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Hallux valgus is a common form of foot deformity, and genetic factors contribute
substantially to the pathogenesis of hallux valgus deformity. We conducted a
genetic study on the structural variants underlying familial hallux valgus using
whole exome sequencing approach. Twenty individuals from five hallux valgus
families and two sporadic cases were included in this study. A total of 372 copy
number variations were found and passed quality control filtering. Among them,
43 were only present in cases but not in controls or healthy individuals in the
database of genomic variants. The genes covered by these copy number variations
were enriched in gene sets related to immune signaling pathway, and cytochrome
P450 metabolism. The hereditary CNVs demonstrate a dominant inheritance
pattern. Two candidate pathogenic CNVs were further validated by
quantitative-PCR. This study suggests that hallux valgus is a degenerative joint
disease involving the dysregulation of immune and metabolism signaling
pathways.
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Introduction

Hallux valgus (HV) deformity refers to the lateral deflection of the great toe at the first
metatarsophalangeal joint (Perera et al., 2011; Hecht and Lin, 2014), which is the most
common forefoot deformity often requires surgery with a prevalence rate of 23% in people
aged 18–65 (CI: 16.3%–29.6%) (Nix et al., 2010). African Americans are more likely to have
HV than people of European ancestry [adjusted odds ratio (aOR) = 2.01, 95% confidence
interval [CI] = 1.39–2.92] (Golightly et al., 2012), and no significant difference has been
found in the incidence of HV in other populations. Conservative treatment is feasible for
patients with deformity but without symptoms or mild symptoms (Bayar et al., 2011).
Although the symptoms can be alleviated, they can not be completely reversed. If the
patient’s pain persists, surgery is necessary. However, many surgical complications and poor
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prognosis have brought great burden to individuals and their
families (Sammarco and Idusuyi, 2001). Prevention and early
intervention are therefore important.

The pathogenesis of HV deformity is complex (Mann and
Coughlin, 1981). HV may be associated with inappropriate
footwear. HV is 15 times more common in people who wear
shoes than in those who don’t (Perera et al., 2011), and shoes
that tighten the front foot appear to be one of the leading causes of
HV. Heredity is another important risk factor for HV development,
especially in adolescents. A positive family history of HV has been
reported in many studies (Lieberson andMendes, 1991; Pique-Vidal
et al., 2007), and study has found that HV susceptibility is related to
genetic polymorphisms associated with arthritis (Perera et al., 2011;
Hecht and Lin, 2014). Linear bone arrangement or static stabilizer
relaxation due to heredity may also lead to HV deformity (Perera
et al., 2011).

Genetic factors make substantial contribution to the
pathogenesis of HV deformity. In a study of 350 patients with
three generations family trees, 90% had at least one affected
relative, which is consistent with autosomal dominant
inheritance pattern (Pique-Vidal et al., 2007). The heritability
of HV in European ancestry populations is between 0.29 and 0.89
(Hannan et al., 2013), while the rate of HV in Korea is ~0.51 (Lee
et al., 2014). In a genome-wide association study (GWAS) on
European ancestry population including 1786 cases of HV
deformity and 2623 controls, genome-wide SNPs accounted
for 50% of the phenotypic variance in males and 48% of the
phenotypic variance in females (Hsu et al., 2015). The missing
heritability may lie in the contribution of rare variants and
structural variants, which have been underexplored in
previous studies.

Structural variation is generally defined as a region of DNA of
approximately 1 kb or larger that includes changes in copy number,
chromosomal position, or orientation between individuals
(Escaramis et al., 2015). A major class of genomic structural
variation is copy number variation (CNV), which includes
deletion and duplication of sequences (Ionita-Laza et al., 2009).
In addition to single nucleotide polymorphisms (SNP)
(Sachidanandam et al., 2001), CNVs are a major source of
variation in the human genome, with significant effects on
evolution and disease susceptibility (Conrad and Hurles, 2007).
For example, at least 15% of neurodevelopmental diseases are
caused by local dose imbalances in dozens of genes due to CNVs
(Girirajan et al., 2011). Furthermore, CNVs make significant
contributions to development of bone disorders and CNV
analysis increases the diagnostic yield for these diseases. CNVs
are significantly associated with osteoporosis (Yang et al., 2008;
Costantini et al., 2018) and CNV is an important genetic factor for
the etiology of fetal skeletal dysplasia (Wit et al., 2014; Bai et al.,
2022). In addition, studies have shown that many CNVs confer
greater disease risk than SNPs (Ionita-Laza et al., 2009). However,
the contribution of CNVs to the pathogenesis and development of
HV has not been investigated.

