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Background:Non-alcoholic fatty liver disease (NAFLD) is a liver disease associated
with obesity, insulin resistance, type 2 diabetes mellitus (T2DM), and metabolic
syndrome. The risk factors for NAFLD have not been identified. Metabolic
dysfunction has been found to be an important factor in the pathogenesis and
progression of NAFLD. However, the causal impact of blood metabolites on
NAFLD is unclear.

Methods: We performed a two-sample Mendelian randomization (MR) study. A
genome-wide association study (GWAS) with 7824 participants provided data on
486 human blood metabolites. Outcome information was obtained from a large-
scale GWAS meta-analysis of NAFLD, which contained 8,434 cases and
770,180 controls of Europeans. The inverse variance weighted (IVW) model
was chosen as the primary two-sample MR analysis approach, followed by
sensitivity analyses such as the heterogeneity test, horizontal pleiotropy test,
and leave-one-out analysis. In addition, we performed replication, meta-
analysis, and metabolic pathway analysis. We further conducted colocalization
analysis to deeply reflect the causality.

Results: After rigorous genetic variant selection, IVW, sensitivity analysis,
replication, and meta-analysis, two known metabolites were identified as being
associated with the development of NAFLD [biliverdin: OR = 1.45; 95% CI 1.20-
1.75; p = 0.0001; myristoleate: OR = 0.57; 95% CI 0.39-0.83; p = 0.0030].

Conclusion: By combining genomics with metabolomics, our findings provide a
new perspective on the underlying mechanisms of NAFLD and have important
implications for the screening and prevention of NAFLD.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is a
clinicopathological syndrome characterized by excessive fat
deposition in hepatocytes except for alcohol and other clear liver
damage factors, closely related to insulin resistance and genetic
susceptibility. It is also the most common cause of chronic liver
disease, with a global prevalence of 25%. (Younossi et al., 2016;
Cheung et al., 2019; Harrison et al., 2021). NAFLD can progress to
non-alcoholic steatohepatitis (NASH) (Barb et al., 2016; Yin et al.,
2023) and even hepatocellular carcinoma (HCC) (Feldstein et al.,
2009). The prevalence of NAFLD is increasing yearly, but less than
5% of people with NAFLD are aware of their disease status
(Alqahtani et al., 2021). No recognized and reliable drug
therapies exist, posing a substantial global public health challenge
(Younossi et al., 2019; Paternostro and Trauner, 2022). Early
recognition and prevention of NAFLD are, therefore, significant.

Diagnosing NAFLD requires costly imaging and invasive
procedures, which impose a significant socioeconomic burden
(Dorairaj et al., 2021). Patients with NAFLD often have a
combination of type 2 diabetes mellitus (T2DM) (Tilg et al., 2017;
Targher et al., 2021), metabolic syndrome (MS) (Tapper and Loomba,
2018), and cardiovascular events (Mantovani et al., 2022; Muzurović
et al., 2022), with relatively significant changes in their blood
metabolomics. However, as there are no susceptible and specific tests
to diagnoseNAFLD and differentiateNASH frompure steatosis16, there
is a lack of reliable biomarkers to assess the progression of NAFLD
(Masoodi et al., 2021). Therefore, further relevant studies (e.g., blood
metabolomics) are needed to identify biological markers associated with
NAFLD, which can provide a basis for diagnosing and treating NAFLD
(Piazzolla and Mangia, 2020; Dorairaj et al., 2021).

NAFLD has a complex and multifaceted biochemical
metabolic process. In recent years, more studies have
suggested that blood biomarkers of NAFLD that are not
regulated by secondary non-causal pathways may be promising
candidates for identifying individuals at risk (Gobeil et al., 2022).
The National Institutes of Health Medical Library (NIH) shows
that 228 of the current 1,230 studies on NAFLD are related to
blood metabolism. These studies suggested that certain
metabolites are involved in the progression of NAFLD. Some
guidelines (Vos et al., 2017; Cusi et al., 2022) demonstrate that
blood transaminase levels, gamma-glutamyl transferase, serum
triglycerides, and a 4-factor-based fibrosis index (FIB-4) can be
applied to aid in the assessment and diagnosis of NAFLD but
continue to lack specificity. In a study of NAFLD patients who
fasted overnight (Kalhan et al., 2011), significantly elevated levels
of glycocholate, taurocholate and glycoglycolate were found in
NAFLD participants. Masoodi et al. (2021) found changes in
circulating fatty acids, triglycerides, phospholipids, and bile acids
in NAFLD patients; Gorden et al. (2015) used linear discriminant
analysis of a set of 20 plasma metabolites (including
glycerophospholipids, sphingolipids, etc.) that can be used to
differentiate NASH from simple steatosis offers the potential to
improve the clinical diagnosis of NAFLD and facilitate therapeutic

