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Background: RNA-editing refers to post-transcriptional transcript alterations that
lead to the formation of protein isoforms and the progression of various tumors.
However, little is known about its roles in gliomas.

Aim: The aim of this study is to identify prognosis-related RNA-editing sites (PREs) in
glioma, and to explore their specificeffects onglioma andpotentialmechanismsof action.

Methods:Glioma genomic and clinical data were obtained from TCGA database and
SYNAPSE platform. The PREs was identified with regression analyses and the
corresponding prognostic model was evaluated with survival analysis and receiver
operating characteristic curve. Functional enrichment of differentially expressed
genes between risk groups was performed to explore action mechanisms. The
CIBERSORT, ssGSEA, gene set variation analysis, and ESTIMATE algorithms were
employed to assess the association between PREs risk score and variations of tumor
microenvironment, immune cell infiltration, immune checkpoints, and immune
responses. The maftools and pRRophetic packages were used to evaluate tumor
mutation burden and predict drug sensitivity.

Results: A total of thirty-five RNA-editing sites were identified as prognosis-related in
glioma. Functional enrichment implied variation of immune-related pathways between
groups. Notably, glioma samples with higher PREs risk score exhibited higher immune
score, lower tumor purity, increased infiltration of macrophage and regulatory T cells,
suppressed NK cell activation, elevated immune function score, upregulated immune
checkpoint gene expression, and higher tumor mutation burden, all of which implied
worse response to immune therapy. Finally, high-risk glioma samples aremore sensitive
to Z-LLNle-CHO and temozolomide, while the low-risk ones respond better to Lisitinib.

Conclusion: We identified a PREs signature of thirty-five RNA editing sites and
calculated their corresponding risk coefficients. Higher total signature risk score
indicates worse prognosis and worse immune response and lower sensitivity to
immune therapy. The novel PREs signature could help risk stratification,
immunotherapy response prediction, individualized treatment strategy-making for
glioma patients, and development of novel therapeutic approaches.
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1 Introduction

Gliomas are the most common primary brain tumors with marked
heterogeneity, aggressiveness, and poor prognosis. Currently, even
with standard treatments, namely a combination of surgery,
radiotherapy, and chemotherapy, most glioblastoma (WHO grade
Ⅳ glioma) will recur due to chemo- and radio-resistance and patients
usually succumb quickly to the disease, with a five-year-survival rate
around 5% (Ostrom et al., 2018a; Ostrom et al., 2018b; Wesseling and
Capper, 2018). Advances in genomics, immunology, and many other
disciplines have brought various experimental treatments, including
targeted therapy and immunotherapy, that promise new avenues for
glioma therapy. Unfortunately, so far these therapies have not been
able to achieve satisfactory results (Qi et al., 2020; Yang et al., 2022).
Therefore, it is of great significance to further explore the internal
mechanism of glioma to discover new therapeutic targets and avenues.

Brain has long been considered an immune-privileged site for
lacking traditional lymphatic systems. But recent findings showed that
brain can coordinate a robust immune response involving both of
innate and adaptive immune systems (Bailey et al., 2006; Louveau
et al., 2015). The glioma-specific immunosuppressive
microenvironment contributed greatly to the poor prognosis of
patients with glioma (DeCordova et al., 2020). The studies of
tumor microenvironment (TME) and its immune components have
led to new potential therapeutic options for many extracranial solid
tumors including melanoma (Motzer et al., 2015; Weber et al., 2015).
Nevertheless, preclinical trials of immune checkpoint inhibitors and
vaccine treatments for glioma failed to yield satisfactory results. This
failure could partly come from the highly immunosuppressive
microenvironment, systemic immunosuppression, local immune
dysfunction, and high tumor heterogeneity of glioma cells (Qi
et al., 2020; Medikonda et al., 2021), which makes the TME and
immune alterations promising research area for developing novel and
potent treatments for glioma.

RNA-editing refers to post-transcriptional transcript alterations
that lead to the expression of protein isoforms. It can alter adenine to
inosine (A>I) or cytosine to uracil (C>U) by adenosine and cytidine
deaminases, respectively (Licht and Jantsch, 2016; Nishikura, 2016).
Recent studies highlight that in cancer cells widespread RNA-editing
partly make the transcriptomes more complex than genomes (Han
et al., 2015; Paz-Yaacov et al., 2015). RNA-editing contributed to the
carcinogenesis of several cancer types, and help cancer cells to adapt to
distinct disease states and microenvironments (Han et al., 2015; Licht
and Jantsch, 2016; Nishikura, 2016; Baysal et al., 2017). Given that
dynamic change of RNA-editing levels during tumor progression, and
that edited transcripts have a limited life span, the functional impact of
RNA-editing on cancer cells might be different than those of
permanent genomic alterations (Baysal et al., 2017). However, the
exact roles of RNA editing in the progression of gliomas are not
systematically studied yet, and its correlation with tumor
microenvironments, immune function, and therapy response
remain elusive.