Aiming to explore the contribution of potential pathogenic
CNVs to the development of HV deformity, we conducted the
first study on the structural variants underlying familial HV using
whole exome sequencing (WES) approach, which may be helpful for
future risk prediction of HV.

Materials and methods

Samples and ethics statement

In this study, we recruited a total of 22 Chinese
participants from 5 families (including 17 cases and
3 controls without any foot deformity) and two sporadic
cases (Figure 1). The recruitment and the WES study were
approved by Tianjin Hospital, and all participants provided
written informed consent. The diagnosis of HV was made by
clinical experts of the Foot and Ankle Surgery Group of
Orthopaedic Branch of Chinese Medical Association and
Foot and Ankle Surgery Professional Committee of
Orthopaedic Physician Branch of Chinese Medical
Association, according to the expert consensus (Foot and
Ankle Working Committee et al., 2015). HV is diagnosed
by combining the evaluation of clinical presentations,
physical examination, auxiliary imaging examination and
medical history. The severity of HV was determined by
hallux valgus angle (HVA) and intermetatarsal angle (IMA)
(normal: HVA < 16°, IMA < 10°; mild: HVA < 20°, IMA < 13°;
moderate: 20° < HVA ≤ 40°, 13° < IMA ≤ 16°; severe: HVA >
40°,IMA > 16°). The single nucleotide variant analysis of the
WES data of three families has been reported in our previous
publication (Jia et al., 2021). With the addition of data from
HV families and sporadic cases, we performed the current
CNV study. The genetic genealogy of the 5 families shows that
each proband has at least one first-degree relative as a HV
patient.

Genomic DNA extraction and whole-exome
sequencing

Genomic DNA was extracted from peripheral blood sample of
each subject following standard procedures. The TargetSeqTM
Enrichment Kit (iGeneTechTM) Human Exome Capture Kit was
used for library construction. The Illumina sequencing platform was
used for paired next-generation sequencing.

Quality control of sequencing result files

The Trim Galore software (Martin, 2011) (https://github.
com/FelixKrueger/TrimGalore) was used to remove low-
quality base (−q 25), limit maximum allowable error rate
(default −e 0.1), remove reads < 36 nt (-length 36), remove
double-ended overlap>3, and remove reads as a unit (-paired)
from the raw fastQ files. Burrows-Wheeler Aligner (BWA)-MEM
(version 0.7.17) (Li, 2013) was used to align the reads with the
reference genome to obtain the SAM file.

After reordering SAM files were converted to BAM (Raw BAM)
files and polymerase chain reaction (PCR) duplicates were marked
using Picard (v1.91). SamTools (version 1.58) (Li et al., 2009) was
used for quality control of the binary alignment graph files generated
between them. Then, the Genome Analysis ToolKit (GATK)
(version 3.8) (McKenna et al., 2010) was used to re-align indel
regions and correct the base mass fraction. And after Base quality
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score recalibrations (BQSRs), we used verifyBamID (version 1.1.3)
(Jun et al., 2012) to confirm that there was no contamination of the
cross samples. The resulting BAM files were used for CNV calling.

CNVs calling by GATK and XHMM

The eXome-HiddenMarkovModel (XHMM) (Fromer and Purcell,
2014) was used to call CNVs from filtered normalized targeted exome
sequence data. The XHMM divided the chromosomal regions into
three types: diploid, deletion, and duplication. The entire pipeline is
plotted as a flowchart and shown in Figure 2.

