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Background: Breast cancer (BRCA) is regarded as a lethal and aggressive cancer
with increasing morbidity and mortality worldwide. cGAS-STING signaling
regulates the crosstalk between tumor cells and immune cells in the tumor
microenvironment (TME), emerging as an important DNA-damage mechanism.
However, cGAS-STING-related genes (CSRGs) have rarely been investigated for
their prognostic value in breast cancer patients.

Methods: Our study aimed to construct a risk model to predict the survival and
prognosis of breast cancer patients. We obtained 1087 breast cancer samples and
179 normal breast tissue samples from the Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEX) database, 35 immune-related differentially
expression genes (DEGs) from cGAS-STING-related genes were systematically
assessed. The Cox regression was applied for further selection, and 11 prognostic-
related DEGswere used to develop amachine learning-based risk assessment and
prognostic model.

Results:We successfully developed a riskmodel to predict the prognostic value of
breast cancer patients and its performance acquired effective validation. The
results derived from Kaplan-Meier analysis revealed that the low-risk score
patients had better overall survival (OS). The nomogram that integrated the risk
score and clinical information was established and had good validity in predicting
the overall survival of breast cancer patients. Significant correlations were
observed between the risk score and tumor-infiltrating immune cells, immune
checkpoints and the response to immunotherapy. The cGAS-STING-related
genes risk score was also relevant to a series of clinic prognostic indicators
such as tumor staging, molecular subtype, tumor recurrence, and drug
therapeutic sensibility in breast cancer patients.

Conclusion: cGAS-STING-related genes risk model provides a new credible risk
stratification method to improve the clinical prognostic assessment for breast
cancer.
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Introduction

Breast cancer (BRCA) is a life-threatening disease in females, it
strikes >1.6 million women worldwide and accounts for about 23%
of all malignancy death (Akram et al., 2017; Harbeck and Gnant,
2017). Advances in early detection and treatment have positively
impacted breast cancer mortality (Akram et al., 2017). However, the
application of conventional therapeutic strategies, such as surgery,
radiotherapy or chemotherapy, paradoxically may induce tumor cell
metastasis and drug resistance, thus affecting the prognosis and
overall survival (OS) of patients (McDonald et al., 2016; Deng et al.,
2017; Ben-Dror et al., 2022). At present, prognosis-related
mechanisms of BRCA remain ambiguous. Therefore, an intuitive
and effective prognosis tool may be needed.

In recent times, immunotherapy has evolved as a promising anti-
tumor strategy and has acquired enormous breakthroughs in treating
malignant tumors (Irvine and Dane, 2020; O’Donnell et al., 2019).
Accumulating data have indicated that immune response-related
genes have potential to predict therapeutic response and long-term
survival in patients with breast cancer (Denkert et al., 2010; Savas
et al., 2016; Emens, 2018). The process of tumor immunotherapy
predominantly relies on the recruitment of tumor-specific effector
T cells through the antigen-bound Class I and II major
histocompatibility complex (MHC-I and MHC-II) expressed on
antigen-presenting cells (APCs) (Riley et al., 2019; Leko and
Rosenberg, 2020). Common immunotherapies such as adoptive
cellular immune therapy (ACT), blockade of immune checkpoints
(ICB), and therapeutic antibodies aim to reinvigorate exhausted
effector T cells and sustain immune response in solid tumors
(Broz et al., 2014; Singh and McGuirk, 2020). However, the
assessment of predictable benefits from immunotherapy remains a
challenge. Recently, the identification of abnormally expressed genes
through genetic diagnosis technology has received increased attention,
in which the cytosolic DNA-sensing machinery in the tumor
microenvironment (TME) emerges as a promising target to control
malignant transformation and tumor progression (Vanpouille-Box
et al., 2018; Kwon and Bakhoum, 2020). The cGAS–STING pathway
has been discovered as an important DNA-sensing machinery in
innate and adaptive antitumor immunity (Jiang et al., 2020a; Kwon
and Bakhoum, 2020; Lv et al., 2020).

