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Background: Pancreatic ductal adenocarcinoma (PDAC) develops rapidly and has
a poor prognosis. It has been demonstrated that pancreatic ductal
adenocarcinoma and chronic pancreatitis (CP) have a close connection.
However, the underlying mechanisms for chronic pancreatitis transforming
into pancreatic ductal adenocarcinoma are still unclear. The purpose of this
study was to identify real hub genes in the development of chronic
pancreatitis and pancreatic ductal adenocarcinoma.

Methods: RNA-seq data of chronic pancreatitis and pancreatic ductal
adenocarcinoma were downloaded from the Gene Expression Omnibus (GEO)
database. Weighted gene co-expression network analysis (WGCNA) was
performed to construct a gene co-expression network between chronic
pancreatitis and pancreatic ductal adenocarcinoma. GEO2R and a Venn
diagram were used to identify differentially expressed genes. Then visualized
networks were constructed with ClueGO, and modules of PPI network were
calculated by MCODE plugin. Further validation of the results was carried out in
two additional cohorts. Analyses of CEL-coexpressed genes and regulators
including miRNAs and transcription factors were performed by using the
corresponding online web tool. Finally, the influence of CEL in the tumor
immune microenvironment (TIME) was assessed by immune contextual analysis.

Results:With the help ofWGCNA andGEO2R, four co-expressionmodules and six
hub genes were identified, respectively. ClueGO enrichment analysis and MCODE
cluster analysis revealed that the dysfunctional transport of nutrients and trace
elements might contribute to chronic pancreatitis and pancreatic ductal
adenocarcinoma development. The real hub gene CEL was identified with a
markedly low expression in pancreatic ductal adenocarcinoma in external
validation sets. According to the miRNA-gene network construction, hsa-miR-
198may be the keymiRNA. A strong correlation exists betweenCEL and TIME after
an evaluation of the influence of CEL in TIME.

Conclusion:Our study revealed the dysfunctional transport of nutrients and trace
elements may be common pathogenesis of pancreatic ductal adenocarcinoma
and chronic pancreatitis. Examination on these common pathways and real hub
genes may shed light on the underlying mechanism.
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Introduction

According to the latest global cancer statistics, pancreatic ductal
adenocarcinoma (PDAC) is the third leading cause of cancer-related
death worldwide (Siegel et al., 2023). In the United States, PDAC is
predicted to be the second leading cause of cancer-related deaths by
2030 (Rahib et al., 2014). At present, PDAC is difficult to diagnose at
an early stage due to its hidden location, lack of specific symptoms,
and aggressive behavior, which often delays effective treatment.
Therefore, it is imperative to develop tools for detecting early-
stage PDAC before it spreads beyond the pancreas and
progresses into a late stage. Chronic pancreatitis (CP) is a
spectrum of fibro-inflammatory disease that causes progressive
damage to the parenchyma of the pancreas. It is well recognized
that CP is a risk factor for PDAC (Monroy-Iglesias et al., 2021). A
large retrospective cohort study found that patients with CP had a
14-fold increased risk of developing PDAC (Lowenfels AB et al.,
1993). Around one in six patients was diagnosed with PDAC within
2 years of being diagnosed with CP (Kirkegard et al., 2017).
Pancreatic acinar cell metaplasia is observed when CP progresses
to PDAC (Yang et al., 2022). Inflammation-associated signals
regulate PDAC progression and therapeutic resistance by
promoting aberrant cell proliferation, metastasis, and inhibiting
apoptosis (Hausmann et al., 2014). Although more and more
studies have substantiated a significant link between CP and
PDAC, genetic research in this area is still limited and needs to
be explored.

In recent years, bioinformatics has become a growing research
hotspot for analyzing gene expression profiles, and comorbidity
networks can be used to analyze multimorbidity (Su et al., 2021; Yao
et al., 2021). Employing two original microarray datasets obtained
from the Gene Expression Omnibus (GEO) database, we
investigated co-expression modules and differentially expressed
genes (DEGs) between CP and PDAC in the present study. As a
result, we found the CEL to be the real hub gene related to CP and
PDAC, and the dysfunctional transport of nutrients and trace
elements might play a pivotal role in the development of CP and
PDAC. Additionally, the role of CEL in the tumor immune
microenvironment (TIME) of PDAC has also been identified. As
far as we know, this may be the first time to perform comorbidity
analysis to explore the real hub gene and its characteristics in the
development of CP to PDAC.

Materials and methods

Gene expression profile data collection

Gene expression profiles were downloaded from the GEO
database using the search terms “chronic pancreatitis” and
“pancreatic ductal adenocarcinoma.” Following criteria were used
to screen the obtained datasets: First, all sequencing data were
obtained from human pancreatic tissue; Second, no patients had
received any chemoradiotherapy prior to the surgical resection;

Third, WGCNA accuracy requires at least 10 samples in each
discovery group. Finally, the four GEO datasets numbered
GSE143754, GSE91035, GSE101462 and GSE151945 were
selected for further analysis. ACLBI database (https://www.aclbi.
com/static/index.html#/) and R software (version 3.4.1) were used to
normalize microarray data using the normalize.quantiles function of
the preprocessCore package. Then normalized data on the platform
were used to convert probes to gene symbols. Raw data and code are
available in a GitHub repository (https://github.com/KaiGuo2023/
KaiGuo-CP-PDAC.git).