In this study, as shown in the workflow in Supplementary Figure
S1, we aim to identify the prognosis-related RNA-editing sites (PREs)
in glioma to construct a prognostic signature model, and investigate
the association between the risk signature and TME, tumor mutation
burden (TMB) and chemotherapy sensitivity. This may shed light on
the pathogenic mechanism, prognosis predication, risk stratification,
and therapeutic strategy-making for patients with glioma.

2 Materials and methods

2.1 Data acquisition

The RNA sequencing, clinical information, and single nucleotide
variation data of low-grade glioma (LGG) and glioblastoma (GBM)
were obtained from TCGA database (https://portal.gdc.cancer.gov/,
accessed 10 Aug 2022). RNA editing site data were acquired from
SYNAPSE platform (https://www.synapse.org/#, accessed 10 Aug
2022).

2.2 Manhattan plot

Manhattan plot is a type of scatter plot usually used to display data
with a large number non-zero amplitude data-points in genome-wide
association studies (Reed et al., 2015). In this study we constructed
Manhattan plot with “CMplot” package to display the overall RNA-
editing landscape in gliomas. p-value is calculated with uni-variate cox
regression analysis of the RNA-editing site profile and clinical survival
data from TCGA. The cutoff value of top significant RNA editing sites
is set at −log10p > 20.

2.3 Construction and validation of the RNA-
editing prognostic signature

All patients were randomly divided into training or validation
groups in a 6:4 ratio. In the training cohort, univariate cox analysis and
the least absolute shrinkage and selection operator (LASSO) cox
regression were applied to screen candidate PREs, which further
underwent multivariate cox regression to evaluate their
contribution to patient prognosis. RNA-editing sites with p <
0.0001 were considered as significantly prognosis-related. Based on
multivariate regression coefficient and corresponding editing levels of
those thirty-five PREs, prognostic risk score of each sample was
calculated as the formula:

Riskscore � ∑
n

i�1
Xi × βi

where n, Xi, and βi represent the total number, FPKM value and the
corresponding regression coefficient of each RNA-editing sites. After
calculation of total risk score for each sample, the median risk score of
the training cohort was set as the cutoff value to divide the high-/low-
risk groups for both of the training and the testing cohorts. Higher and
lower risk scores imply overall alteration in PREs editing levels. The
following prognosis and immune related analyses were performed on
this basis.

Pheatmap package was utilized to show the expression pattern of
PREs between 2 risk groups. Association between survival status and
risk score was tested with scatter plots, and Kaplan-Meier analysis was
utilized to examine the overall survival (OS) difference between risk
groups (median risk score of the training cohort was set as the cutoff
value to divide the high-/low-risk groups for both of the training and
the testing cohorts). Through incorporation of risk score and other
clinical factors, a nomogram was constructed to predict prognosis of a
certain patient with given genomic and clinical characteristics.
Thereafter, receiver operating characteristic (ROC) curve was
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applied to evaluate the prognosis prediction efficacy of the risk model
and nomogram.

The R packages used in this section for data analysis include:
“survival”, “ggplot2”, “caret”, “glmnet”, “dplyr”, “ggalluvial”,
“survminer”, “pheatmap”, “timeROC”, “tidyverse”, “ggExtra”, “pec”,
and “rms”.

2.4 Correlation between RNA-editing sites
and corresponding RNA expression

The correlation relationship between RNA-editing and
corresponding RNA expression levels was studied with Pearson’s
correlational analyses incorporating the transcriptome data and the
RNA-editing data. RNA-editing sites with significant correlation with
RNA expression (correlation coefficient >0.3 or <−0.3) were further
examined for their clinical relevance and prognosis impact.

2.5 Functional enrichment analysis

The significant differentially expressed genes (DEGs, |logFC| >
1 and p < 0.05) between high- and low-risk groups were identified with
“limma” package and used for functional enrichment of gene ontology
(GO) and Kyoto encyclopedia of genes and genomes (KEGG)
pathways. To eliminate the subjective bias from artificial setting of
significance threshold, we further performed gene set enrichment
analysis (GSEA) with all expressed genes to explore the potential
action mechanism of PREs in glioma.

