUDT3 −1.03868 0.000226 0.053636

DDAH2 −1.18357 0.000229 0.053683

TSPAN1 1.262579 0.000234 0.053687

TECPR1 −1.0307 0.000254 0.05526

ZNF316 −1.07209 0.000285 0.058966

PHACTR4 −1.14247 0.000318 0.061099

ACACA −1.22473 0.000323 0.061477

UBQLN1 1.123594 0.000361 0.063433

CNOT6 1.020255 0.000364 0.063433

PBX2 −1.07178 0.000369 0.063857

DCP1A −1.1095 0.000384 0.064826

LEPROT −1.15353 0.000439 0.068862

SDHD −1.13977 0.000467 0.070208

SNX9 1.064844 0.000475 0.070391

HLA-DPB1 −1.33952 0.000507 0.071817

NEU1 −1.01464 0.000517 0.071856

PI3 1.286015 0.000519 0.071856

MARCKS −1.27209 0.000549 0.07284

EEF2K 1.041823 0.00056 0.07295

GDI1 −1.11202 0.000601 0.075319

(Continued in next column)

TABLE 3 (Continued) DEGs between high- and low-risk groups.

Symbol logFC p-value Adj. p-value

DSC2 1.084682 0.000602 0.075319

ACAP2 1.010065 0.000603 0.075319

ATP1B1 1.187554 0.000696 0.079982

PIK3C2B 1.060851 0.000714 0.079994

COX7B 1.047242 0.000718 0.079994

CSNK2B −1.06363 0.00073 0.080369

SCAF8 −1.01112 0.000816 0.085172

SNHG5 −1.06858 0.000831 0.085172

FAM84A 1.107621 0.000846 0.085749

PPP1R10 −1.10321 0.000853 0.085749

AKT1S1 −1.0655 0.000931 0.087777

CD24 −1.33256 0.000968 0.090675

RBCK1 1.023269 0.001036 0.094091

ZSWIM8 −1.05491 0.001107 0.096042

FHL2 1.087134 0.001171 0.097449

HNRNPUL2 −1.03214 0.001176 0.097449

TCP1 1.018362 0.001261 0.100135

IGHG4 −1.18658 0.001275 0.100181

LBH −1.03128 0.001282 0.100181

SMEK2 −1.06439 0.001364 0.103319

COL5A2 −1.11299 0.001392 0.104043

MORF4L1 −1.05974 0.00144 0.104559

SGK223 −1.01042 0.001447 0.10473

ANKRD17 1.023024 0.001495 0.106146

IGHV4-39 −1.01903 0.001539 0.107842

BAG6 −1.08612 0.001549 0.108232

RN7SL2 −1.1568 0.001562 0.108232

GSDMB 1.004852 0.001576 0.10844

DIAPH1 1.057867 0.001605 0.109222

IL13RA1 1.001496 0.001704 0.111685

TNS4 1.031695 0.001781 0.113891

EMP2 −1.07766 0.001861 0.115604

TXNIP −1.18813 0.001995 0.118484

LLGL2 1.079593 0.00212 0.120175

ASPH −1.03794 0.002128 0.120268

QSOX1 1.046049 0.002209 0.122517

NARS 1.01502 0.002219 0.122517

CSNK1E −1.03495 0.002274 0.123993

(Continued on following page)
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Identification of DEGs

Here, we performed differential expression analysis to identify
differentially expressed genes between high- and low-risk groups.
For comparison, according to RS, there were 53 upregulated and
33 downregulated genes in the high-risk group. Heatmaps showed
86 DEGs between high- and low-risk groups (Figure 9A), and the
volcano plot showed the differential expression of genes at a set
threshold in Figure 9B; see Table 3 for details of DEGs. To explore
the potential molecular mechanism of DEGs, functional
enrichment analysis was conducted for these genes. As shown
in Figures 9C-E, the DEGs were mainly enriched in the external
side of the immune response-regulating signaling pathway,
immune response-regulating cell surface receptor signaling
pathway, immune response-activating cell surface receptor
signaling pathway, immunoglobulin receptor binding (GO
terms), and the AMPK signaling pathway (KEGG pathway).
These pathways are all related to immunity, which further
indicates that patients in high- and low-risk groups have
significant differences in immune-related pathways. To
understand the regulatory relationship between these
18 lncRNAs and 86 DEGs, the results showed a significant
correlation between the 18 lncRNAs and 86 DEGs (Figure 9F).