Weighted gene co-expression network
analysis

Weighted networks were adopted to quantify network
connections by assigning connection strengths to gene pairs.
In this study, a weighted gene co-expression network analysis
(WGCNA) package (https://cloud.oebiotech.cn/task/detail/
wgcna-oehw/) was used to analyze the association between
gene modules and traits in CP and PDAC (Langfelder and
Horvath, 2008). Gene co-expression networks are scale-free
weighted gene networks. To meet the scale-free network
distribution preconditions, a power value for the adjacency
matrix weight parameter must be chosen. Based on the power
value set between 1 and 30, the average connectivity and
correlation coefficient for the network were calculated. The
higher the correlation coefficient (maximum of 1), the closer
network is to a scale-free distribution. And at the same time, gene
connectivity must be maintained. The DEGs were then divided
into several modules by using the selected power values based on
a weighted co-expression network model. An analysis of
clustering dendrograms revealed the results of dynamic tree
cutting and merging. The module structure was visualized
through a heat map and a topological overlap matrix (TOM)
plot. A Pearson correlation algorithm was used to calculate the
correlation coefficient and p-value of module characteristic genes
and traits. Modules associated with individual traits were
screened at a threshold of 0.3 correlation coefficient and a
p-value of 0.05. Finally, the “Module Eigengenes” algorithm
was used to determine the eigengene values of specific
modules, and the gene expression profiles of individual
modules were summarized. For each trait-associated module,
we calculated correlations (GS, Gene Significance) between
module gene expression and corresponding traits separately,
as well as correlations (MM, Module Membership) between
module gene expression and module eigengenes. Scatter plots
were obtained in accordance with the above two values.

Detection of real hub genes in CP and PDAC

These modules were selected because they were highly
relevant to CP and PDAC, respectively (red, cyan, black and
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lightcyan). The intersection of these genes with high correlation
coefficients was then identified and visualized with the online
Venn diagram tool (https://hiplot-academic.com/basic/venn).
The DEGs were screened out with the GEO2R online tool
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). The DEGs were
identified by multiplying | log2(fold change) | by 1 and
adjusting p-values by 0.05 for each fold change. With fold
change values and p-adjustments, a volcano plot was
constructed. Subsequently, Venn diagrams were used to
visualize the consistently regulated genes among the
significant DEGs. A subsequent analysis of these overlapping
DEGs was conducted.

ClueGO, a Cytoscape plug-in, was used to perform functional
enrichment analysis on shared genes to determine their biological
relevance. PPI networks have a topological property that allows
investigation of key genes through Metascape (http://metascape.
org), and a confidence score >0.7 was set as the cut-off value. The
Molecular Complex Detection (MCODE) tool in Metascape was
used to identify highly interconnected unique clusters in CP and
PDAC. Then, the DAVID tool (https://david-d.ncifcrf.gov/) was
used to analyze biological processes among overlapping DEGs.
The cytoHubba of Cytoscape was conducted to score each node
gene by the top 7 algorithms (MCC, MNC, Degree, EPC,
Closeness, Radiality, and Stress). Upset plots were
subsequently drawn with the above scores to visualize the
intersections across overlapping gene sets. Real hub genes
were derived by taking the intersection of hub genes in
WCGNA co-expression network and hub genes in PPI
network, and the differences between two groups at each gene
of interest were visualized with box plots.

Validation of real hub genes through DEGs
analysis

DEGs analysis was carried out using additional CP and PDAC
data sets (GSE101462 and GSE151945) to verify the hub genes in
these two entities. DEGs between CP and PDAC samples were
identified using the ACLBI database (p < 0.05). Meanwhile, GO
and KEGG databases were used to annotate DEGs. The mutation
data of above real hub gene was obtained from TCGA at
cBioPortal Cancer Genomics (http://www.cbioportal.org/
public-portal/index.do). We compared the expression levels of
real hub gene in PDAC and normal tissues using GEPIA database
(http://gepia.cancer-pku.cn). A validation of the
immunohistochemistry of the real hub gene was also
conducted using the Human Protein Atlas (HPA) database
(http://www.proteinatlas.org/). Clinical information of the
178 patients with PDAC was available in the TCGA database
(https://tcga-data.nci.nih.gov/tcga/). According to real hub gene
median expression, clinical data were extracted from the TCGA
database and divided into high and low mRNA expression
groups. Baseline patient characteristics and presenting clinical
features were summarized according to Xiantao tool (https://
www.xiantao.love/products). Logistic regression analysis was
used to determine the diagnostic performance of real hub gene
in the differential diagnosis between TCGA and GTEx normal
pancreas samples and PDAC samples.

Interactions between CEL and its co-
expressed genes

To determine which genes were co-expressed with CEL, the
LinkedOmics database (http://www.linkedomics.org) was used to
analyze the transcriptome data of PDAC from the TCGA (Vasaikar
et al., 2018). The online analysis tool of this database produced a
volcano plot of genes positively and negatively correlated with CEL
expression and a heatmap of the top 50 positively/negatively related
genes. Based on the DAVID database, GO and KEGG analyses were
performed for theCEL co-expression genes with respect to biological
process (BP), cellular component (CC), molecular function (MF),
and KEGG pathway.