R packages used for analysis and results visualization include
“limma”, “org.Hs.eg.db”, “DOSE”, “clusterProfiler”, “enrichplot”,
“scatterplot3d”, “ggplot2”, “circlize”, “ggpubr”, “colorspace”,
“stringi”, and “RColorBrewer”.

2.6 Association between risk scores and TME

To examine the relationship between RNA-editing risk signature and
TME, “ESTIMATE” and “CIBERSORT” packages were used to calculated
the TME scores and tumor purity of each glioma sample (Chen et al.,
2018). The relative abundances of 22 immune cell types were calculated to
illustrate the association between RNA-editing risk score and immune cell
infiltration. Single sample gene set enrichment analysis (ssGSEA) and
gene set variation analysis (GSVA) was performed with “limma”,

“GSEAbase”, and “GSVA” packages to investigate the enrichment
variation of 29 immune-related functional gene sets between high-
and low-risk groups. Besides, correlation between risk score and
immune checkpoint genes (ICGs) were determined with “limma”
package. Results visualization was carried out with “ggpubr”,
“ggExtra”, “corrplot”, and “ggplot2” packages.

2.7 Analysis of association between risk score
and TMB

TMB, namely the total number of somatic mutations of each
sample, was calculated with “maftools” package, demonstrated with
waterfall plot analysis, and combined with risk score for survival
analysis using “survival” and “survminer” packages.

2.8 Prediction of therapy response

The relative efficacy of various drugs to each risk group was
predicted with “pRRophetic” package and displayed in bubble plot,
scatter plot and box plot with “ggplot2” package.

2.9 Statistical analysis

Wilcoxon test was employed for differential analysis and
Spearman method was applied for correlation analysis between risk
score and immune scores. All hypothesis tests were two-sided, with
*p < 0.05, **p < 0.01 and ***p < 0.001. All other statistical analysis and
data visualizations were carried out in R software (R version 4.1.2).
Adobe Illustrator (CC 2017) was used for image processing.

3 Results

3.1 Identification of the PREs signature

For the construction and validation of the prognostic model, a
total of 636 glioma samples with valid clinical and RNA-editing data
were acquired and randomly divided into training or testing cohorts
with a ratio of 6:4. The detailed characteristics of the two cohorts were
summarized in Table 1, where there were no significant differences in
the baseline characteristics between cohorts.

TABLE 1 Baseline characteristics of the glioma patient in training and testing cohorts.

Covariates Type Total Test Train p-value

Age ≤ 65 552 (86.79%) 218 (85.83%) 334 (87.43%) 0.6405

Age > 65 84 (13.21%) 36 (14.17%) 48 (12.57%)

Gender Female 273 (42.92%) 101 (39.76%) 172 (45.03%) 0.2182

Gender Male 363 (57.08%) 153 (60.24%) 210 (54.97%)

Grade G2 234 (36.79%) 100 (39.37%) 134 (35.08%) 0.5421

Grade G3 249 (39.15%) 96 (37.8%) 153 (40.05%)

Grade G4 153 (24.06%) 58 (22.83%) 95 (24.87%)
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To explore the landscape of RNA-editing sites that are associated
with prognosis in glioma, we applied cox regression analysis on the
RNA-editing profile and prognostic survival data. Based on univariate
cox regression results, Manhattan plot (Figure 1A) showed that
gliomas have extensive genome-wide RNA-editing alterations with
prognostic implications. Then, to correct overfitting of linear
regression analysis, we perfored LASSO regression analysis
(Figure 1B) and multivariate cox regression analysis. The optimal
log(λ) is around −2.6, with the corresponding likelihood deviation
around −10.5 and 63 RNA editing sites passed the threshold. After the
regression analysis, 35 out of 63 RNA sites were identified as PREs in
the training cohort with threshold of p < 0.0001 (Supplementary Table
S1), and used for the construction of prognostic risk model.

3.2 Patients with lower risk score exhibited
better prognosis

To test the reliability of the prognostic model, we used Kaplan-
Meier (K-M) survival analysis to confirmed that in all of the cohorts
(training, testing, and overall glioma patients), patients with lower risk
score exhibited better prognosis (Figures 1C–E). A progression-free
interval (PFI) advantage was also observed in the low-risk group of
glioma patients (Figure 1F). To confirmed this correlation between
risk score and patient prognosis, we further examined the survival
status in the training, testing, and overall glioma patient populations.
Compared with high-risk patients, a longer survival and a higher
proportion of surviving patients were observed in the low-risk group
(Supplementary Figure S2A–F). The expression patterns of PREs
between risk groups were also displayed with heatmaps
(Supplementary Figure S2G–I). Together, those results suggested
that the PREs we identified are capable of stratifying glioma
patients of different prognosis.