CNVs annotation

We used “scan_regoin.pl” program in GenGen(Wang et al., 2007)
to scan genomic features and to find the CNVs that overlapped with
those in the database of genomic variants (DGV) (MacDonald et al.,
2014) and filtered them out. The DGV database contains genomic
structural variants over 50 bp in healthy individuals.

We used “scan_regoin.pl” program in GenGen (Wang et al.,
2007) with the hg19_refGene and hg19_refLink files to annotate the
CNV regions against the RefGene annotation to find the genes
overlapped the CNV regions.

Then, we filtered out CNVs present among controls, and
retained case-only CNVs that were repeated among the HV cases
but not carried by any of the controls.

Quality control filtering of CNVs

We performed quality control filtering based on “Q_EXACT”
and “Q_SOME” scores in the XCNV file according to the
instruction of XHMM software. “Q_EXACT” and “Q_SOME”
represent the phred-scaled quality of a CNV event along the
entire interval and the same CNV event in the interval
respectively.

Pathway enrichment of CNVs

The 67 genes overlapped with the 43 CNVs were used as input to
the web-portal of OBAS (http://kobas.cbi.pku.edu.cn/) (Bu et al.,
2021) and STRING (version 11.0) (https://string-db.org/)
(Szklarczyk et al., 2021) for pathway enrichment and protein-
protein interaction (PPI) analysis. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database and Search Tool for the
Retrieval of Interacting Genes/Proteins database were used as the
reference databases.

FIGURE 1
The family pedigree diagrams for all the subjects in the study. S-1 and S-2 are two sporadic cases. Families F1, F3 and F5were included in our previous
study of single nucleotide variants (Jia et al., 2021).The color indicates the severity of the patient’s illness from mild to severe.
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Examination of CNVs using integrative
genomics viewer

For candidate CNVs of interest, we further conducted visual
inspection using the Integrative Genomics Viewer, based on the
aligned bam files of the WES data of each CNV carrier and non-
carriers within the same family.

qPCR validation of CNVs

For the potential pathogenic CNVs, we chose a ~100 bp
fragment in each CNV for qPCR validation. The qPCR
experiment was carried out with the Sybr Green I system. Each
reaction in a 10 µL system contains 4 ng of genomic DNA, 10 µm
per-primer, 2× ChamQ universal SYBR qPCRMaster Mix, and DD-
H2O. Each sample was repeated for three times. The geometric mean
values of the CT values of the control sequence GAPDH and the
sample sequence were calculated to obtain △CT values for each
sample. We calculated the 2̂−△△CT of each sample by taking the
2̂−△ CT of members without CNV in the family as the relative
reference value. Finally, the existence of CNV was examined by the
relative value of 2̂−△△CT of each sample in the pedigree.

Results

The identification of 43 CNVs related to HV

To assess the potential contribution of structural variants
to HV, we carried out a CNV study based on the WES data
of five HV families including 17 cases and 3 family members
without HV and two sporadic cases (Supplementary Table S1).
A total of 965 CNVs were detected based on the WES data
and 372 passed quality control filtering (Supplementary
Table S2).

Among these 372 CNVs, 325 CNVs were present only in
cases, including 142 deletions and 183 duplications. They were
not detected in the any of the three control samples.
Furthermore, 51 CNVs (26 deletions and 25 duplications)
were carried by more than one samples. In order to screen
for potential pathogenic CNVs, we further filtered out any
CNVs with 70% overlap with those carried by healthy
individuals in the DGV. Then, 43 CNVs were retained for
further analysis, covering the exons of the 67 genes, with
1 CNV co-occurring in four cases, 5 CNVs co-occurring in
three cases, and 37 CNVs co-occurring in two cases
(Supplementary Table S3).