Predicting upstream miRNAs and
transcription factors of CEL

It has been demonstrated that microRNAs (miRNAs) can
influence gene expression by inhibiting translation or promoting
mRNAs degradation (Correia de Sousa et al., 2019). Therefore, a
further investigation was conducted on whether some miRNAs
were involved in regulating risk genes in CP and PDAC. HMDD
(http://cmbi.bjmu.edu.cn/hmdd) was used to obtain human
miRNA and miRNA-disease association data. The miRNA-
target relationships were obtained from miRWalk (http://
mirwalk.umm.uni-heidelberg.de/). To construct the gene-TF
regulatory network, the Transcriptional Regulatory
Relationships Unraveled by Sentence-based Text mining
(TRRUST, http://www.grnpedia.org/trrust/) database was used
to identify the transcription factors (TFs) of the real hub gene
between CP and PDAC.

Assessing the landscape of tumor immune
microenvironment

Immune cells play a fundamental role in the development of
diseases. With the R package “estimate” and Xiantao online tool,
immune and stromal components of each sample were
determined. A single sample gene-set enrichment analysis
(ssGSEA) score based on 24 immune-associated gene sets
was referred to assess the enrichment level and activity of
several immune cells in PDAC. Through the deconvolution
method, TIMER provides estimates of the levels of tumor-
infiltrating immune cells, including B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells
(https://cistrome.shinyapps.io/timer/). TCGA RNA-seq data
were retrieved to evaluate eight immune checkpoint-related
genes. The Wilcoxon rank sum test or the Kruskal–Wallis
test was used for two-sample or multiple-sample group
comparisons, respectively. TISIDB database (http://cis.hku.
hk/TISIDB/index.php) was deployed to explore the
correlation between CEL expression and immune subtypes
and immunomodulators in PDAC. TIDE algorithm was used
to predict potential ICB responses. The survival analyses were
conducted using the Kaplan-Meier (KM) method to examine
the relationships between immune subgroups and clinical
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characteristics, and the log rank tests were used to detect the
differences between them.

Results

Information for GEO database

On the basis of the prior criteria, the four GEO datasets
numbered GSE143754, GSE91035, GSE101462 and
GSE151945 were selected for further analysis. Table 1
summarizes the information of the four datasets, including GSE
number, platform, sample, and type of groups. WGCNA was
performed on GSE143754 and GSE91035, followed by validation
on the remaining two sets.

Co-expression modules in CP and PDAC

For the construction of a scale-free network in CP and
PDAC, the adjacency matrix weight parameter power was
selected to be 30 and 20 respectively (Figures 1A, B). A
weighted co-expression network model was constructed
based on selected power values. Finalized in CP, 1773 genes
were divided into 8 modules (Figure 1C), while 8,632 genes in
PDAC were divided into 22 modules (Figure 1D), of which the
gray module (gray) consisted of genes that could not be assigned
to any module without any reference significance. After
analyzing gene module interactions, hierarchical clustering
dendrograms and modules were used to generate Tom plots
of gene networks (Figures 1E, F). The genes with similar
expression patterns were combined into the same module.
The Y-axis represents the level of intramolecular connectivity
to genes at the top of the module branch that have greater
connectivity to other genes within the module. Using
hierarchical clustering and correlation analyses, the
correlations between the modules and phenotypes (control
and CP/PDAC) were calculated (Figures 1G, H). There were
two modules “red” and “cyan” with a high association with CP
(red module: r = 0.83, p = 1e-04; cyan module: r = −0.81, p = 2e-
04). Moreover, a total of 22 modules were identified in
GSE91035. The “black” (r = 0.84, p = 7e-10) and “light cyan”
(r = −0.83, p = 2e-09) modules were highly associated
with PDAC.

A total of 406 genes were included in the red module, which
displayed a positive correlation with CP (Figure 2A). There were
790 genes in the cyan modules that were negatively correlated

with CP (Figure 2B). In GSE91035, black and light cyan module
including 370 and 2032 genes, respectively (Figures 2C, D). A
total of 212 genes were shared in the highly correlated modules of
CP and PDAC, and this component of the overlap was closely
related to their pathogenesis (Figure 2E). Microarray results were
standardized and DEGs (165 in GSE143754 and 3,120 on
GSE91035) were identified (Figures 2F, G). In the intersection
of the Venn diagram, 85 overlapping DEGs were identified
(Figure 2H).

The unique gene signatures of CP and PDAC

Utilizing ClueGo, we analyzed the GO enrichment of
212 selected shared genes to explore their potential functions.
The results revealed that these genes were enriched in
detoxification of copper ion, cysteine and methionine
metabolism, response to hyperoxia, protein digestion and
absorption, organ or tissue specific immune response, fat
digestion and absorption and long-chain fatty acid transport
(Figure 3A). Detoxification of copper ion accounted for 60%
of total GO terms, indicating its importance in both CP and
PDAC. “Cysteine and methionine metabolism” and “response to
hyperoxia” ranked second at the same time, and each accounted
for 10%. Besides, “protein digestion and absorption” and “organ
or tissue specific immune response” accounted for 6.67%,
respectively. “Fat digestion and absorption” and “long-chain
fatty acid transport” also accounted for 3.33%, respectively
(Figure 3B).