interventions. In addition, Gobeil et al. (2022) aimed to identify novel
biomarkers of NAFLD through Mendelian randomization. This
analysis suggests that a potential causal relationship was revealed
between tyrosine levels and NAFLD in a positive manner, which may
represent a novel clinical biomarker for NAFLD. However, systematic
studies to assess the causal relationship between bloodmetabolites and
NAFLD are still lacking and translating these metabolic findings into
pathophysiological mechanisms and new therapies is an enormous
challenge. Therefore, a more comprehensive analysis of the
interactions between genetics and blood-circulating metabolites in
the pathogenesis of NAFLD is still needed.

Mendelian randomization (MR) is a recent and widely used
method for epidemiological investigations in which single nucleotide
polymorphisms (SNPs) are pooled to infer the causal effect of exposure
factors on outcomes (Emdin et al., 2017; Zheng et al., 2017; Hemani
et al., 2018). MR uses a genetic variation to simulate the design of
randomized controlled trials (RCTs), and genome-wide association
studies (GWASs) can be used for flexible two-sample MR analysis. In
the case of high cost, time-consuming, and even low feasibility of RCT
trials, MR can be used as an alternative to RCT because it relies on the
natural random classification of genetic variation during meiosis to
generate a random distribution of genetic variation in the population
(Richmond and Davey Smith, 2022). It provides reliable evidence for
the causal relationship between phenotypes (Zuccolo and Holmes,
2017). MR can also be used to identify biomarkers of disease-related
characteristics by determining whether genetic susceptibility to certain
diseases affects other biological characteristics, such as blood
metabolomics (Mohammadi-Shemirani et al., 2019; Ritchie et al., 2021).

Some MR studies have been performed to explore the
relationship between exposure and NAFLD. However, the main
focus was single exposures or common exposure factors, such as
interleukin-6 (IL-6) (Li et al., 2022a), seven sleep characteristics (Fan
et al., 2022), serum uric acid levels (Li et al., 2022b), iron status (He
et al., 2022), and coronary artery disease (Ren et al., 2022). Few
studies have focused on blood metabolites and NAFLD. Given that
the causal relationship between bloodmetabolites and NAFLD is not
well understood, this study used a two-sample MR approach to
assess the causal relationship between 486 human blood metabolites
and the risk of NAFLD to provide a deeper understanding of the
pathogenesis of NAFLD.

Materials and methods

Study design

The public dataset, accessible to the public on the database
website and has already gained ethical approval, contains all the data
we used for this investigation.

In this present work, we comprehensively evaluated the
486 serum metabolites in relation to risk of NAFLD based on
a rigorous MR design. A scientific MR study should comply with
three major hypotheses: 1) The genetic instruments are strongly
correlated with exposures of interest; 2) The genetic variation
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must be independent of any confounding factors associated with
outcome; 3) The genetic instruments can only affect the outcome
via the exposure. If the genetic instruments affect the outcome via
other risk factors, it is known as horizontal pleiotropy (Chen
et al., 2022). Briefly, we performed MR analysis using GWAS data
for 486 blood metabolites (exposure) and NAFLD (outcome)
from European population. Notably, considering that the
estimates of MR study are affected by the sample size, we
obtained two types GWAS data for NAFLD, one for the main
analysis and the other for the replication analysis to improve the
confidence of the estimates. The overview of this study is shown
in Figure 1.

GWAS data for human blood metabolites

We downloaded summary type GWAS data for human serum
metabolites from the Metabolomics GWAS Server (http://
metabolomics.helmholtz-muenchen.de/gwas/). Notably, this is the
most comprehensive GWAS data to date on blood metabolites
which were discovered by Shin et al. (2014) in 2014 from
7,824 European descents. In detail, 2.1 million SNPs for
309 known and 177 unknown metabolites were identified,
respectively. According to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, the 309 known metabolites can be
classified into 8 classes: cofactors and vitamins, energy, amino acid,
carbohydrate, lipid, nucleotide, peptide, and xenobiotic metabolism
(Supplementary Table S1).