FIGURE 2
The pipeline of copy number variation analysis based on whole exome sequencing data.
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The involvement of immune and
metabolism genes

In order to further explore how these CNVs may contribute to
the pathogenesis of HV, we carried out pathway enrichment analysis
among the 67 genes covered by case-only CNVs through KEGG
PATHWAY database. Ten pathways were statistically significantly
enriched (p < 0.001) for cytokine genes and genes involved in
cytochrome P450 related metabolism and immunity/
inflammation (Figure 3A; Supplementary Table S4), such as
KEGG pathways “Drug metabolism—cytochrome P450”, “Toll-

like receptor signaling pathway” and “Cytokine-cytokine receptor
interaction”, suggesting their contribution to the pathogenesis
of HV.

We then conducted the PPI analysis on these genes (Figure 3B).
The PPI network also supports the consistent involvement of a
group of immune genes and genes functioning in drug metabolism.
In the PPI network, we observed the cluster formed by proteins
involved in drug metabolism (UGT2B28, CYP2D6, CYP2A6,
GSTM1, SULT1A1). In addition to the well-known involvement
of cytokine genes CCL4L1 and CCL3L3 in immunity, several other
genes also function in regulation of the immune system. HLA-H

FIGURE 3
Pathway and protein-protein interaction analyses on the genes covered by 43 case-only CNVs (A) KEGG pathway enrichment analysis on the genes
covered by the 43 case-only CNVs. The color of the dots represents the size of the corrected p-value, and the size of the dots represents the number of
input genes contained in the corresponding pathway. (B) Protein-protein interaction analysis on the genes covered by 43 case-only CNVs. The nodes
represent the proteins, and the lines between the nodes indicate the interactions between the proteins.
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(HFE) is an important link between iron homeostasis and immune
regulation (Bahram et al., 1999; Lio et al., 2002); DYRK1A gene plays
a key role in regulating the differentiation of Th17 and regulatory
T cells (Khor et al., 2015); and evidence suggests that genetic
polymorphisms of CYP2D6 is associated with autoimmune
bullous diseases induction (Rychlik-Sych et al., 2013).

Inheritance pattern of HV-related CNVs

To identify the potential disease-contributing CNVs, we
examined the inheritance pattern of the CNVs which passed
quality control filtering. We did not find any CNV that fits the
recessive pattern. Multiple case-only CNVs consistent with
dominant inheritance pattern were found in each family. For
family 1, 3 and 5, dominant CNVs were referred to those present
in cases (child and parent with HV) but absent in controls (parent
without HV). For family 2 and family 4 in which all family members

were affected individuals with HV, the CNVs consistent with
dominant inheritance were those carried by the child and one of
the parents (Supplementary Table S5). Our results are consistent
with the hypothesis that HV has a dominant inheritance (Pique-
Vidal et al., 2007), but certainly we can not exclude the possibility of
recessive inheritance model as a large proportion of the genome
were not assayed in our analysis by WES.

Validation of disease-contributing CNVs

Two inherited CNVs were of particular interest and they have
the highest quality (Phred-scaled quality of Non-Diploidy = 99) in
our analyses (Table 1). Chr22: 42522498–42536739 deletion occurs
to all patients in family 1 and absent in the healthy member of the
family. This segment of CNV covered genes CYP2D7 and
CYP2D6 which are involved in bone excitation effects
(Jayaraman et al., 2021) and metabolic pathways related to

TABLE 1 Candidate pathogenic CNVs.

SAMPLE CNV INTERVAL Q_NON_DIPLOID Q_SOME GENE

F1-I-1,F1-II-1,F1-II-2 DEL chr22: 42522498–42536739 99 99 CYP2D6, CYP2D7

F2-I-1,F2-II-1 DEL chr6: 29855550–29895036 99 93 HCG4B, HLA-H

SAMPLE, sample ID; CNV, type of copy number variation (DEL or DUP); INTERVAL, genomic range of the called CNV; Q_NON_DIPLOID, Phred-scaled quality of not being diploid,

i.e., DEL or DUP event in the interval; Q_SOME, Phred-scaled quality of some CNV event in the interval; GENE, gene name.