Based on above 85 overlapping DEGs data, 4 clusters were
created using MCODE algorithm (confidence score >0.7 was set
as the cutoff) in Metascape. Cluster 1 consisted of 11 nodes
(score: 51) (Figure 4A); Cluster 2 consisted of 6 nodes (score: 15)
(Figure 4B); Cluster 3 consisted of 6 nodes (score: 8) (Figure 4C);
Cluster 4 consisted of 5 nodes (score: 5) (Figure 4D). Functional
annotation with DAVID was carried out for each gene cluster.
According to functional enrichment analysis, the 4 clusters
mainly involved in protein digestion and absorption,
detoxification of copper ion, long-chain fatty acid transport, as
well as in vasculature development (Figure 4E). A total of seven
algorithms were then used to calculate the gene score for each
node. In Figure 4F, 9 hub genes were identified with boxes by
using R package “UpSet.” A total of 6 hub genes (ALB, CEL,
CELA3B, CTRL, PLA2G1B and SYCN) were selected for further
validation analysis from both the WCGNA co-expression
network and PPI networks (Figure 4G; Supplementary
Figure S1).

TABLE 1 Summary of GEO datasets containing the CP/PDAC patients.

ID GSE number Platform Samples Group

1 GSE143754 GPL17586 6 CP patients and 9 controls Discovery

2 GSE91035 GPL22763 25 PDAC patients and 8 controls Discovery

3 GSE101462 GPL10558 10 CP patients and 4 PDAC patients Validation

4 GSE151945 GPL17077 3 CP patients and 3 PDAC patients Validation
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FIGURE 1
Co-expression networks constructed for CP and PDAC datasets. (A, B) Network topology analysis of different adjacency matrix weight parameter
power. As shown on the left, the power affected the scale-free topology fit index. And in the right diagram, the power affected mean connectivity. (C, D)
Genome dendrograms obtained by hierarchical clustering using mean linkage. Below the dendrogram were colored rows showing the allocation of
modules determined by Dynamic Tree Cutting. (E, F) All genes were shown as a heat map plot with their topological overlap matrix (TOM). Red
indicated higher overlap, while light indicated low overlap. Gene dendrograms and module assignments were shown on the left side and top side,
respectively. (G, H) Heap of module-trait relationships in CP (G) and PDAC (H). CP, chronic pancreatitis; PDAC, pancreatic ductal adenocarcinoma.
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Validation of the expression of hub genes

In validation cohorts (GSE101462 and GSE151945), we
conducted differential gene analysis between CP and PDAC to
validate real hub gene. It can be seen from the results that CEL
gene exhibited significant differences in expression at the both
validation sets (p < 0.05). And the expression of ALB, CELA3B,
CTRL, PLA2G1B and SYCN genes between CP and PDAC groups
did not simultaneously exhibit statistical differences in validation
set (Figure 5A). So, the real hub gene carboxyl ester lipase (CEL),
also known as bile salt-dependent lipase (BSDL), which may play
a pivotal role in both CP and PDAC. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were used to analyze the DEGs in validation cohorts respectively.
For GO enrichment analysis, it can be found that the DEGs were
mainly enriched in “Digestion,” “Cobalamin metabolic process,”
“Lipid digestion,” “Intestinal lipid absorption” and “Intestinal

cholesterol absorption” (Figure 5B). The KEGG pathway
enrichment results showed that the DEGs were enriched in
“Pancreatic secretion,” “Protein digestion and absorption,”
“Glycerolipid metabolism,” “Fat digestion and absorption,”
and “Steroid biosynthesis” (Figure 5C). In TCGA tumor
samples, CEL mutation status was analyzed using the
cBioPortal tool. The CBioPortal tool indicates that about 2.2%
of pancreatic cancer patients have CEL gene mutations. Missense
mutation and deep deletion were the most common CEL variant
type (Figure 5D). In PDAC tissues, the GEPIA database showed
significantly low expression of CEL mRNA (Figure 5E).
Furthermore, the CEL protein expression was explored using
HPA database. The typical immunohistochemistry result
revealed downregulated CEL expression in PDAC tissues
(Figure 5F). CEL gene was highly accurate in predicting the
outcome of both normal and PDAC tissue (AUC = 0.968, CI
= 0.947–0.990) (Figure 5G). A total of seven clinical features were

FIGURE 2
The Shared Genes in CP and PDAC. (A–D) Scattered plots were generated from the results of GS and MM. MM values in the module correspond to
the abscissa, GS values for each gene in the trait correspond to the ordinate, and each point in the picture corresponds to one gene in the module. (E)
Venn diagram of the shared genes between the two CPmodules and two PDACmodules. (F) Volcanomap of GSE143754. (G) Volcanomap of GSE91035.
Upregulated genes were marked in blue; downregulated genes were marked in red. The figure shows two vertical dashed lines, representing log2
(FC) at −1 and 1; Horizontally dashed line represents adjusted p-value at 0.05. (H) Venn diagram of DEGs in GSE143754 and GSE91035 gene chips. GS,
Gene Significance; MM, Module Membership; DEGs, differentially expressed genes.
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analyzed based on the TCGA database (age, gender, T stage, N
stage, M stage, pathologic stage and anatomic neoplasm
subdivision). As the result suggested (Supplementary Table
S1), alteration in gene was significantly associated with N
stage (p = 0.010), pathologic stage (p = 0.007), and anatomic
neoplasm subdivision (p = 0.02).