cGAS is one of the main DNA-sensing enzymes that can be
activated by endogenous DNA and catalyze the conversion of GTP
and ATP into synthesize 2-3 cyclic GMP-AMP (cGAMP) (Ablasser
et al., 2013). cGAMP or cyclic dinucleotides (CDNs) binds to the
downstream adaptor protein STING (stimulator of interferon gene)
on the endoplasmic reticulum (ER) to activate STING (Li et al., 2013).
Subsequently, activated STING migrates to the Golgi apparatus from
ER to recruit and activate TBK1 kinase, follows by the downstream
IRF3 or NF-kB signal (Sun et al., 2013). The cGAS-STING pathway is
a vital regulator of the innate immune response during viral infections,
inflammation, and anti-tumor immunity (Dhanwani et al., 2018; Lv
et al., 2020; Yang et al., 2022). The tumor immunotherapy relied on
the activation of the cGAS-STING pathway as tumor-derived DNA
activates the tumor-infiltrating DCs (Woo et al., 2014), or tumor-
derived cGAMP directly activates the STING pathway (Marcus et al.,
2018), inducing the secretion of type I interferons and promoting
tumor-specific antigen presentation and CTL activation (Chen et al.,
2016; Du and Chen, 2018; Guan et al., 2021; Zhou et al., 2021). The

activation of cGAS triggers the senescence associated secretory
phenotype (SASP) which are component of proinflammatory
cytokines, growth factors and chemokines (Gluck et al., 2017).
Recently, cGAS–STING signal has been hypothesized as a
plausible cancer suppressor during the tumor progression by
causing genomic instability (Kwon and Bakhoum, 2020). Further
evidence found that the cGAS-STING pathway induces inflammatory
response through IL-6, IL-6R and STAT3 (Hong et al., 2022), and
induces CD8+T cell infiltration to enhance anti-tumor immune
responses in breast cancer (Pantelidou et al., 2022). The activation
of STING-regulated IL-6/STAT3 increases the expression of PD-1
ligand in breast cancer (Vasiyani et al., 2022). STING agonists can
synergize with anti-PD-L1 therapy to enhance the levels of IFN-β,
IFN-γ, TNF-α and IL-10 as well as CD8 cytotoxic function in the
breast cancer mouse model (Yin et al., 2022). With the crucial role of
the cGAS-STING pathway for the crosstalk within tumor cells and
immune cells close by, it is worth exploring whether cGAS-STING-
related genes may provide a potential immunoregulatory mechanism
in the breast tumor microenvironment (Supplementary Figure S1).

Recently, bioinformatics techniques based on high-throughput
sequencing data have been widely used in the field of cancer to
identify new biomarkers and construct prognostic models. The
models conducted by the approaches had effective predictive
power for different types of cancer, including head and neck
squamous-cell carcinoma (Chi et al., 2022a), low-grade gliomas
(Zhao et al., 2022) and pancreatic cancer (Chi et al., 2022b). Also, it
has been widely used and valued in medicine to establish prediction
model through the mechanical learning to the database (Deo, 2015;
Handelman et al., 2018).

In this study, we screened 11 immune-related prognostic genes
from CSRGs by integrating the RNA-seq data and clinical
information from TCGA databases, and further developed a risk
assessment tool based on machine learning to predict the prognostic
value and evaluate the immune response in BRCA. This prognosis
tool has the potential effect for informing and improving
immunotherapeutic efficacy and clinical management of BRCA.

Material and methods

Data collection and analysis

Comprehensive information on BRCA patients was downloaded
from the Genomic Data Commons Data Portal of TCGA database
(https://portal.gdc.cancer.gov/), these included the RNA-seq data and
clinical parameters (follow-up data, age, tumor recurrence, T and N
status, pathological type and clinic stage, etc.). A total of 1087 samples
were obtained from the TCGA database after eliminating the
116 samples without survival data. The inclusion criteria: (I) breast
cancer patients, (II) overall survival data, (III) survival outcome data.
The RNAseq information of 179 normal breast tissue samples was
obtained from the GTEX database (https://gtexportal.org/). The
immunohistochemistry (IHC) data were acquired from Human
Protein Atlas (HPA) databases in normal breast tissues and breast
tumor tissues. The RNA sequencing data and survival information on
breast cancer patients of GSE20685, GSE1456, GSE3496 and
GSE7390 were derived from GEO database (https://www.ncbi.nlm.
nih.gov/geo/). The two published breast cancer patient cohorts
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GSE194040 (Wolf et al., 2022) andGSE173839 (Pusztai et al., 2021) that
received anti-PD-L1 therapy were obtained from the GEO database,
including gene expression data, the status of pathological complete
response (pCR) and the status of MammaPrint (MP). The
quantification of all RNA-seq data from the TCGA and GEO
databases used a normalization method that converted the gene
expression counts into transcripts per million in this study.