GWAS data for NAFLD

GWAS data for NFALD from a genome-wide meta-analysis
based on 4 European cohorts containing 8,434 cases and
770,180 controls were used for the primary analysis (Ghodsian

et al., 2021). The diagnosis of NAFLD in these 4 cohorts was
determined based on the electronic health records of all
participants. We download these GWAS data from the GWAS
catalog (https://www.ebi.ac.uk/gwas/) and their GWAS Catalog
accession number is GCST90011885. More detailed
documentation of this GWAS data can be obtained from the
original literature.

Selection of instrumental variables (IVs)

We developed a series of criteria to screen IVs associated with
blood metabolites. Firstly, we set the significance threshold at 1.00E-
5 (p < 1 × 10−5) and the linkage disequilibrium (LD) r2 < 0.1 within
500 KB. Considering the limited number of SNPs, we relaxed the
association threshold which was widely used in previous MR studies
(Cai et al., 2022a; Cai et al., 2022b). Secondly, in order to obtain
excellent IVs, the F statistic for each SNP was calculated as
previously described (Cai et al., 2022a). In general, the
F-statistic <10 is considered weak IVs and discarded (Pierce
et al., 2011; Burgess et al., 2013; Bowden et al., 2016b). Thirdly,
we extracted the SNPs for exposure of interest from the outcome and
excluded those related to the outcome (p < 1 × 10−5). Then we
conducted harmonization to align the exposure- and outcome-SNPs
alleles and discard palindromic SNPs with intermediate effect allele
frequencies (EAF > 0.42) or SNPs with incompatible alleles. Finally,
these retained metabolites were used for MR analysis (Gill et al.,
2019).

Primary analysis

Given that the random-effect inverse variance weighted (IVW)
provided the most precise estimates under the premise that all SNPs
were valid. We used IVW method as the primary analysis to asses

FIGURE 1
The overview of the research workflow.
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causality between blood metabolites and NAFLD with p < 0.05. The
IVW method is ideal for estimating robust causal detection ability
(Pierce and Burgess, 2013). It was proposed by Burgess et al. (2013),
and was widely used for MR studies.

Sensitivity analysis

To enhance the confidence of the estimates, we used Weighted
median (WM) and MR-Egger as complementary analyses because
they possess strengths under different premises. The WM method
provides consistent causal estimates when >50% of the weight comes
from valid instruments (Bowden et al., 2016a), while MR-Egger
regression accounting for pleiotropy when all the instruments are
invalid (Bowden et al., 2015). For sensitivity analysis, we used four
analysis methods including Cochran-Q test, MR-Egger intercept,
leave-one-out analysis (LOO) andMR-PRESSO. Cochran-Q derived
p < 0.05 and I2>25% was considered as existing heterogeneity (Greco
et al., 2015). And horizontal pleiotropy was evaluated based on MR-
Egger intercept (Bowden et al., 2016b). To determine whether the
MR estimates was influence by a single SNP, a LOO analysis was also
conducted (Burgess and Thompson, 2017).

As a result, the following criteria were used to identify the likely
suitable candidate metabolites implicated in the development of
NAFLD: 1) Uniformity of magnitude and directions across the 4 MR
techniques; 2) No pleiotropy or heterogeneity was found; 3) No
LOO analysis revealed any strong impact sites.

Replication and meta-analysis, and
metabolic pathway analysis

For the estimates of significant associations (PIVW < 0.05),
replication analysis and meta-analysis were implemented to
determine the final candidates through additional GWAS data for
NAFLD from the GWAS Catalog which GWAS Catalog accession
number is GCST90091033 including 1,483 cases and
17,781 controls. We based the metabolic pathway analysis on the
KEGG database using MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/) for metabolic pathway analysis of known
metabolites.

Genetic correlation and direction validation

Previous studies have suggested that MR results may have false
positives due to genetic correlations between traits (O’Connor and
Price, 2018). Throughout the instrument selection process, SNPs
associated with NAFLD were removed, and combinations of SNPs
not significantly associated with NAFLD may also contribute to the
genetic risk of NAFLD. Thus, the genetic relationship between the
identified metabolites and NAFLD was evaluated by linkage
disequilibrium score regression (LDSC) to ascertain whether the
causal effects were disturbed by shared genetic architecture.
Additionally, we used the Steiger test to confirm if the observed
causalities were biased due to reversed causation (Hemani et al.,
2017). This test determined whether the included SNPs explained
more about NAFLD variability than the detected metabolites. When

a combination of SNPs was found to have no genetic risk for NAFLD
compared to metabolites, the results indicated no bias in causal
inference (Steiger p < 0.05).