CEL Co-expression networks and
enrichment analyses

The above results indicated that CEL was significantly
associated with CP and PDAC. The interaction between CEL
gene and its co-expressed genes in pancreatic cancer was then
explored. There were 1920 genes (red dots) positively related to
CEL in PDAC, and 208 genes (green dots) negatively related (false
discovery rate (FDR) < 0.01) (Figure 6A; Supplementary Table S2).
DAVID was used to analyze GO and KEGG pathways related to
these co-expressed genes. The results showed significant
enrichment of the biological process (BP) terms “digestion,”
“regulation of hormone secretion,” and “regulation of peptide
hormone secretion”. The enriched cellular component (CC)
terms mainly included “transmembrane transporter complex,”
“basolateral plasma membrane,” and “ion channel complex.”
The enriched molecular function (MF) terms mainly included
“metal ion transmembrane transporter activity,” “monovalent

inorganic cation transmembrane transporter activity,” and
“sodium ion transmembrane transporter activity.” The KEGG
pathway analysis showed that the co-expressed genes were
mainly related to “pancreatic secretion,” “protein digestion and
absorption,” and “maturity onset diabetes of the young”
(Figure 6B). As can be seen, we found that the biological
functions of co-expressed genes with CEL were basically
consistent with the above 85 overlapping DEGs data. Figures
6C, D showed the top 50 positively and the top 50 negatively
co-expressed genes associated with CEL, respectively.

Construction of common miRNA gene
network

The HMDD database was used to identify miRNAs
associated with CP and PDAC, respectively. Subsequently,
CEL-target miRNAs were predicted. The Venn diagram was
applied to obtain the miRNA intersection of CEL, CP and PDAC
(Supplementary Tables S3–S5). The hsa-miR-198 was the
intersection of these three miRNA microarray sets
(Figure 7A). With the assistance of miRWalk, miRNA-target
gene interactions were predicted (Figure 7B). The ARHGAP1,
SND1, CDKN1A, NCS1, CCND2, NTRK3, BCL2L1, FSTL1,
MAP2K7 and CEL were potential target genes of hsa-miR-
198. The TRRUST database indicated that 3 TFs (STAT5A,

FIGURE 3
The enrichment analysis was performed by ClueGO tool. (A) Interaction network between GO terms (different pathways were represented by
different colors). (B) Pie chart showed the percentage of GO terms in the shared genes. GO, gene ontology.
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STAT5B and PTF1A) may regulate the expression of CEL gene
(Figure 7C).

Characterization of the immune cell
infiltration landscape

The EstimateScore, StromalScore, and ImmuneScore were
assigned to each PDAC sample according to the estimation
algorithm. In the low-CEL group, EstimateScore, ImmuneScore,
and StromalScore were less than in the high-CEL group (p < 0.05)
(Figure 8A). Moreover, we found that cytotoxic cells, DC cells,
eosinophils, iDC, macrophages, mast cells, neutrophils, NK cells,
Tem, and Th17 cells were increased in the high-CEL group, while the
opposite result was found in the low-CEL group (Figure 8B). It was
examined whether CEL influenced immune infiltration in PDAC
using the TIMER database. Remarkably, CEL expression was
positively correlated with the infiltration of CD8+ (p = 6.78e-01)
cells and CD4+ (p = 7.50e-01) cells. In contrast, CEL expression was
negatively correlated with the infiltration of B cells (p = 2.51e-01),

macrophages (p = 2.93e-01), neutrophils (p = 3.86e-01), and
dendritic cells (p = 3.10e-01) (Figure 8C). As a result of these
studies, CEL might play a pivotal role in immune infiltration in
PDAC. Furthermore, we constructed a heatmap for known immune
checkpoint biomarkers, which indicated differential expression of
HAVCR2 and PDCD1 between the two groups. However, other
immune checkpoints (CD274, CTLA4, LAG3, PDCD1LG2, TIGIT
and SIGLEC15) may not involve in the CEL-related immune
regulations (Figure 8D). Immune subtypes of solid tumors have
been divided into six categories including e C1 (wound healing), C2
(IFN-gamma dominant), C3 (inflammatory), C4 (lymphocyte
depleted), C5 (immunologically quiet), and C6 (TGF-b
dominant) (Thorsson et al., 2018). With the exception of C5, all
other PDAC immune subtypes (C1, C2, C3, C4, and C6) were
correlated with CEL expression in this study (Figure 8E).

Given the immune microenvironment is a mediator of ICB
responses, we analyzed how that score correlated with the signature
of the ICB response. Low expression of CEL had lower TIDE scores
compared with high expression of CEL (Figure 9A). Our results
suggested that patients with higher expression of CEL were more

FIGURE 4
PPI network, module analysis, and hub gene identification. (A–D) Fourmodule analyses constructed from the PPI network. (E)GObiological process
of the four clusters. (F) Upset diagram identified nine most critical genes that were shared by seven feature selection algorithms. (G) Venn diagram
presented real hub genes under WCGNA co-expression and those involved in the PPI network. PPI, Protein-protein interactions; GO, gene ontology.
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likely to have greater opportunities of antitumor immune escape. In
this study, Pearson’s correlation analysis was applied to assess the
association of candidate gene expression with immunoinhibitors
and immunostimulators. And a total of 8 immunoinhibitors and

12 immunostimulators of CEL-expression-related
immunomodulators were identified (Figures 9B, C).