FIGURE 4
qPCR validation of two CNVs. (A) Copy number detected by qPCR at chr22: 42522498–42536739 for F1-I-1, F1-II-1, F1-II-2 and F1-I-2. (B) Copy
number detected by qPCR at chr6: 29855550–29895036 for F2-I-1, F2-II-1 and F2-I-2. (C) Copy number detected by qPCR at chr6:
29855550–29895036 for F2-I-1, F2-II-1 and F2-II-2.
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human immunity (Effner et al., 2017). Chr6:
29855550–29895036 deletion appears to F2-I-1 and F2-II-1 the
two individuals with moderate HV but not in family members
F2-I-2 and F2-II-2 who have only mild HV condition. HCG4B and
HLA-H genes are in this segment of CNV. HCG4B is a
proinflammatory gene whose expression is positively correlated
with the expression of HLA-A and may regulate the expression
of HLA-A (Chen et al., 2017). HLA-A and HLA-H function in
immune homeostasis (Jordier et al., 2019). Therefore evidence from
literature suggests that these two CNVs may contribute to the
pathogenesis of HV.

We performed qPCR (Supplementary Table S6) as an
independent experimental approach to validate these two CNVs.
The presence of these two CNVs in family 1 and family
2 respectively was consistent with the results from the CNV
calling of WES data (Figure 4).

Discussion

This is the first study that identified the structural variants
underlying familial HV using WES approach, The identification
provided us new knowledge about the genetics basis of HV, which
highlighted the potential contribution of immunity/inflammation,
and cytochrome P450 metabolism to the etiology of HV.

Previous studies indicated that HV malformations are likely to be
caused by a variety of contributing factors, including genetics,
dorsiflexion of the first metatarsal, gastrocnemius equinus, abnormal
foot mechanics, and joint hypermobility (Coughlin and Jones, 2007).
Interestingly, patients with autoimmune arthritis conditions such as
rheumatoid arthritis and psoriatic arthritis are more likely to develop
HV malformations (Rojas-Villarraga et al., 2009; Hyslop et al., 2010).

The CNV chr6: 29855550–29895036 observed in both F2-I-1 and
F2-II-1 covers the HCG4B and HLA-H genes. It has been found that
HCG4B is a pro-inflammatory factor andmay regulate the expression
of HLA-A by acting on competing endogenous RNAs spongingmiR-
122 and miR-1352 (Chen et al., 2017). HLA-A and HLA-H play
essential roles in the immune system, including regulation of the
innate immune system, class I MHC-mediated antigen processing
and presentation, interferon gamma signaling, and antigen
processing-cross-presentation (Allan et al., 2002; Nitschke et al.,
2016; Jordier et al., 2019). In psoriatic arthritis and rheumatoid
arthritis, HLA alleles have been shown to influence susceptibility
and severity of these autoimmune joint disease (Mc et al., 2015).

The CNV chr 22: 42529569–42529669 seen in F1-I-1, F1-II-1 and
F1-II-2 covers CYP2D6 and CYP2D7.These genes have roles in the
cytochrome P450 related xenobiotic metabolic process and oxidation-
reduction process (Lessard et al., 1997). Cytochrome P450 changes the
structure of cell antigens by metabolizing foreign organisms to produce
reactive oxygen species, and then initiates and/or amplifies the
autoimmune phenomenon through molecular simulation of the
autoimmune response to the original antigen (Namazi, 2009). In
addition, studies have shown that secondary metabolites produced
by CYP2D6-dependent biotransformation have bone excitation
effects (Jayaraman et al., 2021).

These two CNVs may have pathological effects and lead to bone
structure deformities through the dysregulation of the immune
system and the process of reactive oxygen species production.

