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Background: Immunity and ferroptosis often play a synergistic role in the
progression and treatment of hepatocellular carcinoma (HCC). However,
few studies have focused on identifying immune-related ferroptosis gene
biomarkers.

Methods: We performed weighted gene co-expression network analysis
(WGCNA) and random forest to identify prognostic differentially expressed
immune-related genes (PR-DE-IRGs) highly related to HCC and characteristic
prognostic differentially expressed ferroptosis-related genes (PR-DE-FRGs)
respectively to run co-expression analysis for prognostic differentially
expressed immune-related ferroptosis characteristic genes (PR-DE-IRFeCGs).
Lasso regression finally identified 3 PR-DE-IRFeCGs for us to construct a
prognostic predictive model. Differential expression and prognostic analysis
based on shared data from multiple sources and experimental means were
performed to further verify the 3 modeled genes’ biological value in HCC. We
ran various performance testing methods to test the model’s performance and
compare it with other similar signatures. Finally, we integrated composite factors
to construct a comprehensive quantitative nomogram for accurate prognostic
prediction and evaluated its performance.

Results: 17 PR-DE-IRFeCGs were identified based on co-expression analysis
between the screened 17 PR-DE-FRGs and 34 PR-DE-IRGs. Multi-source
sequencing data, QRT-PCR, immunohistochemical staining and testing
methods fully confirmed the upregulation and significant prognostic
influence of the three PR-DE-IRFeCGs in HCC. The model performed well
in the performance tests of multiple methods based on the 5 cohorts.
Furthermore, our model outperformed other related models in various
performance tests. The immunotherapy and chemotherapy guiding value of
our signature and the comprehensive nomogram’s excellent performance
have also stood the test.

Conclusion: We identified a novel PR-DE-IRFeCGs signature with excellent
prognostic prediction and clinical guidance value in HCC.
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Introduction

Liver cancer has become the sixth most common cancer and
third leading cause of cancer-related deaths worldwide (Sung et al.,
2021). As the most common subtype in primary liver cancer, the
attack rate of hepatocellular carcinoma (HCC) has tripled in the past
3 decades (Altekruse et al., 2009). Although studies over the past
half-century have tried to reveal the epidemiology, pathogenic
factors, and genetic characteristics of HCC, which have
contributed to advancing the improvement of its early
prevention, diagnosis, and therapy strategies, most patients
remain in the middle and late stages of the disease (Tomaz et al.,
2015; Bertuccio et al., 2017; Llovet et al., 2018; Petrick et al., 2020).
Therefore, the prognosis of HCC treated with surgery,
chemotherapy and radiotherapy is not ideal (Jemal et al., 2017).
Statistically, 70% and more than 90% of HCC recurrences occur
within 2 and 5 years after surgery, respectively, which are associated
with poor response to treatment and lower survival rates (Zheng
et al., 2017). Therefore, it is urgent to identify novel genetic signature
closely related to HCC’s occurrence and progression with high
prognostic prediction accuracy and therapeutic guidance value.

The immune system, including immune cells, immune factors
and immune microenvironment, has been proved to be an
important factor in tumorigenesis (Sima et al., 2019). Tumor-
associated immunity, whose effects include disruption of genome
stability, obvious genetic modification, promotion of tumor cell
proliferation, resistance to tumor apoptosis, stimulation of
angiogenesis, and shaping of tumor microgrowth environment,
exists in all stages of tumorigenesis (Gonzalez et al., 2018; Yang
et al., 2021a). As an emerging therapeutic approach in the field of
cancer therapy in recent years, immune checkpoint inhibitor (ICI)
has demonstrated strong antitumor activity in many cancers (Bronte
et al., 2010; Mellman et al., 2011; Khalil et al., 2016; Liu et al., 2018).
In particular, ICI such as programmed death 1 (PD-1) and
programmed death ligand 1 (PDL-1) have shown good
therapeutic response in the clinical first-line treatment of HCC
(Harding et al., 2016). The CheckMate 040 trial showed that
Nivolumab had a control rate of about 60% in patients with
HCC that had progressed after standard sorafenib therapy
(Harding et al., 2016). The KEYNOTE 240 trial also confirmed
that more than two-thirds of HCC patients receiving sorafenib
responded to Pembrolizumab (Zhu et al., 2018; Hong et al.,
2020). However, the proportion of HCC patients who benefit
from ICI treatment is still very limited as many factors, such as
immune system and tumor immune microenvironment (TIME),
can affect the ICIs’ efficacy (Nishino et al., 2017).

Ferroptosis, a new form of regulated cell death, differs from
programmed cell death and is driven by iron-dependent
peroxidation of lipids (Dixon et al., 2012; Zhuo et al., 2020). At
present, the important role of ferroptosis in the inhibition of many
cancers, including breast cancer (Kaplan and Ng, 2017), pancreatic
cancer (Tang et al., 2020), ovarian cancer (Ye et al., 2021) and HCC
(Shan et al., 2020; Deng et al., 2021), has been confirmed by many
studies. In HCC, targeted ferroptosis related genes can further

regulate the cancer cells’ growth by changing the cancer cells’
sensitivity to ferroptosis (Louandre et al., 2015; Jennis et al.,
2016). For example, TP53 can make hepatoma cells sensitive to
ferroptosis and inhibit their growth through SLC7A11 (Sun et al.,
2016). UBA1 has also been reported to promote HCC’s development
by up-regulating Nrf2 signal pathway and down-regulating Fe2+