Besides, we also explored the correlation between PRE risk scores
and clinical features. Clinical relevance analysis revealed that older
glioma patients with higher tumor grades have higher risk scores, but
no difference was observed between genders (Figures 2A–C). Given
that age and tumor grades both showed significant difference in total
risk score, and older age generally comes with relatively higher tumor
grades, there might be some confounding effects in these results, which
would be well eliminated by subgroup analysis. Therefore, we further
performed the subgroup analysis comparing the risk scores in old and
grade 2,3 group vs. old and grade 4 group, as well as in young and
grade 2,3 group vs. young and grade 4 group. Consistently, higher
tumor grade samples have higher risk scores (Supplementary Figure
S3). Thereafter, we integrated the clinicopathological variables and
risk score to construct a nomogram to predict the 1-, 3-, and 5-year
survival probabilities of glioma patients (Figure 2D). The calibration
curve (Figure 2E) and ROC analysis (Figure 2F) both suggested this
nomogram has an excellent performance in prognosis prediction.

Given that analyzing all 35 PREs individually could be too
complex and lengthy, to further narrow down the number of PREs
for individual analysis, we performed a correlation analysis between
the editing levels of PREs and the expression of the corresponding host
genes. The results identified five PREs that significantly correlated with
the expression levels of corresponding host genes (R <−0.3 or >0.3)
(METTL10|chr10:126451032, RBM3|chrX:48436348, SOD2|chr6:
160100882, SPAG9|chr17:49042242, and UTP14C|chr13:52604880)
(Figures 3A–E). The following clinical relevance analysis and

survival analysis showed that these five sites have significantly
different editing levels between different grades of glioma (Figures
3F–J) and are closely related to the clinical prognosis of patients
(Figures 3K–O).

The above results suggest that the PREs risk signature successfully
predicted prognosis and could aid in the risk stratification of patients
with glioma. RNA-editing sites, especially the PREs, may be involved
in the oncological behavior of gliomas.

3.3 Functional enrichment analysis implied
alterations of morphogenesis and immune
pathways between different risk groups

To explore the potential biological processes and pathways
associated with PREs, we first performed functional enrichment
analyses on the DEGs using both KEGG and GO terms. With a
significant threshold of adjusted. p < 0.05 and |log2(FC)|>1,
281 upregulated and 64 downregulated DEGs were identified
(Figure 4A). Expression patterns of top 50 significant up- or
downregulated DEGs were displayed in the heatmap (Figure 4B).
GO enrichment analysis implied that DEGs were mainly involved in
pathways of morphogenesis, transcription activity, and
metallopeptidase activity in gliomas (Figures 4C, D). The KEGG
results suggested that DEGs were closely associated with
morphogenesis process and multiple immune-related pathways like
leukocyte migration and chemotaxis (Figure 4E). Thereafter, to
eliminate the subjective bias from artificial setting of significance
threshold, we further performed gene set enrichment analysis
(GSEA) with all expressed genes to explore the potential action
mechanism of RNA-editing in glioma. Results suggested that many
immune related pathways, such as adaptive immune response and
chemokine signaling pathways, are significantly enriched in the high-
risk group samples.

These results implied that PREs might affect the biological
behavior of gliomas by altering the morphogenesis, immune
response, and transcription activity. The glioma-specific
immunosuppressive microenvironment is widely recognized for its
contribution to the poor prognosis of glioma (DeCordova et al., 2020).
Previous study proved that inhibition of adenosine-to-inosine editing
could promote expression of immune response protein MAVS in
GBM (Raghava Kurup et al., 2022), and RNA editing activity was
reported to inhibit cell migration and proliferation of astrocytomas
(Cenci et al., 2008). If the PREs identified in this study do be capable of
altering the immune response of glioma, they might shed light on
development of new therapeutic avenues for glioma patients.