Subsequently, the prognostic values of CEL expression levels for
overall survival (OS) and recurrence free survival (RFS) in various

FIGURE 5
Identification of the real hub DEGs. (A) Boxplots of the expression of real hub genes in validation sets. (B, C) The DEGs from validation sets were
employed for GO and KEGG analysis, respectively. (D) The mutation information for CEL gene in cBioPortal. (E) Boxplots showed the mRNA expression
level of CEL. Red represents normal, blue represents tumor. (F) The CEL protein expression level in the HPA database. (G) ROC curve of CEL relative
expression for diagnosis of PDAC. The abscissa was the false positive rate, and the ordinate was the true positive rate. DEGs, differentially expressed
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; HPA, Human Protein Atlas; PDAC, pancreatic ductal adenocarcinoma.
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immune subgroups of PDAC were further determined with KM
analysis. PDAC patients with lowCEL expression had a favorable OS
among enriched B cells, CD4+ cells, and decreased CD8+ cells
(Figure 10A). Low CEL expression had a favorable RFS in all
immune cell subgroups (Figure 10B). According to the analysis,
immune infiltration may influence cancer patient prognoses in part
due to low expression of CEL in PDAC. However, most of them did
not show a statistically significant difference.

Discussion

PDAC is a highly aggressive lethal malignancy with a poor
prognosis due to the lack of early diagnosis and limited response to
treatments (Klein, 2021). CP is a progressive inflammatory disease
which results in the destruction of the acinar cells and the formation
of significant pathologic fibrosis. CP is one of the risk factors for the
development of PDAC, however, there is also the possibility that CP

may arise from PDAC (Roberts et al., 2016). Since 1993, Lowenfels
et al. (Lowenfels AB et al., 1993) reported that patients with CP had a
standardized incidence ratio of 26.3 for pancreatic cancer. Based on
a pooled analysis within the PanC4 consortium, 6% of PDAC
patients reported CP as a complication of their disease (Duell
et al., 2012). Through pancreatitis mouse models, some research
teams have proven that CP was indispensable for the induction of
PDAC (Chen et al., 2017; Takahashi et al., 2021). However, the
underlying molecular mechanism of complex interaction between
CP and PDAC is still unclear. This research intends to make an
initial investigation on the hub gene and signatures of CP and PDAC
by comorbidity bioinformatics analysis to improve early detection,
treatment, and prevention.

Functional investigations by blasting the genetic data against
public databases may reveal the genetic determinants of CP and
PDAC. As a result, we are able to get clusters through network
analysis and biological processes via GO and KEGG enrichment
analysis. Biological processes detoxification of copper ion, cysteine

FIGURE 6
Co-expression gene networks and enrichment analyses of CEL genes. (A) Co-expression genes of CEL were analyzed by Pearson test based on
LinkedOmics database. (B)GO and KEGG analysis ofCEL-related co-expression genes in PDAC. (C) The top 50 genes with a positive correlation withCEL
were visualized in a heatmap. (D) The top 50 genes with a negative correlation with CELwere visualized in a heatmap. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PDAC, pancreatic ductal adenocarcinoma.
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and methionine metabolism, response to hyperoxia, protein
digestion and absorption, organ or tissue specific immune
response, fat digestion and absorption, and long-chain fatty acid
transport were highly enriched in the genes shared by the CP and
PDAC groups. According to the PPI analysis, the overlapping DEGs
between the two groups were also primarily involved in the transport
of nutrients and trace elements such as protein digestion and
absorption, detoxification of copper ion, long-chain fatty acid
transport, and so on. Considering the results from our study,
these pathways could converge into metabolism-related pathways
that involve in CP and PDAC. The pancreas is an important
retroperitoneal organ, providing both endocrine and exocrine
functions. The role of the pancreas for digestion is extremely
crucial. CP is characterized by an irreversible damage to both the
exocrine (impairment of digestion due to a lack of digestive enzymes
produced by the pancreas) and endocrine (mainly owing to the loss
of the islets of Langerhans) compartments of the pancreas with
progressive inflammation and fibrosis (Singh et al., 2019). An initial
event leading to chronic pancreatitis is the premature activation of
pancreatic proteases inside the pancreas. And the overactivation of
pancreatic proteases may be an important mechanism for triggering
and aggravating pancreatic injury. As chronic pancreatitis
progresses, the cells that secrete digestive enzymes are gradually
destroyed and the anatomy of the pancreatic duct changes (Beyer,
et al., 2020). These above-mentioned factors will lead to metabolic
dysfunction and dyspepsia in CP patients. PDAC and CP share
overlapping clinical symptoms since these two entities have similar
histologic features, such as increased intrapancreatic duct pressure,
immune cell infiltration, and intense fibrosis. According to these
findings, CP and PDAC might be associated with the transport
dysfunction of nutrients and trace elements caused by the
destruction of acinar cells. These pathological processes were
consistent with the GO/KEGG functional enrichment analysis.

Cystic fibrosis transmembrane conductance regulator (CFTR) is
the most important molecule for proper pancreatic duct function. In
the pancreas, CFTR is an anion channel that secretes bicarbonate to
flush digestive enzymes secreted by the acinar cells out of the

pancreas. This is a key link in the transportation of nutrients and
trace elements. It has been demonstrated that CFTR dysfunction
significantly increases the risk of CP (Berke et al., 2022; Phadke and
Sellers, 2022). Meanwhile, mutations in CFTR are associated with a
modest increase in risk for PDAC (McWilliams et al., 2010; Hennig
et al., 2019). As a result, the pathogenesis of CP and PDAC may
share common genes and regulators in the dysfunctional transport
of nutrients and trace elements.