Colocalization analysis

Colocalization analysis was applied to detect whether the
exposure and outcome share a common causal variant in a given
region (Wang et al., 2021a). Colocalization analysis is now a
standard part of MR analysis, and it is increasingly common to
conduct MR analysis in conjunction with corresponding
colocalization analysis. MR differs from colocalization analysis in
that MR analysis prioritises evidence of causality, whereas
colocalization analysis is more conservative and can be an
important complementary analysis to support MR analysis in
assessing the validity of instrumental variable hypotheses
(Gaziano et al., 2021). Based on this, colocalization analysis
methods such as expression quantitative trait loci (eQTLs) and
protein quantitative trait loci (pQTLs) were developed. The
principle is to use eQTL and pQTL loci published in existing
databases, combined with GWAS summary data, to identify
eQTL and pQTL loci associated with phenotypes (Sun et al.,
2018). For statistically significant MR results, we also performed
colocalization analysis using the moloc R package (https://github.
com/clagiamba/moloc).

Statistical analysis

All MR analyses were performed using the “TwoSampleMR”
package (version 0.4.22). The meta-analysis was performed by the
Reviewer Manager software (Version 5.4.1) and LDSC was
conducted by LDSC software (version 1.0.1), p < 0.05 was
considered statistically significant. We used the odds ratio (OR)
as the main effect indicator along with its corresponding 95%
confidence interval (CI).

Results

Following the strict instrument selection steps, we performed
MR analyses on 486 blood metabolites. Five of the 486 blood
metabolites appeared in two forms, totaling 491 MR analyses. F
statistics were all greater than the empirical threshold 10, with a
minimum of 17, suggesting that all SNPs had sufficient validity. The
F statistic for all SNPs was shown in Supplementary Table S2.

Primary analysis and sensitivity analysis

In total, 23 metabolites were preliminarily identified by IVW as
significantly linked with NAFLD (Figure 2; Supplementary Tables
S3, S4). 13 of them still have unidentified chemical compositions.
Additional ten metabolites were chemically categorized as belonging
to the metabolism of amino acids, cofactors, vitamins, lipids, drugs,
fatty acids, dicarboxylates, hemoglobin, porphyrins, long-chain fatty
acids, lysolipids, and xenobiotics. After com supplementary analysis
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and sensitivity analysis, only three metabolites met the criteria of
eligible candidate metabolites in relation to risk of NAFLD, including
biliverdin (odds ratio (OR) = 1.45; 95% confidence interval (95% CI)
1.20-1.75; p = 0.0001), myristoleate (OR = 0.57; 95% CI 0.39-0.83; p =
0.0030) and 1-palmitoylglycerophosphocholine (OR = 0.36; 95% CI
0.18-0.72; p = 0.0039) (Figure 3). Specifically, the robustness of the
causation was supported by MR estimates produced from WM and
MR-Egger that showed consistent direction and magnitude. Cochran
Q-derived p values indicated that no heterogeneity was detected.
Besides, intercept from MR-Egger suggested no horizontal pleiotropy
(Table 1). Additionally, LOO analysis failed to find any high-influence
SNPs that would have biased the pooled effect estimates
(Supplementary Figure S1A–C). It was concluded that these three
metabolites should be further investigated as potential candidate
metabolites involved in the pathogenesis of NAFLD. As the
threshold of p-value is artificially specified, no matter how small
the p-value is, it only represents a low false positive result and does not
guarantee a true result. Furthermore, p < 0.05 is a very lenient
threshold and we need to perform multiple testing to achieve the
elimination of false positives by correcting the threshold for the
p-value. The formula for the Bonferroni correction is p*(1/486),

where p is the original threshold and 486 is the total number of
tests. After the Bonferroni correction, only bilirubin passed this
criterion; all other metabolites were nominally significant.

The univariate MR analyses provided persuasive evidence for a
causal relationship between blood metabolites and NAFLD. To
confirm the actual association between blood metabolites and
NAFLD, we performed a multivariate MR (MVMR) analysis.
MVMR analysis assesses the direct effect of the exposure of
interest on the outcome by controlling for potential effects
between exposures. In this study, MVMR analysis was performed
based on multiplicative inverse variance weighting of multivariate
random effects. Our MVMR analysis can provide evidence that the
three metabolites are independent of each other and can directly
affect NAFLD independent of the other metabolites (Supplementary
Table S5).