3.4 PREs signature correlates with immune
activation status in gliomas

TME has considerable impact on the treatment sensitivity and
prognosis of glioma, therefore we examined TME variation between
different risk groups to explore if PREs are associated with TME
composition of glioma. As shown in Figures 5A–D, high-risk group
glioma samples exhibited higher immune scores, stromal scores,
ESTIMATE scores, and lower tumor purity than did the low-risk
ones. Immune infiltration analysis revealed that the high-risk group
glioma samples possess more abundant regulatory T cells (Tregs),
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FIGURE 1
Construction and evaluation of prognostic RNA-editing signature in glioma: (A)Manhattan plot showing the global landscape of RNA-editing alterations
with prognostic implications in gliomas. The number in the middle line indicates the −log10(p) for each RNA editing. The top significant RNA editings
with −log10(p) > 20 were labeled in larger dot size. The grey dashed lines at from chromosomes to the middle demonstrated the chromosome location of
those top significant RNA editings. (B) The cross-examination process to identify the optimal λ parameter. The x-axis showed the log(λ) value, and y-axis
showed the corresponding likelihood deviation value. The vertical dashed line on the left corresponds to the optimal λ value; and the vertical dashed line on
the right indicates the λ value of model with the evaluation index within 1 standard error of the optimal λ value, namely lambda.1se. The upper numbers are the
number of edits enrolled for construction of model for each λ. In our model, the optimal log(λ) is around −2.6, with the corresponding likelihood deviation
around −10.5 and 63 RNA editings were enrolled for prognostic examination. (C–F) Kaplan-Meier (K-M) survival analysis was performed to examine the
prognostic value of the risk signature. Total risk score of each sample was calculated with editing levels of those thirty-five PREs and corresponding
multivariate cox regression coefficients. Glioma samples were then divided into high- or low-risk groups based on risk score (median as the cutoff value).
High-risk groups showed poorer survival in all of the training cohort (C), testing cohort (D), and overall glioma patients (E), and shorter PFI in overall glioma
patients (F).

Frontiers in Genetics frontiersin.org05

He et al. 10.3389/fgene.2023.1120354

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120354


FIGURE 2
Clinical relevance of risk score, and construction and evaluation of nomogram. The risk score variation between patients of different ages (A), genders (B)
and tumor grades (C)were shown in box plots. (D) A nomogram to predict the 1-, 3-, and 5 year survival possibility of glioma patients. The blue lines of age and
total points showed the distribution of the corresponding continuous variables in the data set used to establish the model. The points for each attribute are
calculated according to the corresponding status and thematching location in the first row of points. The sum of points is then used to predict the 1-, 3-,
and 5 year survival possibility for certain patients. An example is provided with red labels in the plot. (E) Calibration curve to evaluate the 1-, 3-, and 5 year OS
prediction accuracy of nomogram. (F) ROC curve to examine the prognosis prediction efficacy of PREs risk model and nomogram for glioma patients.
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macrophages, and resting NK cells, and have fewer monocytes and
activating NK cells (Figure 5E). Additionally, immune function
analysis suggested that compared to the low-risk glioma samples,
the high-risk group ones exhibit higher scores in almost all immune
function gene sets, and lower score in NK cell functions (Figures 5F,
G). Tregs and macrophages are reported to contribute to the immune
suppression environment of glioma, and the NK cells is known for its
cell toxic and anti-tumor effects (Wei et al., 2020) (Fecci et al., 2006)
(Zhang et al., 2016; Burger et al., 2019). Our findings implied that in
glioma, the PREs may be associated with immune activation status of
Tregs, macrophages and NK cells, which might be one mechanism of
PREs’ prognostic impact in glioma.

3.5 PREs risk scores positively correlate with
ICGs expression in glioma

As PREs risk scores are significantly associated with immune
activation status in gliomas, we investigated if the risk scores are
associated with the expression levels of ICGs. All six of the most
critical ICGs that were examined, including CD274, CTLA4,
HAVCR2, IDO1, PDCD1, and PDCD1LG2, exhibited a significant
positive correlation with the risk scores in glioma samples (Figure 6A).
The individual correlation scatter plots are exhibited in Figure 6B.
Furthermore, we examined the expression differences of forty-seven
main ICGs between risk groups, and the results revealed that most of
the ICGs were highly expressed in the high-risk group glioma samples
(Figure 6C). ICGs are commonly involved in immune tolerance and

proliferation of tumors including glioma, and their blockage might
inhibit the tumor progression (Ghouzlani et al., 2021). Our results
suggest that the PREs risk scores positively correlate with ICGs
expression. Some members of the PREs may contribute to the
immune tolerance of glioma through altering the expression of
ICG, and targeting them could be promising novel therapeutic
approach.