levels (Shan et al., 2020). More and more studies have found that
activation of ferroptosis in tumors has gradually become a new
strategy for cancer treatment, especially for these resistant to
conventional therapy (Hassannia et al., 2019; Mou et al., 2019;
Luo et al., 2021). The activation of ferroptosis has also been shown to
contribute to the efficacy of cancer treatment, such as ICI and
radiotherapy (Friedmann Angeli et al., 2019; Wang et al., 2019; Lei
et al., 2020; Song et al., 2021). It is worth mentioning that the process
of ferroptosis in tumors has been observed to be associated with the
immune microenvironment, implying that there is often a
synergistic interaction between ferroptosis and immunity in
tumor’s progression (Stockwell et al., 2020; Jiang et al., 2021).
These results all suggest that novel immune-related ferroptosis
gene signature have great potential in predicting prognosis and
guiding clinical treatment of HCC.

With the continuous development of the computer field,
numerous novel algorithms focus on identifying genetic markers
that are closely related to diseases. As one of them, weighted gene co-
expression network analysis (WGCNA) is often used to describe the
correlation between genes in various cancer microarray tissues, to
find modules that are highly related to the traits of external tissues,
and to screen candidate biomarkers or therapeutic targets
(Langfelder and Horvath, 2008; Giulietti et al., 2018; Nomiri
et al., 2022). As one of the best traditional machine learning
methods based on integrated learning principle (Sessa et al.,
2020; Douville et al., 2021), random forest model shows high
prediction accuracy in a large number of previous modeling, and
provides more variable importance estimation than classifier (Tran
et al., 2019). This study aims to use these advanced machine learning
algorithms to screen prognostic differentially expressed immune-
related ferroptosis characteristic genes (PR-DE-IRFeCGs) highly
related to HCC, and to identify genes signature that can
accurately predict the HCC cases’ prognosis and treatment response.

Materials and methods

Data acquisition sources and corresponding
processing

Figure 1 outlined the entire flow of this study. The Cancer
Genome Atlas (TCGA, cancergenome.nih.gov/) database,
International Cancer Genome Consortium (ICGC, dcc.icgc.org/
projects/ORCA-IN) database and Gene Expression Omnibus
(GEO, ncbi.nlm.nih.gov/geo) database provided the HCC-related
RNA sequencing and clinical data. TCGA covers a HCC cohort
containing 374 HCC and 50 adjacent normal tissues. We obtained
GSE36376 cohort (193 HCC and 240 adjacent normal tissues),
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GSE14520 cohort (247 HCC and 241 adjacent normal tissues),
GSE25097 cohort (268 HCC and 243 adjacent normal tissues)
and GSE10143 cohort (80 HCC tissues) from GEO. LIRI cohort
(273 HCC and 203 adjacent normal tissues), the last external cohort,
was obtained from the ICGC (Liu et al., 2019; Yang et al., 2021b; Jin
et al., 2022; Li et al., 2022). ImmPort (immport.org/home) and
InnateDB (innatedb.ca/) databases provided 2,660 immune-related
genes (IRGs), while FerrDb (zhounan.org/ferrdb) database shared
259 ferroptosis-related genes (FRGs) for us. Next, we obtained the
sequencing value for the following genes: 1.247, 237, 193, 218, 140,
and 242 FRGs from the TCGA cohort, GSE36376, GSE14520,
GSE25097, GSE10143, and ICGC. LIRI cohorts, respectively; 2.
2,366, 1,984, 1,528, 1,806, 1,167, and 1,983 IRGs from the TCGA
cohort, GSE36376, GSE14520, GSE25097, GSE10143, and ICGC.
LIRI cohorts, respectively.

Identification of PR-DE-IRFeCGs

The differentially expressed immune-related genes (DE-IRGs) from
the TCGAHCC cohort was performed under the filtering condition of |
log2 fold change | (| log2FC |) > 0.585 and false discovery rate (FDR) <
0.05. After setting FDR <0.05 as the new filtering condition, we
identified differentially expressed ferroptosis-related genes (DE-
FRGs) and DE-IRGs from GSE36376, GSE14520, GSE25097, and
ICGC cohorts as well as DE-FRGs from TCGA cohort. Next we
extracted the common DE-IRGs and DE-FRGs from all the cohorts.

We ran WGCNA based on the IRGs’ sequencing value from
TCGA, GSE36376, GSE14520, GSE25097, and ICGC cohorts
separately for identifying the corresponding DE-IRGs most
relevant to HCC. The specific processes were as follows: 1) After

clustering the tissues from each cohort and excluding free tissues, the
“pickSoftThreshold” function was used to select the best soft power
β to build the best scale-free network (Fan et al., 2022a). 2) The
adjacency matrix was created according to the formula:

aij � Sij
∣∣∣∣

∣∣∣∣β

(aij: adjacency matrix between gene i and gene j, Sij: similarity
matrix which is done by Pearson correlation of all gene pairs, β:
softpower value) (Zhu et al., 2021; Fan et al., 2022a). 3) We
transformed the adjacency matrix into a topological overlap
matrix and the corresponding dissimilarity (1-TOM) (Zhu et al.,
2021; Fan et al., 2022a). 4) We aggregated highly correlated genes at
1-TOM distances to construct corresponding modules to match
corresponding dynamic branches, and merge similar modules (Zhu
et al., 2021; Fan et al., 2022a). Then, the common IRGs were
extracted from the modules most relevant to HCC from each
cohort (Zhu et al., 2021; Fan et al., 2022a). Similarly, we
extracted common DE-IRGs most relevant to HCC from
common DE-IRGs and common IRGs most relevant to HCC.