Replication and meta-analysis

We performed a replication analysis using another NAFLD
GWAS data to validate our results further. A meta-analysis of

FIGURE 2
Forest plot for the causal effect of metabolites on the risk of NAFLD derived from IVW. OR, odds ratio; CI, confidence interval.
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3 known metabolites with stable MR results was performed in
combination with 2 GWAS datasets, and the results were as
expected (Figure 4), with high levels of genetic predisposition to
biliverdin (OR = 1.58; 95% CI 1.20-2.08; p = 0.001) predicting
increased risk of NAFLD and higher levels of gene susceptibility to
myristoleate (OR = 0.59; 95% CI 0.44-0.79; p = 0.0005) predicted a
lower risk of NAFLD. However, the meta-analysis results were not
observed to be statistically significant in 1-
palmitoylglycerophosphocholine (p = 0.55).

Genetic correlation and direction validation

The results of LDSC showed weak evidence that genetic
correlation between NAFLD and biliverdin (rg = 0.2204, se =
0.3922, p = 0.5742), myristoleate (rg = 0.1247, se = 0.2965, p =
0.6739), and 1-palmitoylglycerophosphocholine (rg = 0.0580, se =
0.2859, p = 0.8393), suggesting that the shared genetic component
did not confound the MR estimates (Supplementary Table S6).
Furthermore, we further performed the Steger-test to examine
whether there was reverse causality between metabolites and
NAFLD. The results of Steiger do not support the existence of
reverse causal effects between metabolites and NAFLD (p < 0.05)
(Table 2).

Metabolic pathway analysis

We input ten known metabolites into Metabolic Analyzer 5.0 to
determine various potential metabolic pathways involved in the
pathogenesis of NAFLD (Table 3). Among them, biliverdin and
bilirubin were involved in the metabolic pathways of porphyrin and
chlorophyll metabolism, and coffee was involved in the caffeine
metabolism pathway (p < 0.05). The metabolic mechanism formed
by the above metabolites may be involved in the pathogenesis and
development of NAFLD.

Colocalization analysis

For biliverdin with significant results, we performed a colocalization
analysis of NAFLD risk using the coloc R package. BLVRAD eQTL files
from the eQTLGen Consortium (https://www.eqtlgen.org/index.html).
The eQTLGen Consortium has been set up to identify the downstream
consequences of trait-related genetic variants. The consortium
incorporates 37 datasets, with a total of 31,684 individuals.
Colocalization analysis to further determine the probability of shared
causal genetic variation in SNP associated with NAFLD and eQTL.In
this study, only cis-eQTL were included to generate genetic tools,
i.e., eQTL encoding genes within 1Mb on either side of the gene.
For NAFLD, we extracted the region upstream and downstream of the
BLVRAD significant locus (plus or minus 1024 kb, r2 < 0.2) from
NAFLDGWAS data as colocalization region 1. The results showed that
GWAS signals and eQTL colocalization were not detected and that
BLVRAD and NFALD did not share a causal variant (H4 = 0.0122)
(Supplementary Table S7).

Protein expression data for BLVRAD were obtained from the
deCODE Consortium (https://www.decode.com/summarydata/).
Colocalization analysis can further determine the probability of
shared causal genetic variation in snp associated with NFALD and
pQTL. Significant colocalization (posterior probability) was set to PP.
H4 > 0.95, i.e., genes strongly colocalised with NAFLD were considered
as potential target molecules. The results found strong evidence that
BLVRAD in blood may be a potential target molecule for NAFLD (PP.
H4= 0.9579) (Supplementary Table S8). Therefore, associations between
colocalization at the protein level and DNA sequence variants with
NAFLD risk allele level could further explore the mechanisms of the
disease and reveal novel drug targets and biomarkers.

Discussion

As NAFLD is a metabolic stress liver injury closely related to
genetic susceptibility, the influence of genetic factors on hepatic

FIGURE 3
Scatterplot for the significant MR association (p < 0.05) between metabolites and NAFLD. (A): biliverdin; (B): myristoleate; (C):1-
palmitoylglycerophosphocholine.