3.6 Glioma samples with higher risk score
exhibit higher overall TMB

We then compared the mutation landscapes variation between the
high- and low-risk glioma samples. The low-risk group possessed
higher rates of IDH1, ATRX and CICmutations than did the high-risk
group (76% vs 21%, 35% vs 12%, and 30% vs. 4%, respectively), but
most of the other common mutations occurred more frequently in the
high-risk group, especially for EGFR mutation (1% vs. 21%) (Figures
7A, B). We also compared the risk score of the samples with/without
mutations of IDH1, ATRX, and CIC, and found that samples with
those mutations have significantly lower risk score (Supplementary
Figure S4). This might account for the elevated overall TMB in the
high-risk group samples (Figure 7C). Then, to investigate the impact
of TMB on the prognosis of glioma patients, we performed K-M
analysis to examine the OS difference between glioma patients with
different levels of TMB. Results indicated that glioma patients with
higher TMB showed significantly shorter OS (Figure 7D). In addition,
we integrated the RNA-editing risk scores with TMB data to analyze

FIGURE 3
Five out of thirty-five PREs showed significant correlation with corresponding host genes. (A–E) Scatter plots showing the correlation between PRE
editing levels and expression of corresponding host genes. (F–J) Difference of PRE editing levels between different grades of gliomas. (K–O) K-M survival
analysis of those five RNA-editing in glioma patients (median of editing level as cutoff).
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FIGURE 4
Pathway enrichment comparing gene expression profiles between high- and low-risk groups. (A) Volcano plot showing the DEGs between risk groups.
Significance threshold was set as |logFC| > 1 and padj <0.05. Genes that are significantly upregulated or downregulated in high-risk group were labeled as red
or green, respectively. (B) Heatmap showing the expression pattern of top 50 DEGs up- or downregulated in high-risk group. (C,D) GO enrichment of DEGs.
(E) KEGG enrichment of DEGs. (F,G)GSEA enrichment of GO terms comparing high- and low-risk glioma samples. (H,I)GSEA enrichment of KEGG terms
comparing high-and low-risk glioma samples. Abbreviation: GO, gene ontology; BP, biological process; MF, molecular function; CC, cellular component;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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the prognostic impact of those two factors. The results suggested that
patients with both lower risk and lower TMB exhibited the best
prognosis compared to that of the other subgroups (Figure 7E).
This inspired us to use overall TMB for prognosis prediction of
patients with glioma, and the combination of the PREs risk score
and TMB might possess a higher prognostic value.

3.7 Prediction of chemotherapy response in
different risk groups

As previous studies indicated that TMB levels are associated with
therapeutic response and sensitivity (Büttner et al., 2019), we further
employed the “pRRophetic” algorithm to compare between risk

FIGURE 5
Glioma samples with different risk score possess different immune functions. (A–D) Comparison of tumor purity, stromal scores, immune scores, and
ESTIMATE scores between the high- and low-risk groups. (E) The abundance variation of 22 immune cells in the high- and low-risk groups. (F) Enrichment
differences of immune-function-related gene sets between high- and low-risk group glioma samples. (G) Heatmap exhibiting the immune function
enrichment alteration between different risk group glioma samples. *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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groups the sensitivity differences of common chemotherapies. Certain
drugs are more effective to low-risk group samples, while others
exhibit higher efficacy to high-risk ones. The top ten sensitive
drugs for the low- or high-risk groups are exhibited in the bubble
plot (Figure 8A). The sensitivity correlation and IC50 differences of
the top three sensitive drugs for each risk groups are also presented
with scatter plots and box plots (Figures 8B, C). Low-risk group
samples could be more sensitive to linsitinib, BMS−754807, and
KIN001−135, while high-risk samples may be relatively more
sensitive to drugs of Z-LLNle-CHO, TGX221, and JW-7-52-1. The

preferential sensitivity of those drugs implied that different editing
levels of PREs might come with different response to those drugs in
glioma, and manipulating PREs might have synergetic effect with
those drugs in glioma.

Besides, given that temozolomide is the most commonly used anti-
glioma drug, we further examined its efficacy in each risk group. As
presented in Figure 8D, high-risk glioma samples showed lower
IC50 values for temozolomide, suggesting they could be more
sensitive to it. Together, these results might shed light on the
potential therapeutic strategy-making for patients with glioma.

FIGURE 6
High-risk glioma samples possess elevated ICGs expression. (A) The correlation between critical ICGs and risk score; Red color indicates a positive
correlation, and a darker color intensity and larger circle represent a stronger correlation. *: p < 0.05. (B) Scatter plots demonstrating the correlation between
the risk scores and the expression levels of each critical ICGs. (C) The expression differences of 47 ICGs between the high- and low-risk group glioma samples.
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4 Discussion

Gliomas are a group of lethal brain tumors with extremely poor
prognosis. Even with complete standard therapy, patients generally die
quickly of the disease due to therapy resistance and tumor recurrence
(Ghotme et al., 2017). The glioma-specific immunosuppressive
microenvironment contributed greatly this doomed prognosis
(DeCordova et al., 2020), but preclinical trials of treatments against
it have failed to yield satisfactory results. RNA-editing contributed to
the carcinogenesis of several cancer types (Han et al., 2015; Baysal
et al., 2017). However, in gliomas the exact correlation between RNA-
editing and carcinogenesis, tumor microenvironments, immune
function, and therapy response remain elusive.