The R package limma was utilized to determine the differential
genes (DEGs) between the high-risk group and low-risk group among
the three sets based on the filter condition (| log2FC |≥1, FDR <0.05).
We nextran Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) to enrich biological functions and pathways
related to common DE-IRGs and common DE-FRGs using the R
package “org.Hs.eg.db”, respectively (Fan et al., 2021).

After setting the screening criterion of p < 0.05, we ran univariate
COX regression analysis to screen prognostic differentially expressed
immune-related genes (PR-DE-IRGs) and prognostic differentially
expressed ferroptosis-related genes (PR-DE-FRGs) based on TCGA
data after combining survival information, respectively. To rank the

FIGURE 1
The entire flow of this study.
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importance of the 29 PR-DE-FRGs as eigengenes, we ran the random
forest algorithm based on theminimum points of cross-validation error
using the R package “randomForest” (Fan et al., 2022b; Tian et al.,
2022). Next, we screened 17 PR-DE-FRGs with an importance
score >1 as the characteristic genes of HCC. After setting the
correlation coefficient >0.3 and p < 0.001 as filtering conditions, we
ran co-expression analysis based on 34 PR-DE-IRGs and 17 PR-DE-
FRGs’ sequencing value for filtering PR-DE-IRFeCGs. We visualized
the expression value of these 17 PR-DE-IRFeCGs using a heatmap, and
visualized the co-expression network consisting of 17 PR-DE-IRFeCGs
and the matching PR-DE-IRGs.

Screening PR-DE-IRFeCGs for constructing
prognostic predictive model

We integrated survival information and sequencing value from
all TCGA samples, GSE10143 and ICGC.LIRI cohorts to obtain
tissues that also covered these information. The clinical information
of these tissues used for subsequent analysis was presented in
Table 1. 370 TCGA HCC cases were randomly matched to the
training and test sets in a 7 to 3 ratio. The optimal penalty
parameter (λ) obtained based on the minimum 10-fold cross-
validation of Lasso regression finally screened out three PR-DE-

TABLE 1 Clinical characteristics of each cohort.

TCGA GEO ICGC

Covariates Type Whole cohort Test set Training set p-value GSE10143 cohort LIRI cohort

Overall Survival
≤1,095 280 (75.68%) 85 (78.7%) 195 (74.43%)

0.4603
13 (16.25%) 199 (76.54%)

>1,095 90 (24.32%) 23 (21.3%) 67 (25.57%) 67 (83.75%) 61 (23.46%)

Survival status
Alive 240 (64.86%) 63 (58.33%) 177 (67.56%)

0.1164
48 (60.00%) 214 (82.31%)

Dead 130 (35.14%) 45 (41.67%) 85 (32.44%) 32 (40.00%) 46 (17.69%)

Age
≤60 177 (47.84%) 53 (49.07%) 124 (47.33%)

0.8484
- 55 (21.15%)

>60 193 (52.16%) 55 (50.93%) 138 (52.67%) - 205 (78.85%)

Gender
FEMALE 121 (32.7%) 38 (35.19%) 83 (31.68%)

0.595
- 68 (26.15%)

MALE 249 (67.3%) 70 (64.81%) 179 (68.32%) - 192 (73.85%)

Grade

G1 55 (14.86%) 21 (19.44%) 34 (12.98%)

0.2325

- 40 (15.38%)

G2 177 (47.84%) 45 (41.67%) 132 (50.38%) - 117 (45.00%)

G3 121 (32.7%) 35 (32.41%) 86 (32.82%) - 80 (30.77%)

G4 12 (3.24%) 5 (4.63%) 7 (2.67%) - 23 (8.85%)

unknown 5 (1.35%) 2 (1.85%) 3 (1.15%) - 0 (0.00%)

Stage

I 171 (46.22%) 48 (44.44%) 123 (46.95%)

0.8831

- -

II 85 (22.97%) 25 (23.15%) 60 (22.9%) - -

III 85 (22.97%) 21 (19.44%) 64 (24.43%) - -

IV 5 (1.35%) 1 (0.93%) 4 (1.53%) - -

unknown 24 (6.49%) 13 (12.04%) 11 (4.2%) - -

T stage

T1 181 (48.92%) 50 (46.3%) 131 (50%)

0.9264

- -

T2 93 (25.14%) 29 (26.85%) 64 (24.43%) - -

T3 80 (21.62%) 22 (20.37%) 58 (22.14%) - -

T4 13 (3.51%) 4 (3.7%) 9 (3.44%) - -

unknown 3 (0.81%) 3 (2.78%) 0 (0%) - -

M stage

M0 266 (71.89%) 79 (73.15%) 187 (71.37%)

1

- -

M1 4 (1.08%) 1 (0.93%) 3 (1.15%) - -

unknown 100 (27.03%) 28 (25.93%) 72 (27.48%) - -

N stage

N0 252 (68.11%) 72 (66.67%) 180 (68.7%)

0.4836

- -

N1 4 (1.08%) 0 (0%) 4 (1.53%) - -

unknown 114 (30.81%) 36 (33.33%) 78 (29.77%) - -
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TABLE 2 All primer sequences used in QRT-PCR experiment.