Frontiers in Genetics frontiersin.org06

Guo et al. 10.3389/fgene.2023.1108086

https://www.eqtlgen.org/index.html
https://www.decode.com/summarydata/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1108086


steatosis has been reported in recent experimental and
observational studies (Younossi et al., 2016; Martin et al.,
2021; Oliveira et al., 2021). In this study, we performed an
unbiased two-sample MR analysis to causally assess 486 blood
metabolites and the risk of NAFLD. We collected the most
extensive mGWAS and large NAFLD GWAS summary data
from public databases. We performed an initial IVW analysis
of 486 metabolites using genetic variants as IVs and ultimately
identified a causal relationship between 23 metabolites and

NAFLD, 10 known metabolites. We then performed
heterogeneity tests and sensitivity analyses on these
metabolites. In addition, to further ensure the reliability and
stability of the results, we used other databases for validation and
performed a meta-analysis and metabolic pathway analysis. The
results suggest that higher levels of biliverdin (OR = 1.45; 95% CI
1.20-1.75; p = 0.0001) are causally associated with an increased
risk of NAFLD and that higher levels of myristoleate (OR = 0.57;
95% CI 0.39-0.83; p = 0.0030) play a protective role in the

TABLE 1 Three MR models estimate the causal relationships between 10 known metabolites and the risk of NAFLD and tests for heterogeneity and horizontal
pleiotropy. WM, weighted median; IVW, inverse variance weighted.

Metabolite Methods SNP N) OR (95% CI) P Heterogeneity P Pleiotropy P

Q value (I2) Intercept

caffeine MR Egger 11 1.19 (0.61–2.33) 0.6198

WM 11 1.21 (0.97–1.50) 0.0927

IVW 11 1.22 (1.03–1.44) 0.0195 5.34 0.87 0.00 0.95

biliverdin MR Egger 27 1.35 (0.95–1.92) 0.1047

WM 27 1.33 (1.01–1.76) 0.0434

IVW 27 1.45 (1.20–1.75) 0.0001 14.31 0.97 0.00 0.66

indolelactate MR Egger 17 0.69 (0.17–2.79) 0.6064

WM 17 0.66 (0.29–1.48) 0.3126

IVW 17 0.53 (0.28–1.00) 0.0499 23.86 0.09 −0.01 0.69

1-stearoylglycerol (1-monostearin) MR Egger 26 0.43 (0.11–1.64) 0.2262

WM 26 1.06 (0.50–2.22) 0.8827

IVW 26 1.83 (1.08–3.12) 0.0254 33.11 0.13 0.03 0.03

bilirubin (Z, Z) MR Egger 19 1.32 (1.00–1.74) 0.0706

WM 19 1.21 (1.01–1.46) 0.0408

IVW 19 1.19 (1.04–1.37) 0.0141 19.85 0.34 −0.01 0.44

myristoleate (14:1n5) MR Egger 15 0.66 (0.30–1.47) 0.3287

WM 15 0.58 (0.34–0.97) 0.0374

IVW 15 0.57 (0.39–0.83) 0.0030 10.92 0.69 0.00 0.69

1-palmitoleoylglycerophosphocholine* MR Egger 14 3.30 (0.43–25.41) 0.2733

WM 14 1.03 (0.46–2.32) 0.9390

IVW 14 1.86 (1.00–3.44) 0.0486 14.15 0.36 −0.01 0.57

1-palmitoylglycerophosphocholine MR Egger 32 0.93 (0.12–7.10) 0.9423

WM 32 0.32 (0.12–0.91) 0.0316

IVW 32 0.36 (0.18–0.72) 0.0039 28.85 0.58 −0.01 0.34

hydroquinone sulfate MR Egger 16 0.80 (0.61–1.04) 0.1202

WM 16 0.82 (0.68–0.98) 0.0294

IVW 16 0.86 (0.75–0.99) 0.0315 8.42 0.91 0.01 0.51

octadecanedioate MR Egger 12 1.76 (0.72–4.30) 0.2400

WM 12 1.20 (0.71–2.03) 0.4853

IVW 12 1.52 (1.02–2.28) 0.0418 6.01 0.87 −0.01 0.72
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development of NAFLD. The graphical summary of this study
shows in the Figure 5. To our knowledge, this is the first MR study
to assess the causal role of human blood metabolites
systematically and comprehensively in NAFLD.