Through the DEGs analysis of two validated cohorts, 6 shared
genes of CP and PDAC were validated to identify the real hub gene.
The most exciting finding of this study is the vital role of CEL in the
progression of CP and PDAC. CEL expression was predominantly
detected in pancreatic acinar cells and lactating mammary glands in
humans (Dalva et al., 2017). As a digestive enzyme, CEL is naturally
produced and secreted in the acinar cells as a component of
pancreatic juice (Lombardo et al., 2017). Once activated by bile
salts, this digestive enzyme plays a role in the hydrolysis and
absorption of cholesterol and lipid-soluble vitamins. In addition
to being present in the intestinal lumen, CEL also participates in the
metabolism of lipoproteins and atherosclerosis by acting in the
circulation (Loli et al., 2015). There are 11 exons in the human CEL
gene, which spans approximately 10 kb on chromosome 9q34.3
(Johansson et al., 2018). The CEL variants are best known for
causing maturity-onset diabetes in the young (MODY8). One of
the characteristics of MODY8 is characterized by reduced secretion
of the protein product (Kahraman et al., 2022). Miyasaka et al.
(Miyasaka et al., 2005) found that the increase of the length of
variable number of tandem repeats (VNTR) in CEL is a risk factor
for alcohol induced CP. However, due to ethnic differences or
methodological problems, an opposite result was obtained in
some cohorts of European descent (Ragvin et al., 2013; FjeldJ
et al., 2016). There is a common single uucleotide
polymorphisms (rs488087) present in the second repeat of the
CEL VNTR that is associated with an increased risk of PDAC.
Studies have shown that CEL variants could be identified using
specific antibodies (Johansson et al., 2018). These studies indicate
that CEL has could be a novel diagnostic marker in CP and PDAC

FIGURE 7
Analysis of TF-miRNA-Hub Gene Network. (A) Venn diagrams were recruited to obtain the commoniy predicted miRNAs. (B) miRNAs-hub genes
regulatory network. Green rectangle represented real hub gene. (C) TFs regulatory network. TFs were marked in red, and the hub gene was marked in
blue. TF, transcription factors.
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patients. Consistent with the previous study, our study
demonstrated that CEL expression was significantly decreased
when pancreatic neoplastic cells acquired a ductal phenotype (El
Jellas et al., 2018).

To understand the relevance of CEL expression in PDAC, a
further analysis was conducted to investigate whether the CEL
expression is correlated with the TCGA clinical-pathological
parameters. From the TCGA database, PDAC patients were
categorized into CEL low- and high-expression groups. We
found CEL level was associated with N stage, pathologic grade
and anatomic neoplasm subdivision in the PDAC patients. These
results indicated that CEL promoted pancreatic cancer cell
metastasis. Cancers frequently display genic variations and may
contribute to tumor progression. It was proposed that several
structural variants of the CEL locus, such as protein misfolding,
had some effect on pancreatic malignant tumorigenesis (El Jellas
et al., 2018; Dalva et al., 2020). Among them, CEL-HYB and CEL-

MODY in the structural variant type play leading roles in
pancreatic disease development. Our study also demonstrated
the diagnostic value of CEL in PDAC patients with a worse
prognosis. Further the LinkedOmics database study showed that
CEL promoted digestion, transmembrane transporter complex,
metal ion transmembrane transporter activity, pancreatic
secretion, and so on. Based on these results, CEL is the
crossroads of the clinical and pathological signaling pathways
for both CP and PDAC.

A miRNA is a small non-coding RNA molecule
(21–25 nucleotides long) that induces the degradation of a target
gene mRNA by binding to the 3′URT of the target gene mRNA
(Sharma et al., 2019). Post-transcriptional regulation of miRNA has
been extensively demonstrated to be involved in the development of
various diseases (Correia de Sousa et al., 2019). Consequently, we
constructed a relational network between miRNAs and candidate
target genes based on the HMDD database andmiRWalk. As a result

FIGURE 8
Immune analysis ofCEL in PDAC. (A)ComparingCEL-high andCEL-low groups based on ESTIMATE scores, stromal scores, and Immune scores. (B)
Comparison of immune cell subsets between CEL-low and CEL-high groups. (C) CEL expression is correlated with immune infiltration in PDAC as
analyzed using the TIMER database. (D) Heatmap of 8 immune checkpoints between CEL-low and CEL-high groups. (E) CEL expression in different
immune subtypes of PDAC. C1, wound healing; C2, IFN-gamma dominant; C3, inflammatory; C4, lymphocyte depleted; C5, immunologically quiet;
C6, TGF-b dominant. PDAC, pancreatic ductal adenocarcinoma; ns, no significance. pp < 0.05; ppp < 0.01; and pppp < 0.001.
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of the intersection of three miRNA microarray sets, hsa-miR-
198 was identified. Tumor biomarkers based on miRNA
expression profiles can be detected at low levels. It has been
shown that hsa-miR-198 is able to differentiate CP from PDAC
(Vychytilova-Faltejskova et al., 2015). In addition, the hsa-miR-
198 can act as a tumor suppressor depending on the type of cancer
(Kaushik and KumakR, 2022). As a result, we speculate that hsa-
miR-198 may contribute to PDAC pathophysiological development
through inflammatory processes. The transcription factor (TF)
binds to cis-regulatory elements in DNA and activates RNA
polymerase to regulate gene transcription. Therefore, identifying
the interaction pattern between TFs and their target genes is vital for
biological and medical research. In our study, STAT5A, STAT5B