Gene Forward primer Reverse primer

β-Actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA

G6PD CCGCAAACAGAGTGAGCCCTTC AGGACTCGTGAATGTTCTTGGTGAC

RRM2 CACGGAGCCGAAAACTAAAGC TCTGCCTTCTTATACATCTGCCA

PRKAA2 ATCCGAAGTCAGAGCAAACCGTATG AAGCCAGCAGCAGAACAGGAAC

FIGURE 2
Identification of common DE-IRGs highly related to HCC. (A) The extraction process of common DE-IRGs from all the cohorts. (B–F) Heatmap
showing the correlations between modules and HCC features in the TCGA, GSE36376, GSE14520, GSE25097, and ICGC cohorts, respectively. (G) The
extraction process of common IRGs highly related to HCC. (H) The extraction process of common DE-IRGs highly related to HCC.
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IRFeCGs (G6PD, RRM2, and PRKAA2) for constructing the
prognostic predictive model.

Validation of the biological value of modeled
genes in HCC

We again visualized the co-expression network consisting of
three genes and the matching PR-DE-IRGs. We mapped the
Kaplan Meier survival curve for showing the influence of these

three genes’ expression on HCC patients’ survival probability.
The ROC curves based on these three genes’ expression from
HCC and normal tissues were used to assess their diagnostic
value. To identify independent effects of these three genes on
prognosis, we ran univariate and multivariate COX regression
analyses.

We used GEPIA website to compare the differences of three PR-
DE-IRFeCGs expression in model between HCC and normal tissues.
The Human Protein Atlas database (HPA, proteinatlas.org)
provided free immunohistochemical (IHC) staining images,

FIGURE 3
Identification of PR-DE-IRFeCGs. (A) The extraction process of common DE-FRGs from all the cohorts. (B) Forest plot showing the results of
univariate COX regression analysis of 29 PR-DE-FRGs. (C) Forest plot showing the results of univariate COX regression analysis of 34 PR-DE-IRGs. (D) The
influence of the number of decision trees on the error rate. The x-axis represents the number of decision trees and the y-axis is the error rate (Wu et al.,
2022). (E) The importance score of the PR-DE-IRFeCGs based on the Random Forest algorithm (Wu et al., 2022). The PR-DE-IRFeCGs of the Gini
coefficient method are based on random forest classifier. The x-axis represents the importance index, and the y-axis represents the genes (Wu et al.,
2022). (F) The co-expression network between PR-DE-IRFeCGs and the corresponding PR-DE-IRGs. (G) Heatmap reflecting the expression levels of
these 17 PR-DE-IRFeCGs.
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which reflected the protein expression of these three genes in HCC
tissues and normal liver tissues. We further verified the differential
expression of these three genes between HCC and normal liver
tissues by comparing these IHC staining images.

To further verify the differences in the transcription levels of
these three genes between HCC and normal liver tissues, we further
detected the relative mRNA expression levels of these genes by
quantitative real-time PCR (QRT-PCR) experiment. The Ethics
Committee of the People’s Hospital of Danyang (2022-09-041)
approvaled this study and patients consented to specimen
collection. 18 matched pairs of HCC and adjacent paracancerous
tissues came from the subjects who underwent surgery. Table 2
showed the primer sequences of all genes.

Total RNA was isolated from tissues using the TransZol Up Plus
RNA Kit (TRANS, Beijing, China). According to the manufacturer’s
instructions, cDNA was synthesized by using HiScript® III RT
SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing, China).
QRT-PCRwas performed using the Roche Light Cycler 96 Real-time
Fluorescent Quantitative PCR System (Roche Applied Science,
Mannheim, Germany) and Taq Pro universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China). After normalizing all
measured values to relative expression levels of β-actin using the
2−ΔΔCT method, we compared differences in the expression levels of

G6PD, RRM2 and PRKAA2 between paired tissues using paired
t-tests.

Human hepatoma cells (HuH-7 and 97H) and human normal
hepatocytes (LO2) were purchased from Shanghai Cell Bank of
Chinese Academy of Sciences. These three kinds of cells were
cultured in DMEM (Gibco, Cat#C11995500BT). All media
contain 10% Fetal Bovine Serum (Excell, Cat#FSP500) and 1%
Penicillin-Streptomycin Liquid (Solarbio, Cat#P1400). All cells
were cultured at 37°C in 5% CO2’s humidified incubator. The
culture medium was changed every 24 h, and cells were passaged
every 2–3 days. We again used QRT-PCR to detect the relative RNA
expression of G6PD, RRM2 and PRKAA2 in these three cells. We
further compared the relative RNA expression differences of these
three genes between hepatoma cells and normal hepatocytes.

Verification and comparison of prognostic
predictive model’s performance

To assigning a risk score for each cases from the TCGA,
GSE10143 and ICGC.LIRI cohorts, we apply the coefficients obtained
by the lasso regression to the next formula:Risk score � ∑(PR − DE −
IRFeCGs expression values × corresponding coef f icient). HCC

FIGURE 4
Enrichment of biological functions and pathways involved in common DE-IRGs and common DE-FRGs. (A) Biological functions involved in
commonDE-IRGs. (B) Biological pathways involved in commonDE-IRGs. (C) Biological functions involved in commonDE-FRGs. (D) Biological pathways
involved in common DE-FRGs.
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patients in each cohort were divided into high-risk group and low-
risk group based on the median risk score of each cohort. After
ranking the risk score of each tissue, we visualize the risk score and
survival status of each tissue. We mapped Kaplan-Meier curve to
show the differences in survival probabilities of patients between
high and low risk groups in each cohort. Receiver Operating
Characteristic (ROC) curve was used to evaluate the performance
of prognostic predictive model in predicting the patients’ prognosis
in each cohort. We ran COX regression again to test whether the risk
score could independently affect the prognosis of patients
with TCGA.