Previous genetic studies on HV, including our WES study (Jia
et al., 2021), revealed the association of a few genetic variants with
HV. Genome-wide association study in population of European
ancestry found the sex-specific association of SNVs close to genes
AXIN2, ESD, ANXA1 and MRGPRX3 at the marginal significance
level (Hsu et al., 2015). A later GWAS with increased sample size
identified the genome-wide significant association with SNP in gene
CLCA2, being an expression quantitative trait locus for COL24A1
(Arbeeva et al., 2020). Candidate gene study in Chinese population
suggested variants in VDR gene and SNP rs1800629 at the 5’ of TNF
gene are related to HV (Tao et al., 2018; Arbeeva et al., 2020). In our
study, we did not find outstanding CNVs in these genes, which
could be due to differences in study population, variant types. We also
focused on different regions of the human genome from the previous
GWAS (the coding exons versus the non-coding regions). However,
similar underlying genetic mechanisms were revealed. As discussed by
Hsu and colleagues, AXIN2 and ANXA1 have important functions in
regulation of innate and adaptive immunity, suggesting the potential
role of inflammation in HV (Hsu et al., 2015). Hsu and colleagues also
discussed the involvement of the serine hydrolase gene ESD gene in the
recycling of sialic acids which is related to decreased antioxidant levels.
Interestingly, CYP2D6 and CYP2D7 also have roles in oxidation-
reduction process. The SNP rs1800629 associated with HV in
Chinese population is an eQTL SNP for genes including
complement gene C4A and CYP21A1P a member of the
Cytochrome P450 Family. Therefore, these identifications and results
from our study converge on the similar immune and drug metabolism
signaling.

Because of the importance of CNV in the etiology of complex human
diseases, various CNV detection methods and computational algorithms
havebeendeveloped. The traditional array-based approach including array-
based comparative hybridization and SNP-array approaches can efficiently
detect large CNVs with a relatively accurate rate (Gabrielaite et al., 2021).
CNV calling from high-throughput sequencing data has becomemore and
more commonly utilized in research and clinical diagnosis of complex
human disorders. Though still being limited by short read length, high-
throughput sequencing offers the potential to identify novel CNVs in the
genomic regions with sparse coverage or lack of coverage by array probes.
As the most frequently used sequencing approach, WES focuses on the
exomes, the copy number alterations of which are more likely to have a
pathogenic effect than the other regions of the human genome. Calling
CNVs from WES data also has the advantages of detecting small CNVs
ranging from 1–100 kb (Gordeeva et al., 2021). This approach has the
drawback due to non-uniform read depth distribution between exons
which makes it prone to false positive detection (Ozden et al., 2022). It is
also subjected to missing CNVs in regions with few exons. As another
sequencing-based CNV detection approach, CNV-seq technology can
potentially provide a unbiased coverage of the human genome and
more precise estimation of CNV breakpoints (Liang et al., 2014),
however it also has the limitation of relative low read depth
and resolution of 0.1 Mb in size which render it more suitable to
detect large CNVs. Owing to the low cost, popularity in research
use, abundant existing data, simultaneous usage for single
nucleotide variant detection, and a number of well-tested
CNV-calling algorithms, WES data are still a common choice
of CNV analysis. With the gradually reduced sequencing cost and
further improved CNV-calling algorithms, WES and CNV-seq
are complimentary to each other and be combined in research
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and clinical diagnosis to improve clinical efficiency and
diagnostic yield of multisystem anomalies (Chen et al., 2022).

There are a few limitations in our study. There are certain
technical drawbacks for CNV calling based on WES as
aforementioned. Small sample size is another major limitation of
our study. To optimize study power and increase the possibility of
identifying genetic components of HV, we adopted a family-based
approach (Borecki and Province, 2008) focusing on familial Hallux
Valgus. To find the potentially pathogenic CNVs related to HV, we
also filtered the case-only CNVs against all the CNVs carried by
healthy individuals in the DGV database. Larger sample size will be
needed to further investigate the substantial contribution of various
CNV regions in the human genome (Zarrei et al., 2015) to the
etiology of HV, and particularly will gain statistical evidence for
CNVs of uncertain clinical significance.

In summary, from an unbiased genomic approach, this first study
on the structural variants in familial HV gained us new insights into the
HV pathogenesis, mediated by genetic variation of immunity and
inflammation, and abnormal cytochrome P450 related metabolism.
It provides evidence supporting the dominant inheritance mode of HV.
Our results suggest that HV is a degenerative joint disease involving the
dysregulation of immune system and metabolism system.
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