The prevalence of NAFLD and the lack of pharmacological
therapies place a heavy burden on the world, making the screening
and prevention of NAFLD particularly important. Although guidelines
(Cusi et al., 2022) have mentioned several complementary diagnostic
indicators for NAFLD (ALT, GGT, etc.), there is still a lack of
susceptible and specific diagnostic indicators for NAFLD and
biomarkers to assess the progression of NAFLD. Given that the gold
standard for diagnosing NAFLD remains liver biopsy, which is costly

and invasive, further research is needed to find specific diagnostic
indicators for NAFLD. Previous studies (Saeed et al., 2017; Zhao et al.,
2020; Notarnicola et al., 2021) have identified various blood metabolite
changes in NAFLD patients, such as imbalances in triglyceride
metabolism, disturbances in vitamin A metabolism, and elevated
plasma N-trimethyl-5-aminovaleric acid (TMAVA) levels in mice
with hepatic steatosis. Despite the increasing number of studies on
the blood metabolism of NAFLD, there is still a lack of comprehensive
and systematic studies to assess the causal relationship betweenNAFLD
and blood metabolites. Inspired by the work of Cai et al. (2022b), Yu
et al. (2022), and Wang et al. (2021b) in exploring the causal
relationship between metabolites and disease, we designed this MR
analysis of NAFLD and blood metabolites to assess the causal
relationship between the two systematically.

Our findings suggest that high biliverdin levels increase the risk of
NAFLD progression, but there is a paucity of research on the direct
correlation between biliverdin and NAFLD. Bilirubin is a by-product of
hemoglobin catabolism. Hemoglobin is degraded by heme oxygenase-1
(HO-1) to biliverdin, which is rapidly converted to bilirubin by the
action of biliverdin reductase A. Bilirubin and biliverdin reductase A

FIGURE 4
Meta-analysis of the causal associations between metabolites and NAFLD. GCST90011885: Primary analysis of NAFLD GWAS; GCST90091033; OR:
Replication analysis of NAFLD GWAS. (A): Biliverdin; (B): myristoleate; (C):1-palmitoylglycerophosphocholine.

TABLE 2 Steiger direction test from blood metabolites to NAFLD.

Exposure biliverdin myristoleate 1-palmitoylglycerophosphocholine

Direction TRUE TRUE TRUE

Steiger P 0.00E+00 3.02E-82 4.92E-156

TABLE 3 Signifcant metabolic pathways involved in the pathogenesis of
NAFLD.

Pathway Name Involved metabolites P

Porphyrin and chlorophyll metabolism Biliverdin and Bilirubin 0.0011

Caffeine metabolism Caffeine 0.0192
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(BVRA) have been found to protect the liver from lipid accumulation as
well as disease (Lin et al., 2009; Kwak et al., 2012; Puri et al., 2013).
Hepatic BVRA inhibits glycogen synthase kinase-3β by enhancing
serine nine phosphorylation, thereby preventing hepatic steatosis
(Hinds et al., 2016). After oxidation of bilirubin to biliverdin in the
mitochondria, biliverdin must be exported to the cytoplasmic lysate for
reduced bilirubin, and studies have found enhanced redox of bilirubin
increases insulin resistance and steatosis in obese patients (Shum et al.,
2021). From this, we can speculate that the increase in biliverdin levels
indirectly reflects an enhanced bilirubin redox process, which affects the
progression of NAFLD. However, a related study (Ikeda et al., 2011)
found that biliverdin prevented the deterioration of abnormal glucose
tolerance in mice with T2DM. NAFLD is commonly associated with
metabolic risk factors such as obesity, dyslipidemia, hypertension, and
diabetes, and the global rise in the prevalence of obesity and type
2 diabetes has coincided with an increase in the prevalence of NAFLD
(Loomba et al., 2021); Biliverdin has antioxidant and anti-inflammatory
properties (Shiels et al., 2020), and the progression of NAFLD can be
affected by inflammation and oxidative stress damage, although the
results of these studies may be limited by methodological flaws such as
residual confounding and other factors. Colocalization analysis has been
proven a powerful tool in revealing the pleiotropic effects of certain loci
on multiple traits (Wang et al., 2021a). Proteins are more likely to be
used as drug targets than other molecular traits and MR analysis
combined with the use of pQTL as colocalization for IV will be
valuable to the wider community of human genetics. The results of
pQTL in this study suggest that BLVRAD is a protein with high
supporting colocalization evidence (PP.H4 = 0.9579), and this
association provides a reference for further exploration of the
pathogenesis of NAFLD and revealing novel drug targets and

biomarkers. Although the colocalisation results of eQLT are
negative, it does not necessarily mean that the study is meaningless.