A small number of previous studies, including Zhang et al., Long
et al., Wan et al., and Wang et al., have attempted to develop
ferroptosis-related prognostic predictive models to predict the HCC

patients’ prognosis. To further compare the superiority of our model
against these models, we used ROC curve, Kaplan-Meier curve and
C-index to test the performance of these models. After obtaining the
corresponding performance test results for each model, we
compared them.

Deep validation of model performance

We used a heatmap to visualize each clinical feature for each
sample and compared the differences in risk score between
subgroups for different clinical features. Not only that, we also
tested the ability of our model in distinguishing the prognosis of
samples in each clinical feature subgroup.

FIGURE 5
Validation of the biological value of modeled genes in HCC. (A–B) Lasso screening gene process. (C) The co-expression network between
3 modeled genes and the corresponding PR-DE-IRGs. (D–F) Kaplan Meier survival curves of G6PD, RRM2, and PRKAA2. (G–I) Diagnostic ROC curves of
G6PD, RRM2 and PRKAA2. (J–L) Forest plots showing the results of univariate and multivariate COX regression of G6PD, RRM2, and PRKAA2.
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The guiding value of the model in clinical
treatment

Since immunity and ferroptosis play an important role in cancer
treatment, especially HCC, we further explored the predictive value
of our prognostic predictive model in ICIs therapy and
chemotherapy.

The key target genes’ expression of immune checkpoint blockade
(ICB) have been shown to be associated with the clinical effects of ICIs
(Hodi et al., 2010). For example, the expression of programmed death
ligand 1 (PD-L1 or CD274) has gradually become an effective indicator
of immunotherapy response (Hodi et al., 2010). Therefore, after

analyzing the correlation between risk score and CD274 expression,
we also compared its differences between different risk groups. The
online website TIDE (tide.dfci.harvard.edu/) calculated the Tumor
Immune Dysfunction and Exclusion (TIDE), Microsatellite
Instability (MSI), Dysfunction, Exclusion scores of each TCGA HCC
tissue for us. TIDE algorithm and MSI were also used by many
bioinformatics studies to predict the potential response to ICB
therapy (Jiang et al., 2018). The bar chart was used to show their
correlation with risk scores/3 modeled gene expression. Their
differences between different risk groups were also compared.

The R package “pRophetic” also predicted the half-maximal
inhibitory concentration (IC50) of each TCGA HCC tissue for

FIGURE 6
Validation of abnormal expression of 3 modeled genes in HCC. (A–C) IHC staining images from HPA reflecting the protein expression levels of
G6PD, RRM2 and PRKAA2 in HCC/normal tissues. (D–F) Higher relative mRNA expression levels of G6PD, RRM2 and PRKAA2 detected by QRT-PCR in
HCC tissues. (G–I) Higher relative mRNA expression levels of G6PD, RRM2 and PRKAA2 detected by QRT-PCR in Human hepatoma cells (HuH-
7 and 97H).
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8 chemotherapeutic drugs for the HCC’s treatment for us.
The triangle plot were used to show their correlation with risk
score/3 modeled gene expression. Their differences between
different risk groups were also compared.

Construction of a comprehensive
quantitative nomogram for accurate
prognostic prediction

Based on our superior model, we hope to further construct a
quantitative tool that can integrate composite factors to accurately
predict HCC patients’ prognosis. The comprehensive factors
nomogram satisfies this need well. We integrated the clinical
factors of the HCC tissues provided by TCGA, including risk

groups, age, gender, grade and stage to draw the comprehensive
factors nomogram. In this process, the R package “regplot” came
into play. Next, the ROC curve and internal calibration curve were
used to test the ability and accuracy of our nomogram in predicting
prognosis.

Statistical method

Student’s t-test was used to compare the differences of
continuous variables that fitted a normal distribution between
different groups, while a nonparametric test was used to compare
the differences of continuous variables that did not fit a normal
distribution between different groups. The chi-square test or Fisher’s
exact test was used to compare the differences of categorical

FIGURE 7
Verification of prognostic predictivemodel’s performance based on 3 TCGA sets. (A–C) Risk map and survival point map for the tissue of each TCGA
set. (D–F) ROC curve based on the tissue of each TCGA set. (G–I) Kaplan Meier survival curve based on the tissue of each TCGA set. (J–L) Forest plot
showing the results of univariate and multivariate COX regression of the tissue’s risk score in each TCGA set.
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variables between different groups. R programming language
(version 4.1.2) and Perl (version 5.8.3) provided free services for
the statistical processing and plotting in this study. In all statistical
treatments, unless otherwise specified, p < 0.05 was considered
statistically significant.

Results

Identification of PR-DE-IRFeCGs

We obtained 192 DE-FRGs and 954 DE-IRGs from the TCGA
cohort, 183 DE-FRGs and 1266 DE-IRGs from the
GSE36376 cohort, 156 DE-FRGs and 1289DE-IRGs from the

GSE14520 cohort, 178 DE-FRGs and 1491 DE-IRGs from the
GSE25097 cohort, and 183 DE-FRGs and 1173 DE-IRGs from
the ICGC.LIRI cohort respectively. Figure 2A showed the process
of extracting 348 DE-IRGs via Venn diagram.