and PTF1A were predicted to function as a regulatory TF upstream
of CEL based on regulatory associations revealed in the TRRUST
database. Among them, STAT5A and STAT5B, were encoded by
separate genes and induced by Janus-activated kinases (JAK) in the
mitochondria (Buchert et al., 2016). STAT5 family protein strictly
regulates cell proliferation and differentiation and plays a pivotal
role in maintaining normal immune function and body balance
(Rani and Murphy, 2016). A previous research reported an
abnormal phosphorylation of STAT5 occurred during the
transformation from pancreatic inflammation to PDAC (Juusola
et al., 2021). The transcription factor PTF1A is a crucial helix-loop-
helix (bHLH) protein that controls the expansion of pluripotent
progenitor cells and the development and maintenance of acinar

FIGURE 9
ICB response and immunotherapy. (A) Boxplot representation of TIDE scores in the CEL-low vs CEL-high in TCGA PDAC cohort. (B) Correlations
between CEL expression and immunoinhibitors. (C) Correlations between CEL expression and immunostimulators.
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cells (Jin and Xiang, 2019; Duque et al., 2022). Isolated pancreatic
aplasia can be caused by some hypomorphic PTF1A mutations
(Houghton et al., 2016). Moreover, the downregulation of PTF1A
has also been associated with pancreatic intraepithelial neoplasia
(Krah et al., 2015). It may be possible to treat PDAC with small
molecule drugs that promote PTF1A upregulation. In this study, we
provided potential directions for clarifying the molecular
mechanism of PDAC progressed by CP.

TIME has been shown to promote tumor development, progression,
and immunoevasion (Barker et al., 2015; Itoh et al., 2018; Piao et al.,
2018). We revealed a negative correlation of the expression of CEL with
the infiltration of immune cells (B cells, macrophages, neutrophils, and
dendritic cells) in PDAC. An important function of B cells in adaptive
immunity is to produce antibodies. B cells activated in tumors can further
activate T lymphocytes, potentiating antitumor immunity (Germain
et al., 2015). However, the roles of B lymphocytes in tumors were

FIGURE 10
KM analysis of the survival of high and low CEL expression groups. (A) Relationships between CEL of different immune cells subgroup and OS. (B)
Relationships between CEL of different immune cells subgroup and RSF. KM, Kaplan Meier; OS, overall survival; RSF, recurrence free survival.
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complex, and sometimes B cells can suppress antitumor immune
responses (Yuen et al., 2016). There were several studies confirming
that the depletion of B cells suppressed pancreatic tumorigenesis (Lee
et al., 2016; Tspu et al., 2016). In our study, the low expression ofCELwas
associated with better prognosis in the PDAC patients with B-cell
enrichment. Macrophages play a pivotal immune role in
inflammatory and malignant diseases (Chupradit et al., 2022; Pittet
et al., 2022). In the PDAC stroma, there is a macrophage type called
tumor-associatedmacrophage (TAM) that is more inclined to polarize in
the M2 cell type (Pratt et al., 2021). In pancreatic intraepithelial tumors,
TAMs are one of the first infiltrating cells, and their numbers increase
persistently during cancer progression (Beatty GL et al., 2017; Bear et al.,
2020). A previous study has confirmed that macrophage density was an
independent prognostic factor of PDAC, which was associated with the
risk of disease progression, recurrence, metastasis, and shorter overall
survival (Yu et al., 2019). In the present study, the decreasedmacrophages
have been linked to improved survival for PDAC patients with low CEL
expression. In addition, higher CD4+ helper T-cell densities were
associated with improved survival among PDAC patients, but not
with higher CD8+ helper T-cell densities (Dias Coasta et al., 2022). As
our results indicate, CD4+ T-cell expression increases with decreasedCEL
expression. PDAC patients with low CEL expression have been shown to
benefit from the desert zone of CD4+ T-cell. Dendritic cells (DCs) are key
mediators of adaptive immunity, playing a central role in initiating
antigen-specific immunity (Kvedaraite and Ginhoux, 2022). In spite of
the fact that DCs are essential for immune activation and effector cell
recruitment, it has been reported that tumor cells secrete the
immunosuppressant cytokine IL-10, which inhibits DC maturation or
converts DCs into macrophage-like cells (Gajiwala et al., 2018; Pu et al.,
2018). In addition, a positive correlation was found between CEL
expression and corresponding immune cell markers and immune
checkpoints. Meanwhile, we also identified immunoinhibitors and
immunostimulators with therapeutic effects on CEL expression for
PDAC patients. Ultimately, these results confirmed that CEL, a real
hub gene for both CP and PDAC, played a significant role in TIME.

There are several limitations to this study, such as the
insufficient number of databases included. In addition, this study
is only a bioinformatics analysis of CEL function in PDAC. The role

of CEL in transforming chronic inflammation into PDAC may be
confirmed in future basic research.

Conclusion

In summary, our study identified the real hub gene and its
signatures potentially related to CP and PDAC (Figure 11). The
common characteristics of CP and PDAC patients were mainly
protein digestion and absorption, detoxification of copper ion,
long-chain fatty acid transport and vasculature development.
There was some evidence that the metabolism-related
pathways in CP might be an essential factor for the
development of PDAC. Examination on these common
pathways and real hub genes may shed light on the molecular
mechanism underlying CP and PDAC development.
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