In this study, utilizing public RNA-editing and clinical data of
glioma patients, we identified thirty-five PREs in glioma
(Supplementary Table S1) and constructed a risk stratification
model accordingly. Survival, clinical relevance and ROC analysis
confirmed that the risk model can accurately predict the prognosis
of patients with glioma. Consistently, RNA-editing has been reported

to impact the prognosis of multiple solid tumors, including but not
limited to uterine corpus endometrial carcinoma (Wu et al., 2021),
hepatocellular carcinoma (Chen et al., 2020), and esophageal
squamous cell carcinoma (Qin et al., 2014). But given the
heterogeneity between tumors and organ-selective expression of
genes, the specific RNA-editing that affect prognosis vary by
tumor. The PREs signature presented in this study can not only
provide novel prognostic prediction models for patients with
glioma, but also offer potential targets to inhibit the progression of
gliomas.

In regard to the underlying action mechanism of PREs in glioma,
DEGs functional enrichment implied that the variation of PREs
correlate with alterations in pathways of morphogenesis,
transcription activity, and immune process. Immune response
escape, tumor-promoting inflammation, and genome instability are
known hallmarks of cancer (Hanahan and Weinberg, 2011).
Accumulating evidence suggests that RNA-editing is involved in
the alteration of the immune response and transcription activity in
various tumors. RNA-editing impacts the mRNA abundance of

FIGURE 7
A general heavier tumor mutation burden (TMB) was observed in high-risk glioma samples and correlated with worse prognosis. (A–B) The occurrence
frequency of the top 15 mutations in the high- and low-risk group glioma samples, respectively. (C) Overall TMB variation between the high- and low-risk
groups. (D) K-M analysis to examine the OS difference between glioma patients with different levels of TMB. (E)Comprehensive survival analysis of glioma pa-
tients incorporating both of the PREs risk score data and the TMB information.
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immune response pathways in multiple cancers including breast
invasive carcinoma, lung adenocarcinoma, prostate
adenocarcinoma, (Chan et al., 2020). Inhibition of adenosine-to-
inosine RNA-editing could promote expression of immune
response protein MAVS (Raghava Kurup et al., 2022). RNA-editing

enzyme ADAR1 could regulate R-loop formation and genome stability
at telomeres in cervical cancer (Shiromoto et al., 2021). Similar to these
studies, our results implied that PREs might impact the prognosis of
glioma through altering pathways of immune response and
transcription activity.

FIGURE 8
Correlation between the PREs risk score and chemotherapy sensitivity of gliomas. (A) Bubble plot displaying the top ten drugs with sensitivity preference
to high- or low-risk group glioma samples, respectively. Correlation scatter plots and sensitivity difference box plots of drugs that are more effective to low-
risk (B) or high-risk (C) glioma samples. Correlation scatter plots and sensitivity difference box plots of temozolomide (D).
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Functional enrichment analysis revealed that immune response
alteration could be one of the potential action mechanisms of PREs in
gliomas. However, the exact association between PREs levels and
glioma immune response remains elusive. Our immunology-related
analysis showed that high-risk glioma samples possess elevated TME
immune scores, immune function scores, and ICG expression.
Infiltrations of Treg and macrophage are promoted in high-risk
group, while NK cell function is suppressed. Glioma-associated
macrophages (GAMs) are the major immune cell population in
gliomas with significant tumor-promoting effects (Wei et al., 2020).
Tregs exert considerable immune-suppressive effects in gliomas, and
generally increase with the reduction of anti-tumor CD4+ T cells
fraction (Fecci et al., 2006). NK cells are well-established anti-tumor
immune cells, whose activity is commonly suppressed by glioma TME.
Activity restorations of NK cells through chimeric antigen receptor
(CAR)-engineering are extensively studied for application in glioma
immunotherapy (Zhang et al., 2016; Burger et al., 2019). The increased
infiltration of macrophage and Treg, as well as the suppression of NK
cell activation may partially account for the worse prognosis of the
high-risk group patients. Besides, our results revealed that most ICGs
were highly expressed in the high-risk group glioma samples. ICGs,
particularly the key members such as CTLA-4 and PD-1, are
profoundly involved in immune tolerance and proliferation of
glioma cells, and their blockage might inhibit the progression of
gliomas (Ghouzlani et al., 2021). Therefore, global upregulation of
ICGs may also be partially responsible for the poor prognosis of
patients in the high-risk group. Interestingly, in addition to tumor-
promoting GAM and Treg cells, a majority of other immune
functions, some of which might exert anti-tumor effect in other
solid tumors, were also activated in the high-risk group. On the
one hand, this coincided with the fact that RNA-editing could
extend the classes of HLA presented self-antigens, which can be
recognized by the immune system and boost immune function
(Zhang et al., 2018). But meanwhile, this is contradictory to the
fact that high risk group glioma patients have worse prognosis.
Possible explanations include their functions may be overshadowed
by GAM and Treg activation and NK cell suppression due to their
lower abundance in gliomas, or these common tumor-suppressing
immune components may be reprogrammed in gliomas to play
different biological roles. However, the exact immune process
activation status and their actual effects in glioma require further
experimental verification.