Based on the β = 4 of TCGA cohort, β = 7 of GSE36376 cohort,
β = 3 of GSE14520 cohort, β = 6 of GSE25097 cohort and β = 8 of
ICGC cohort, we identified the blue (Figure 2B), blue (Figure 2C),
turquoise (Figure 2D), turquoise (Figure 2E) and turquoise
(Figure 2F) modules with the strongest negative correlation with
HCC, respectively. The Venn diagrams again extracted 59 common
IRGs highly related to HCC (Figure 2G) and 47 common DE-IRGs
highly related to HCC, respectively (Figure 2H).

Figure 3A showed the process of extracting 58 DE-FRGs via Venn
diagram. The forest plots showed 29 PR-DE-FRGs and 34 PR-DE-IRGs

FIGURE 8
Verification of prognostic predictivemodel’s performance based on GSE10143 and ICGC.LIRI cohorts. (A–B) Riskmap and survival point map. (C–D)
ROC curve. (E–F) Kaplan Meier survival curve. (G) Forest plot showing the results of univariate andmultivariate COX regression of the tissue’s risk score in
GSE10143 cohort.
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identified by univariate COX regression (Figures 3B, C). The influence
of the number of decision trees on the error rate was shown in
Figure 3D. Figure 3E showed the relative importance scores of these
PR-DE-FRGs ranked from top to bottom. Finally, we screened 17 PR-
DE-FRGs with importance score greater than 1 as characteristic genes
of HCC. Figure 3F visualized the co-expression network consisting of
17 PR-DE-IRFeCGs and the matching PR-DE-IRGs. The heatmap also
showed the expression of these 17 PR-DE-IRFeCGs in HCC and
normal paracancerous tissues (Figure 3G).

Figures 4A, B showed the biological functions and pathways that
commonDE-IRGsmay be involved in, respectively. They are regulation
of response to biotic stimulus, regulation of innate immune response,
positive regulation of defense response, response to oxygen levels,

response to decreased oxygen levels, positive regulation of response
to biotic stimulus, response to hypoxia, response to interleukin-1,
human cytomegalovirus infection, epstein-Barr virusinfection,
MAPK signaling pathway, TNF signaling pathway, kaposi sarcoma-
associated herpesvirus infection, lipid and atherosclerosis, hepatitis B,
IL-17 signaling pathway, focal adhesion and prolactin signaling
pathway. Similarly, Figures 4C, D showed the biological functions
and pathways that common DE-FRGs may be involved in,
respectively. They are cellular response to chemical stress, response
to extracellular stimulus, cellular response to oxidative stress, response
to oxidative stress, response to nutrient levels, response to starvation,
response to metal ion, response to reactive oxygen species, kaposi
sarcoma-associated herpesvirus infection, fluid shear stress and

FIGURE 9
Comparison of prognostic predictive model’s performance based on TCGA cohort. (A–C, G–H) ROC curve based on the model of our IRFeCGs/
Zhang et al./Long et al./Wan et al./Wang et al. (D–F, I–J) Kaplan Meier survival curve based on the model of our IRFeCGs/Zhang et al./Long et al./Wan
et al./Wang et al. (K) C-index based on the model of our IRFeCGs/Zhang et al./Long et al./Wan et al./Wang et al.
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atherosclerosis, mitophagy-animal, c-type lectin receptor signaling
pathway, autophagy-animal, lipid and atherosclerosis, chemical
carcinogenesis-reactive oxygen species, endocrine resistance, renal
cell carcinoma and prolactin signaling pathway.

Screening PR-DE-IRFeCGs for constructing
prognostic predictive model and validation
of the biological value of modeled genes
in HCC

Figures 5A, B showed the process of screening out three PR-
DE-IRFeCGs and calculating the corresponding coefficients by
Lasso regression. The co-expression network consisting of these
three genes and the matching IRGs was shown in Figure 5C.

Figures 5D–F showed that patients in the high expression group
of the three modeled genes had lower survival probabilities. In the
diagnostic ROC curves of all genes, the AUC values were greater
than 0.75, suggesting that these genes have high diagnostic value
in HCC (Figures 5G–I). Forest plots showed that these three
modeled genes expression independently affected the HCC
patients’ prognosis before and after adjusting for other clinical
factors (Figures 5J–L).

To maintain the stability of the model, we tried to validate the
differential expression of 3 genes in the model between HCC and
normal liver tissues using data from an external database. GEPIA
is a web tool server for cancer and normal gene expression
profiling and interactive analyses (Tang et al., 2017). The
boxplots from GEPIA showed that in addition to PRKAA2,
the other two modeled genes were more highly expressed in

FIGURE 10
The relationship between risk score and clinical characteristics. (A) Heatmap showing the different clinical features of each TCGA tissue. (B–I) The
differences in risk scores between different subgroups for each clinical characteristic.
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HCC (Supplementary Figure S1A, B). The deeper staining of IHC
suggests that the expression of the gene protein is higher. IHC
staining images also showed that these three modelled genes had
higher protein expression levels in HCC (Figures 6A–C). Not only
that, the relative mRNA expression values of the three modeled
genes detected by QRT-PCR were all higher in HCC tissues
(Figures 6D–F). At the same time, we also observed that the
relative RNA expression of these three genes in hepatocellular
carcinoma cells was higher than that in normal hepatocytes (only
G6PD and PRKAA2 showed significant statistical significance,
Figures 6G–I).