To establish the CSRGs risk score model, the 1080 breast cancer
samples with complete clinical information were subjected to
subsequent analyses, 7 samples without the complete set of all
clinical information were excluded. The inclusion criteria: (I)
T/N stage available, (II) clinical stage I/II/III/IV available, (III)
molecular subtypes available. The exclusion criteria: (I) no T/N
stage available, (II) clinical stage I/II/III/IV available, (III) no
molecular subtypes available.

To verify the prognostic value for the risk score model,
15 samples without survival data from GSE3494 were also
excluded. The all excluded patient samples did not be included in
further analyses.

A total number of 3210 immune system pathway genes were
provided from the Immunology Database and Analysis Portal
(https://immport.niaid.nih.gov) and the PathCards (https://
pathcards.genecards.org/) (Belinky et al., 2015). In addition, the
145 cGAS-STING-related pathway genes were obtained from the
PathCards for subsequent analysis.

Differentially expressed gene (DEG) analysis

The DEGs were identified by comparing the gene expression
difference between the breast tumor tissues from the TCGA
database and normal tissues from the GTEX database. The
analysis was performed on the DESeq2 package using a negative
binomial distribution model (Love et al., 2014), the criteria for DEG
identifying were FDR < 0.05 and [log2 (fold change)] > 1. The results
were displayed as volcano plots.

Gene ontology (GO), kyoto encyclopedia of
genes and genomes (KEGG) enrichment
analysis and consensus clustering analysis

Functional enrichment analyses DEGs were utilized to
determine the major biological characteristics. GO (http://
geneontology.org/) and KEGG (https://www.kegg.jp/) analyses
were based on hypergeometric distribution patterns to test the
significance of functional classes in a group of differentially
expressed genes. The data for the enrichment analysis were
calculated using the clusterProfiler package on the R software
(Yu et al., 2012). Consensus clustering analysis was performed by
ConsensusClusterPlus package on R software (Wu et al., 2022).

Construction of risk assessment and
prognostic model

Based on the 35 immune-related DEGs from GSRGs, univariate
Cox regression analysis was performed to identify the prognostic-

related genes combined with parameters including patients’ OS,
survival outcome and normalized gene expression from TCGA
database, and then 11 prognostic-associated genes were selected.
The significant thresholds were hazard ratio’s 95% confidence
interval excluded 1 and p < 0.05. The Survival packages on R
software were utilized in the procedure (Therneau and
Grambsch, 2000).

With the application of machine learning algorithm, the filtering
effect of feature variables has acquired enormous improvement, and
the performance of prognostic model has been optimized (Chi et al.,
2022a; Chi et al., 2022c; Chi et al., 2022d). In this study, five machine
learning algorithms were integrated to construct eight composite
models, as follows Elastic Net, Random Survival Forest, StepCox,
CoxBoost, Gradient Boosting Machine (GBM), StepCox + GBM,
Partial Least Squares Regression Cox and Survival Support Vector
Machine. All models were validated on four validation datasets (GSE
1456, GSE20685, GSE3494, GSE7390). The Harrell’s concordance
index (C-index) with the highest average value in validation datasets
was considered as optimal model. The model building process was
conducted on the glmnet package (Simon et al., 2011),
randomForestSRC package (Jaeger et al., 2019), plsRcox package
(Bastien et al., 2015), gbm package (Liu et al., 2022), CoxBoost
package (Gonzalez-Angulo et al., 2013) and survivalsvm package
(Van Belle et al., 2011) on R software.

According to the risk scoring formula of all BRCA patients from
the TCGA, the median risk score was used as the cut-off point and
the patients were divided into high-risk (n = 540) and low-risk (n =
540) score groups. Kaplan-Meier analysis showed the overall
survival (OS) between the two risk groups until the last follow-
up. Univariate and multivariate Cox analyses were used to
comprehensively assess the association between risk score and
patient clinical information on OS. The survminer package was
utilized for the analysis (Wang et al., 2022).

Establishment and validation of nomogram

Nomogram was constructed to predict the survival of breast
cancer patients based on risk score and series clinical parameters
including age, TNM (T stage, N stage, M stage) and clinical stage and
age, which was calculated by the rms package (Liu et al., 2018). The
predictive ability was evaluated by decision curve analysis (DCA),
which was performed using the ggDCA package. Receiver operating
characteristic curve (ROC) analyses were utilized to obtain area
under the curve (AUC) values by using timeROC package (Blanche
et al., 2013).