GSEA and GSVA between high- and
low-risk groups

To explore the pathways associated with the RS, we conducted
GSEA between 148 high-risk and 148 low-risk groups in TCGA-
STAD. The results show that 2404 GO terms and 97 KEGG
pathways are significantly enriched. We took the first four
pathways of GO and KEGG, respectively, for display, which were
GOBP ACTIN FILAMENT ORGANIZATION(Figure 10A), GOBP
CELLULAR AMINO ACID METABOLIC PROCESS(Figure 10B),
GOBP CELLULAR COMPONENT DISASSEMBLY (Figure 10C),
GOBP COMPLEMENT ACTIVATION (Figure 10D) of GO and
KEGG PATHWAYS IN CANCER (Figure 10E), KEGG ARGININE
AND PROLINE METABOLISM (Figure 10F), KEGG MAPK

SIGNALING PATHWAY (Figure 10G), and KEGG
ENDOCYTOSIS (Figure 10H) of KEGG. In addition, GSVA
results using 50 HALLMARK pathways in the MSigDB database
as the reference gene set showed that the enrichment results were
significantly different between high- and low-risk groups, except for
HALLMARK UV RESPONSE DN (p < 0.05) (Figure 10I).

TABLE 3 (Continued) DEGs between high- and low-risk groups.

Symbol logFC p-value Adj. p-value

TMC5 1.061215 0.002611 0.130769

SF3B1 1.014811 0.002728 0.132083

IGLV2-14 −1.02235 0.002829 0.134358

BRD2 −1.04172 0.002858 0.134601

TUG1 1.078131 0.002916 0.135999

SPINT1 1.007512 0.003412 0.142832

IGHM −1.19344 0.005126 0.164818

NEAT1 1.102776 0.005743 0.169861

REG4 1.040497 0.01811 0.245883

IGHG1 −1.02939 0.018829 0.248161

FIGURE 10
Variations in GO, KEGG, and Hallmark pathway enrichment
scores between model groups. GO (A-D) and KEGG (E-H) enriched
the top four pathways with themost significant results based on GSEA.
(I) Box plot of GSVA of 50 Hallmark pathways. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
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Discussion

Due to the high incidence of gastric cancer, there is an urgent need
to identify effective biomarkers to predict patient prognosis (Sung et al.,
2021). The traditional AJCC stage system can roughly predict the
clinical survival status of patients, but it cannot effectively distinguish
patients under the same stage (Edge and Compton, 2010; Amin et al.,
2017). This causes issues in patient treatment, resulting in
overtreatment and inadequate treatment. With the development of
molecular biology and immunology, there aremore andmore strategies
for the treatment of gastric cancer, and immune checkpoint blockade
has become a mainstream treatment (Nagaraju et al., 2021; Lei et al.,
2022b; Liabeuf et al., 2022). However, nomatter the type of treatment, a
reliable biomarker for predicting the prognosis of patients is crucial, and
the classification of patients based on biomarkers can effectively
facilitate personalized treatment.