Verification and comparison of prognostic
predictive model’s performance

Across the 5 cohorts, there were significantly more deaths in the
high-risk group (Figures 7A–C; Figures 8A, B). In the ROC curves of all
cohorts, the AUC values were greater than 0.7 in most years, indicating
that our model performed well in prognostic prediction (Figures 7D–F;
Figures 8C, D). At the same time, we observed lower survival
probabilities in the high-risk group samples (Figures 7G–I; Figures
8E, F). In the three sets of TCGA and GSE10143 cohorts, we found that

risk scores could independently affect the HCC patients’ prognosis
before and after adjusting for other clinical factors (Figures 7J–L;
Figure 8G). These results fully showed that the samples in the high-
risk group have a better outcome.

Compared with the prognostic predictive models constructed by
other studies, our model showed better performance in related tests.
In almost every year, our prognostic predictive model had the
highest AUC value (Figures 9A–C; Figures 9G, H). In addition,
our model was slightly better than that of zhang et al., Long et al. and
Wang et al. in distinguishing HCC tissues’ prognosis (Figures 9D–F;
Figures 9I, J). Higher C-index is associated with better predictive
performance of prognosis (Schröder et al., 2011). We also observed
that the C-index of our model was higher than that of other models
(Figure 9K). These test results strongly proved the superiority of our
prognostic predictive model.

Deep validation of model performance

The different clinical features of each TCGA tissue was visualized in
Figure 10A. We also observed higher risk scores in the dead group,
higher grade group, higher stage group and higher T satge group
(Figures 10B–I). These results showed that the higher the malignant

FIGURE 11
Deep validation of model’s performance. (A–L) The Kaplan Meier survival curves demonstrating the ability of the model to distinguish prognosis in
different clinical subgroups.
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degree of the tumor in the high-risk sample. In addition, we observed
that our prognostic predictive model maintained excellent ability to
distinguish prognosis in other clinical subgroups except the
age ≤60 years group (Figures 11A–L). There was no doubt that
these results confirm that the model still had an excellent ability to
distinguish prognosis in clinical subgroups.

The guiding value of the model in clinical
treatment

Tissues with higher CD274 expression and lower TIDE scores
were considered to have favorable immune responses. The circle

diagram showed a significant positive correlation between
CD274 expression and G6PD expression/RRM2 expression/risk
score (Figure 12A). The TIDE score showed a significant negative
correlation with the three modeling genes’ expression/risk score
(Figure 12B). From the box chart, we can see that the samples in
the high-risk group have higher CD274 expression and lower
TIDE score (Figure 12C). The results of further difference
analysis also supported the results of the above correlation
analysis. These results all suggested that tissues with higher
risk score/G6PD’s expression/RRM2’s expression may benefit
more in ICIs.

Figure 12D also showed a broad correlation between risk score/
3 modeled genes’ expression and IC50 of eight chemotherapeutic

FIGURE 12
The guiding value of the model in clinical treatment. (A) The circle diagram showing the significant positive correlation between CD274 expression
and G6PD expression/RRM2 expression/risk score. (B) Thematrix diagram showing the negative correlation between TIDE score and the three modeling
genes’ expression/risk score. (C) Boxplot showing the differences in CD274 expression/TIDE score/MSI score/Dysfunction score/Exclusion score
between different risk groups. (D) The triangle plot showing a broad correlation between risk score/3 modeled genes’ expression and IC50 of eight
chemotherapeutic drugs. (E) Boxplot showing the differences in the IC50 of eight chemotherapeutic drugs between different risk groups.
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drugs. Similarly, the results of further difference analysis also
supported the results of these correlation analysis (Figure 12E).
These results suggested that risk score/3 modeled genes’ expression
can be used to predict the sensitivity of HCC patients to these
8 chemotherapeutic drugs. These results confirmed that the risk
score was significantly correlated with the efficacy of
immunotherapy and chemotherapy.

All in all, the above analysis results proved the potential guiding
value of our prognostic predictive model in the HCC patients’
clinical treatment.

Construction of a comprehensive
quantitative nomogram for accurate
prognostic prediction

A variety of potential prognostic clinical factors, including age,
sex, clinical grade, clinical stage and risk group, were identified as
constituent members of nomogram. As can be seen from
comprehensive quantitative nomogram, we could quantify
various clinical indicators to predict the HCC patients’ survival
probabilities in 1-, 2-and 3-year (Figure 13A). The ROC curve
confirmed the good performance of nomogram (Figures 13B–D).
From the internal calibration curve, we observed that the predicted
survival probability of comprehensive quantitative nomogram was
basically consistent with the actual survival probability (Figures
13E–G).

Discussion

HCC is both one of the most common cancers and a leading
cause of cancer-related death (Pan et al., 2022). The main
treatment methods for HCC include surgery, radiofrequency
ablation, and biological therapy (Yao et al., 2021). Although
some HCC patients are cured by partial hepatectomy, the
overall survival outcome of HCC remains poor (Yao et al.,
2021). The poor prognosis of HCC can be attributed to the
fact that the diagnosis is usually made at an advanced stage of
the cancer (Sun et al., 2020). Therefore, the development of
optimal risk stratification scores and models is crucial to
identify high-risk groups, which will benefit the surveillance
and prevention of HCC (Shah et al., 2023). This study ran novel
algorithms such as WGCNA and Random Forest to screen PR-
DE-IRGs highly related to HCC and characteristic PR-DE-FRGs
to run co-expression analysis for 17 PR-DE-IRFeCGs. Lasso
regression further identified 3 PR-DE-IRFeCGs for us and
constructed a prognostic predictive model. A series of analysis
methods, including ROC curves, Kaplan-Meier survival curves
and Cox regression, fully verified the diagnostic and prognostic
value of modeling genes in HCC. GEPIA and IHC, QRT-PCR
experiments further confirmed the upregulated expression of
modeling genes in HCC. Our prediction model performed well
in a variety of tests based on multiple cohorts. Not only that, it
showed unique advantages compared with other related models.
At the same time, it also showed outstanding guiding value in
immunotherapy and chemotherapy response in patients with

HCC. As a quantitative tool with repeatedly tested performance,
the comprehensive quantitative nomogram we constructed could
accurately predict HCC patients’ survival probability.