Immune infiltration analysis and gene set
enrichment analysis

CIBERSORTx is a tool for the deconvolution of expression
matrices of human immune cell subtypes based on linear support
vector regression (Newman et al., 2019). CIBERSORTx was used to
evaluate the immune infiltration of breast cancer samples from the
TCGA database. The ESTIMATE algorithm was used to calculate
the immune, stromal, and ESTIMATE scores based on the
expression of related biomarkers in immune and stromal cells
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(Yoshihara et al., 2013; Wu et al., 2021). The gene set enrichment
analysis (GSEA; https://www.gsea-msigdb.org/gsea/index.jsp) was
used to assess risk score-associated immune characteristics with
annotations of immunoSigDB in the MsigDB database
(Subramanian et al., 2005; Godec et al., 2016). In GSEA, the
condition for identifying significant characteristics was
normalized enrich score (NES) | > 1 or (NES) | < −1 and p < 0.05.

Therapeutic sensitivity analysis in patients

The relationship between immunophenotype score (IPS),
immune checkpoints (ICP) and risk score was estimated by
Student’s t-test. The online tool of tumor immune dysfunction
and exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/)
was used to evaluate tumor immune escape, and the differences
in the TIDE score between the two risk groups (Jiang et al., 2018).
The machine learning algorithm One Class Linear Regression was
employed to quantify the stemness of the tumor samples (Malta et al.
, 2018). The mRNAsi score reflected the gene expression
characteristics of stem cells by analyzing the stem cell
transcriptome data. The human stem cell data was provided by
the Progenitor Cell Biology Consortium (PCBC) (https://www.
synapse.org). The tidyverse package (Yeasmin et al., 2023) and
the gelnet package (Yeasmin et al., 2023) were used to build this
model.

Drug susceptibility

To predict clinical chemotherapy responses, we build a Ridge
regression model by large-scale gene expression and drug
screening data. Drug sensitivity was calculated by the machine
learning-based oncoPredict package based on the Genomics of
Drug Sensitivity in Cancer database (GDSC) (https://www.
cancerrxgene.org/), and finally obtained the 199 drugs data
(Maeser et al., 2021).

Statistical analysis

Statistical calculations were performed using Student’s t-test.
Differences between more than two groups were calculated using
ANOVA. Correlation analysis was calculated by Pearson
Correlation Analysis. Data analysis and plotting were performed
on R software version 4.2.2. Images were plotted by using
ggplot2 package (Sun et al., 2023). NS denotes not statistically
significant; *p < 0.05, **p < 0.01, ***p < 0.001 and ****p <
0.0001 indicated a statistically significant difference.

Results

Identification of immune-related DEGs and
functional analysis in BRCA

Firstly, we collected the gene expression data of 179 normal
breast tissue samples from the GTEx database and 1087 breast

tumor samples from the TCGA database. Samples were classified
into two groups according to whether they were diagnosed with
breast cancer. For analyzing the DEGs in the two groups,
9173 DEGs were identified according to the pre-specified
conditions of |logFC| > 1 and FDR < 0.05; the result was
displayed for the volcano plot (Figure 1A). To investigate
whether there were immune function-associated genes that
participated in BRCA development, we next obtained
3210 genes related to the immune pathway from the ImmPort
and PathCards database, the 1141 genes in them were regarded as
DEGs when comparing the normal breast tissues with breast
tumor tissues; the volcano plot result is charted in Figure 1B.
Subsequently, the 1141 DEGs were employed to examine the
functional characteristics by KEGG and GO analysis. The KEGG
analysis found the enriched top 10 pathways in the 1141 DEGs
included cytokine receptor, chemokines signaling, MAPK
signaling, Th17 cell differentiation, and JAK/STST pathway,
etc., (Figure 1C, left panel). The pathway net plot revealed the
interconnections for representative genes in 10 enriched
pathways (Figure 1C, right panel). The GO analysis described
the significant top 10 molecular function enrichment (Figure 1D,
left panel) and molecular signal characteristics (Figure 1D, right
panel), these included receptor ligand activity, antigen binding,
cytokine activity, etc. In summary, we identified the
1141 immune-related DEGs were crucial in breast tumor
progression.