Tumor heterogeneity, including genomic heterogeneity,
contributes greatly to the therapy-resistance and poor prognosis
of gliomas (Nicholson and Fine, 2021). As an important types of
genomic heterogeneity, TMB has an essential impact on glioma
prognosis. A pan-cancer study published in “Annals of oncology”
reported that for cancers like glioma, where there is no correlation
between CD8+ T cell levels and neoantigen loads, higher TMB is
associated with tolerance to immune response and immunotherapy
(McGrail et al., 2021). This is consistent with our finding that high-
risk glioma patients possess higher overall TMB and worse
prognosis. Additionally, the low-risk group glioma samples
possessed more frequent mutations in IDH, ATRX and CIC
genes, whose mutations possess anti-tumor effects in gliomas
(Yan et al., 2009; Bettegowda et al., 2011; Qin et al., 2022). This
may also partially explain the prognostic advantage in the low-risk
group glioma patients. Together, PREs may be associated with the
genome mutation landscapes and overall TMB levels in gliomas.

Previous study has shown that RNA-editing signature could be
used to predict therapy response in tumors like advanced gastric
cancer (An et al., 2021). Likewise, we used our PREs risk model to
study the risk group-preferential sensitivity of various drugs against
glioma samples, trying to identify some novel therapeutic options for
glioma. Based on our results, low-risk group gliomas could be more
sensitive to linsitinib, BMS−754807, and KIN001−135, while
Z−LLNle−CHO, TGX221, and JW-7-52-1 may be more effective to
high-risk gliomas. Additionally, temozolomide also exhibited higher
sensitivity against high-risk glioma samples. Linsitinib is an insulin-
like growth factor 1 receptor (IGF-1R) inhibitor that can inhibit the
growth of diffuse midline glioma with H3K27M mutations (de Billy
et al., 2022). BMS-754807 is also an IGF-1R inhibitor reported to
prevent radiotherapy resistance in pediatric/youth high-grade gliomas
(Simpson et al., 2020). KIN001−135 is a small-molecule inhibitor for
multiple targets including TANK binding kinase 1, and is under
preclinical trials for glioma treatment (Xia et al., 2018). Z-LLNle-
CHO is a gamma-secretase inhibitor that can trigger cell death in
leukemia and breast cancer (Han et al., 2009; Meng et al., 2011), but its
biological roles have not yet been explored in glioma. TGX-221 is a
selective inhibitor of p110β-PI3K that can block the activation of PKB/
Akt pathway in PTEN-deficient cells. TGX-221 is reported to induce
apoptosis and inhibit migration and invasion in glioblastoma cells
(Yang et al., 2017). JW-7–52-1 is a PI3K/MTOR signaling pathway
inhibitor that hasn’t been tested for effects in gliomas. Taken together,
our findings identified some potential drugs that may be used in
glioma therapy, and shed light on the possibility of using these drugs to
target RNA-editing to inhibit glioma growth.

The current study still has some limitations. First, the research was
based on bioinformatics analysis, so prospective analysis of real-world
data is required to verify the robustness and clinical utility of the risk
model. Additionally, for the underlying action mechanism of PREs in
gliomas, we only explored correlations but did not experimentally
verify causality. Further rigorous experimental validations are
necessary for the elucidation of internal mechanisms.

5 Conclusion

In summary, we identified PREs in gliomas that could help to
predict patient outcomes. PREs risk scores correlate with alterations of
immune response, immune checkpoint expression, and TMB in
gliomas. The identified PREs signature may contribute to the
clinical risk stratification of glioma patients, but the specific
mechanism of PREs in the context of glioma awaits further
experimental study.
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