Although we have used multiple datasets, comprehensive
online website, and experimental methods to fully verify the
biological value of the three modeled genes in HCC, further
support from a large number of literature reviews is still
necessary. As a catalytic subunit of ribonucleotide reductase,
RRM2 can significantly affect DNA replication and cell
proliferation (Yang et al., 2021c). Numerous studies have
observed that RRM2 is overexpressed in many cancers,
including renal cell carcinoma (Xiong et al., 2021), colorectal
cancer (Liu et al., 2013), lung cancer (Jin et al., 2020), bladder
cancer (Morikawa et al., 2010), and head and neck cancer
(Morikawa et al., 2010), and is regarded as a promoter for
cancer progression and therapeutic target (Zhan et al., 2021).
In addition, RRM2 have been reported in previous studies as an
endogenous ferroptosis inhibitor, which maintains glutathione
synthesis by regulating glutathione synthase, thereby exerting
an anti-ferroptotic effect in HCC (Yang et al., 2020). G6PD, a
key molecule involved in pentose phosphate pathway, has been
reported to be involved in erastin-induced ferroptosis in non-
small cell lung cancer cells. As an adverse prognostic factor,
G6PD has also been observed to promote the progression of
many types of cancer (Hu et al., 2013; Chen et al., 2018; Feng
et al., 2020). PRKAA2, also known as AMP-activated protein
kinase (AMPK), is an important energy-sensitive enzyme used
to monitor the energy state of cells (Weijiao et al., 2021). It has
been found that inhibition of AMPK can reduce the activity of GBM
tumor cells (Chhipa et al., 2018). In addition, the high expression of
PRKAA2 may indicate a poor prognosis in head and neck squamous
cell carcinoma (Chhipa et al., 2018) and colorectal cancer (Zhang et al.,
2020). Studies also have found that cancer cells with high basal AMPK
activity are resistant to ferroptosis, and AMPK inactivation makes these
cells sensitive to ferroptosis (Lee et al., 2020). These previous results are
consistent with our results, which well confirm the biological role of the
three modeled genes in cancer, especially those related to ferroptosis.
The significant biological value of these genes in cancer also fully
supports the stability of gene sources in the construction of our
prognostic predictive model.

We have observed that several previous studies had focused
on the identification of ferroptosis-related genes signature in
HCC, including signature of five ferroptosis-related genes
constructed by Zhang et al. (2022), the signature of four
ferroptosis-related genes constructed by Long et al. (2022),
the signature of five ferroptosis-related genes constructed by
Wan et al. (2022), and the signature of seven ferroptosis-related
genes constructed by Wang et al. (2022). It is worth mentioning
that these signature have their own advantages. Unfortunately,
they all focused solely on ferroptosis and ignored the immunity
that often coexists with ferroptosis. Our study also focused on
the identification of PR-DE-IRGs, PR-DE-FRGs, and PR-DE-
IRFeCGs, which is a novelty from these studies and is more in
line with the synergy of ferroptosis and immunity in cancer
progression. Obviously, we extensively used 5 datasets from
3 databases to identify common DE-IRGs and DE-FRGs, which
well guaranteed the accuracy of the analysis results. In the
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identification of DE-IRGs highly related to HCC, we also used a
novel algorithm-WGCNA based on multiple datasets
respectively. And we further used the machine learning
algorithm-random forest to screen characteristic PR-DE-
FRGs in HCC. These are not covered in other studies. In the
end, we used the minimum number of genes among several
signatures to conveniently and efficiently construct this novel
signature. To ensure the stability of the gene source of the model,
we also fully verified the significant biological value of the three
modeled genes in HCC through a variety of methods, including
several experimental methods. We also observed that the most
performance test cohort and depth test methods were used in our

study, which more fully confirmed the superior performance of
our signature. Surprisingly, our model also performed the best in
the corresponding tests, which was not only reflected in the ROC
curve and C-index, but also in the part of Kaplan-Meier curve. In
the field of clinical application, our model and 3 modeled genes
showed significant guiding value in almost all immunotherapy
and chemotherapy responses, which was also superior to other
models.

Although we have identified and verified a novel immune-
related ferroptosis signature with excellent predictive
performance and clinical guidance value through complex
bioinformatics methods, this study still has many limitations.

FIGURE 13
Construction and verification of a comprehensive quantitative nomogram. (A) The comprehensive quantitative nomogram quantifying various
clinical indicators to predict the HCC patients’ survival probabilities. (B–D) The ROC curves confirming the good performance of nomogram in predicting
survival probability. (E–G) The internal calibration curves confirming the prediction accuracy of nomogram.
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Due to the great difficulty of collecting relevant data in
clinical practice, the performance of the model still lacks
verification of data from the latest clinical tissues. At the
same time, the limited data types limited the in-depth
validation of the model.
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