Up to now, research on the relevance of myristoleate to NAFLD
is minimal. One study has shown that myristoleate is expressed at
high levels during mid-development in oyster larvae and is one of
the metabolites associated with fatty acid metabolism (Liu et al.,
2020). A related study found that myristoleic acid produced by E.
faecalis reduced obesity through brown fat activation and beige fat
formation (Quan et al., 2020). In contrast, a study found that fatty
acids (myristoleic acid) during adipogenesis were associated with an
increased risk of T2DM (Qureshi et al., 2019). Since obesity and
T2DM are risk factors for the development of NAFLD, we
hypothesize that myristoleate, which is involved in fatty acid
metabolism, may play a role in controlling the progression of
NAFLD. And through our MR analysis study, we found that
genetic predisposition towards higher levels of myristoleate
played a protective role in NAFLD development and can inhibit
the progression of NAFLD. However, experimental studies on
NAFLD and myristoleate are lacking. Therefore, the protective
mechanism of myristoleate needs to be further explored.

In addition, the association of caffeine with the risk of NAFLD
remains highly controversial, and although nearly 41% of studies
have concluded that caffeine is protective against NAFLD, there are
also studies showing that caffeine increases hepatocyte damage in
mice and definitive research evidence that prenatal caffeine exposure
increases susceptibility to NAFLD in rat offspring (He et al., 2019;
Hu et al., 2019; Dungubat et al., 2020). Therefore, our genome-wide
association study finding that caffeine may be a risk factor for
NAFLD is not contrary to the facts and may be related to the sample
size and sample population involved in this study. This suggests that

FIGURE 5
Graphical summary. Among 486 human blood metabolites, this study found that the higher levels of biliverdin (OR = 1.45; 95% CI 1.20-1.75; p =
0.0001) are causally associated with an increased risk of NAFLD and the higher levels of myristoleate (OR = 0.57; 95% CI 0.39-0.83; p = 0.0030) play a
protective role in the development of NAFLD.

Frontiers in Genetics frontiersin.org09

Guo et al. 10.3389/fgene.2023.1108086

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1108086


the association between caffeine and NAFLD needs to be examined
in a more thorough and comprehensive study.

Our study has certain advantages. Firstly, from the
perspective of molecular mechanism, it has a solid theoretical
basis and important clinical research value to explore the causal
relationship between metabolites and NAFLD by using blood
metabolites as exposure factors. Secondly, this study used strict
quality control conditions and rational, analytical methods,
including various models, to evaluate causal effects, which
largely avoided reverse causality and residual confounding.
Also, the use of large-scale GWAS data gives it greater
statistical validity. In addition, statistical methods such as
meta-analysis and Stegall’s test (Hemani et al., 2017) were
used to test the validity of the MR results. Therefore, the
results of this study are mainly reliable and stable. Thirdly,
unlike previous MR analyses of single or conventional
exposure factors, analyzing 486 blood metabolites is a more
difficult task and presents statistical analysis challenges. The
analytical strategy we propose may be informative for similar
studies in the future. However, several limitations should be
noted in our study. First, all mGWAS and NAFLD GWAS
data were from European populations. Although this largely
avoids population heterogeneity, the MR results should be
further validated in other populations to verify their
generalisability in future studies with more GWAS data.
Second, more than half of the NAFLD risk predictors obtained
through preliminary analyses were unknown metabolites whose
functional structures are unknown. Therefore, the results of this
study are limited. Third, we revealed that cholestyramine and
methyl myristate are nominally causally related to NAFLD using
a two-sample MR approach. However, this relationship is
theoretical, and we failed to confirm it mechanistically.
Therefore, the results of the MR study should be further
validated in a robust RCT to demonstrate the existence of a
causal relationship.

In conclusion, we have identified a causal relationship between
two blood metabolites and NAFLD by MR analysis, providing
preliminary evidence of the effect of these two metabolites on the
progression of NAFLD. This may help establish individualized
explanations or markers for biological differences in disease
states and serve as candidate molecules for future mechanistic
exploration. However, due to the limited experimental studies on
biliverdin, myristoleate, and NAFLD, the mechanisms by which the
two metabolites affect NAFLD progression are unclear. Therefore,
more studies may be needed to explore whether these two
metabolites can be used as clinical circulating biomarkers for the
screening and prevention of NAFLD.
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