Based on this, we integrated prognostic immune-related lncRNAs
to construct a prediction model to predict the prognosis of patients and
conduct a classification study of patients. The ImmLnc algorithm was
applied to identify immune-related lncRNAs. According to the lncRNA
expression profile of the TCGA-STAD training dataset,
117 combinations were developed by 10 machine learning
algorithms. Further evaluation in two GEO datasets indicated that
the ILPM, the optimal model, was the combination of stepwise Cox
regression (direction = forward). In terms of predicting OS, the ILPM
showed good performance in both TCGA and GEO datasets. In
different datasets, the ROC AUC and C-index values were higher in
terms of RS, according to the ILPM, compared with other clinical
variables (e.g., age, gender, grade, pathologic M stage, pathologic N
stage, pathologic T stage, and AJCC stage), which revealed good
potential clinical application value. The IPLM enables us to make
more accurate predictions and classifications of patients’ prognoses,
which is of great significance in clinical application and solves the
problem that traditional classification cannot distinguish patients with
the same AJCC stage. Compared with the existing prediction models,
such as those by Cai et al. (2019), Zheng et al. (2021b), and Lei et al.
(2022a), the ILPM continued to perform best.

Afterward, all patients with RS were calculated based on the
ILPM, and according to the median of RS, all patients were divided
into high- and low-risk groups. Patients in the high-risk group had
a worse prognosis and a lower percentage of immune cell
infiltration, which is consistent with previous studies showing
that cancer cells evade the immune system by having a smaller
percentage of immune cells. However, the frequency of mutations
was lower in high-risk patients, and in general, the frequency of
mutations was higher in patients with poor prognoses, suggesting
that our classification is not suitable for studies that predict
immunotherapy response based on tumor mutational burden
(TMB) (Jardim et al., 2021). On the other hand, it may indicate
that gastric cancer patients have different genomic characteristics
compared with other cancers and need to be treated differently
during immunotherapy.

At the same time, patients in the high-risk group were more
sensitive to 18 GDSC drugs (ABT.263, AG.014699, AMG.706,
AP.24534, ATRA, axitinib, AZD.0530, BX.795, CCT007093,
elesclomol, IPA.3, JNJ.26854165, lenalidomide, methotrexate,
Nutlin.3a, OSI.906, PD.0332991, and VX.702). These drugs
fight tumors in different ways, for example, ABT.263

(navitoclax), AG.014699 (rucaparib), AMG 706 (motesanib),
AP.24534 (ponatinib), AZD.0530 (saracatinib), BX-795,
CCT007093, elesclomol, IPA.3, Nutlin-3a (rebemadlin), Osi-
906 (linsitinib), Pd-0332991(palbociclib), and Vx-702 were
acting as inhibitors of different signaling pathways to fight
tumors. In particular, AG.014699 and AZD.0530 were first-
generation inhibitors (Creedon and Brunton, 2012; Syed,
2017), and AP.24534 was a second-generation inhibitor
(PonatinibLiverTox, 2012). In addition, ATRA, BX-795,
CCT007093, elesclomol, and Nutlin-3a were potent inhibitors
of pathway molecules. In addition to VX-702, other drugs have
therapeutic effects on cancers, such as breast cancer, non-small
cell lung cancer, and colon cancer. We found that these drugs
may be potential drugs for the treatment of gastric cancer.
However, as a drug for the treatment of arthritis (Cohen and
Fleischmann, 2010), the application value of VX-702 in gastric
cancer still needs further study.

Our analysis of DEG enrichment between the high- and low-
risk groups found that DEGs are mainly enriched in certain parts,
like the immune response-regulating cell surface receptor
signaling pathway, immune response-activating cell surface
receptor signaling pathway, immunoglobulin receptor binding,
and other immune-related pathways. Descriptions of the
differences between the high- and low-risk groups of patients
are mainly based on the regulation of immune-related pathways,
and these pathways affect the patient’s immune cells and tumor
immune microenvironment. High- and low-risk groups of TME
verified the results, and the numerous differences between the
50 cancer-related hallmark pathway GSVAs were further
highlighted.

In conclusion, based on immune-related lncRNAs, signatures
constructed by a variety of machine learning algorithms have
effective and stable efficacy in prognostic prediction and
classification of patients, the ILPM is an effective and convenient
tool for personalized treatment and the clinical diagnosis of GC
patients.
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