Identification of CSRGs and functional
enrichment in BRCA

The cGAS-STING signaling is a key regulator in immune
responses and plays a vital role in BRCA development and
progression (Hong et al., 2022), but little is known about the
role of cGAS-STING-related genes (CSRGs) in the clinical
pathogenesis of breast cancer. Thus, we acquired 145 CSRGs
according to the cGAS-STING gene sets from the PathCards
database. We found 39 genes amongst the 145 CSRGs had
significant differences in normal breast tissues and breast
tumor tissues, of which 29 genes were upregulated and
10 genes were downregulated. The result was presented as a
volcano plot in Figure 2A. The Venn plot in Figure 2B showed the
correlation between the 39 cGAS-STING-related DEGs and the
overall 1141 immune-related DEGs. Of which, 35 immune-
related DEGs in CSRGs were isolated for further analysis,
their expression profile in normal and tumor groups was
presented as a heat map (Figure 2C), and the expression level
of each DEG in the tumor and normal tissues was presented in the
split violin map (Figure 2D). To understand the biological
characteristics of CSRGs, functional enrichment analysis of the
35 DEGs was employed. KEGG pathway analysis showed that the
top10 enriched pathway, for instance, Cytosolic DNA-sensing
pathway, TNF signaling pathway, and Toll-like receptor
signaling pathway, etc., these are represented on the left panel
of Figure 2E. The pathway net plot demonstrated the
interconnections between main pathways and their
representative genes (Figure 2E, right panel). The GO analysis
further revealed the top 10 molecular functions of the 35 DEGs
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(Figure 2F, light panel). The inter-relation between the main
biological processes including ubiquitin protein ligase binding,
double RNA binding, and G protein receptor combination, etc.,
(Figure 2F, right panel). In summary, the 35 CSRGs were
identified to be associated with the BRCA immune pathway,
this supported the proposition CSRGs were potential immune
effectors in BRCA.

Establishment of the risk score model based
on CSRGs for predicting the prognosis of
BRCA

The activation of the cGAS-STING pathway has received
attention for its prognostic value in gastric cancer and
hepatocellular carcinoma (Qi et al., 2020; Yang et al., 2021), it is

FIGURE 1
Screening the immune-related DEGs compared breast cancer tissues and normal breast tissues and identifying the functional enrichment of DEGs.
(A) Volcano plot illustrated the 9173 DEGs between normal breast and tumor tissues, downregulated genes were 5374 and upregulated genes were 3799.
Red plots represent upregulated genes and blue plots represent downregulated plots. (B) Volcano plot displayed the 1141 DEGs were recognized from
3210 immune-related pathway genes in normal and tumor samples, downregulated genes were 494 and upregulated genes were 647. (C) The top
10 pathways of 1141 DEGs were enriched and specified genes in the top 10 signal pathways were shown by a circle net diagram. (D)GO function analysis
described the top 10 molecular functions of 1141 DEGs, and network analysis showed the representative genes and 10 biological characteristics.
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FIGURE 2
Identification of the immune-related DEGs of CSRGs in normal breast tissues and breast cancer tissues. (A) Volcano plot illustrated 39 DEGs of
CSRGs compared normal breast tissues with breast tumor tissues. (B) Venn plot found the 35 DEGs of CSRGs were contained in 1141 DEGs of immune
pathway-related genes. (C) Heat map showed the expression distribution in two groups. (D) The expression of 35 DEGs was displayed in a split violin
diagram. (E) KEGG enrichment analyses showed the top 10 enriched pathway characteristics of 35 DEGs. (F) GO analyses described the top
10 molecular functions of 35 DEGs.
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unknown whether cGAS-STING may also be potential prognostic
value in BRCA.We screened out 11 DEGs from the 35 CSRGs which
were associated with the prognosis by univariate Cox regression

analysis combining with patients’ OS, clinical outcome and
normalized gene expression, namely, POLR2K, PYCARD,
HSPA8, NFKBIE, EIF2AK2, JUN, CCL5, IL18, PRKDC, IFNG,

FIGURE 3
Conduction and evaluation of the CSRGs risk scoremodel in BRCA patients. (A) Kaplan-Meier curve showed theOS of BRCA patients in high-risk and
low-risk score groups. (B) Heat map presented the expression pattern of 11 prognostic-associated CSRGs in two risk score groups. (C) The ranked dot
plot represented the risk score distribution characteristic in breast cancer patients. (D) Scatter plot performed survival status of patients with increasing
risk score. (E) Forest plot of univariate and multivariate Cox regression analyses of the association between OS and clinicopathological factors
(including the risk score) in BRCA patients; HR, hazard ratio; 95% CI, 95% confidence interval.
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and IL33, (Supplementary Figure S2A). The survival curves of the
11 prognostic genes in BRCA patients were evaluated by Kaplan-
Meier analysis, we observed that OS was positively associated with
PYCARD, NFKBIE, JUN, IL33, IL18, IFNG, and CCL5, and
inversely with POLR2K, PRKDC, EIF2AK2 and HSPA8
(Supplementary Figures S3A–K). The differential expressions of
the 11 prognostic genes from TCGA RNAseq data were
presented in Supplementary Table S3. Then, the protein levels of
the 11 genes were evaluated further using the IHC data of HPA
databases in normal breast tissues and breast tumor tissues. The
results showed that the expression of PYCARD, NFKBIE, PRKDC,
IL18, IFNG, HSPA8, EIF2AK2, and CCL5 was increased in the
human tumor tissues, IL33 and JUN performed reverse tendency,
and there was no IHC data for the POLR2K (Supplementary Figures
S4A–J). Next, we performed a consensus clustering analysis based
on the expression level of 11 prognostic genes in 1080 patients from
the TCGA database, and these patients were classified into two
clusters. We found that CCL5, IFNG, IL18, IL33, JUN, NFKBIE and
PYCARD had higher expression in cluster 1 (n = 541) compared to
cluster 2 (n = 539), and inversely with POLR2K, PRKDC,
EIF2AK2 and HSPA8 (Supplementary Figure S5A). Subsequently,
1257 DEGs were selected in two clusters for KEGG/GO analysis. We
observed that the DEGs were abundant in immune-related
biological characteristics and immune-related pathways
(Supplementary Figures S5B, C). cGAS-STING pathway exerts
important effect to enhance anti-tumor immune response and
cancer biotherapy efficacy. Based on the reports in the recent
decade, the molecular mechanisms of the 11 prognostic CSRGs
in BRCA were displayed in Supplementary Table S1.

Next, we constructed eight composite models by using five
machine learning algorithms in the TCGA database based on the
above 11 prognosis-related genes, and further calculated the C-index
of each model across training dataset and all validation datasets. The
Random Survival Forest constructed by extension method of
Random Forest was the optimal model in TCGA, and this model
had a leading average C-index (0.70525) in all validation datasets
(Supplementary Figure S6A). Then we used this model to calculate
the risk score based on gene expression of 1080 breast cancer
patients in TCGA database. According to the risk scores, the
median risk score (25.119) was obtained, and the patients were
stratified into high-risk score (n = 540) and low-risk score (n = 540)
groups. The Kaplan-Meier analysis showed the patients in the low-
risk group had better OS than high-risk score group (Figure 3A, p <
0.0001). The heatmap displayed the expression distribution for the
11 prognostic DEGs in high-risk and low-risk groups (Figure 3B),
we discovered that EIF2AK2, POLR2K, PRKDC, and HSPA8 had
high expressions in high-risk score, the other genes were opposite.
Next, the distribution and the survival status of risk score in BRCA
patients were presented in a ranked dot plot and scatter diagram, the
results demonstrated a positive association between mortality and
increasing risk score (Figures 3C, D).

To verify whether CSRGs risk score can act as an independent
predictor of survival in BRCA, we estimated the hazard ratio (R) for
OS based on risk score and a series of clinical factors including age,
pathology T stage, pathology N stage, molecular subtype (Basal,
Her2, luminal A, luminal B, normal and TNBC) and clinical stage (I/
II/III/IV) (Supplementary Table S4). The results from univariate
Cox regression analysis indicated that risk score, age, T stage, N

stage, and clinical stage were significantly correlated with OS
(Figure 3E, left panel). Meanwhile, when including these factors
in the multivariate Cox regression analysis, the results revealed that
risk score, age, clinical stage III and IV remained closely associated
with the prognosis, which proved that the risk score could be used as
independent factor to estimate the prognosis of BRCA patients
(Figure 3E, right panel). Overall, the above evidences proved that the
proposed risk model was significantly associated with survival
outcomes in BRCA patients.

Validation for the prognostic value of the
CSRGs risk model

To verify the prognostic value of the CSRGs risk model, the
GSE1456, GSE20685, GSE3494, and GSE7390 datasets of GEO
database were included in the testing cohorts. The Kaplan–Meier
curve analysis showed the low-risk group performed better survival
probability in GSE1456 (p = 0.00022), GSE3494 (p = 0.032), GSE7390
(P = 2e-4) and GSE20685 (P = 1e-4), indicating the survival predictive
ability of themodel was valid in testing datasets (Figure 4A). The ROC
curves were used to further validate the prognostic accuracy of this
model. We observed that the area under curve (AUC) values from the
training dataset, GSE1456, GSE3494, GSE7390 and
GSE20685 datasets, were 0.93, 0.76, 0.76. 0.75, and 0.67 in 3-year
ROC, respectively; 0.92, 0.79, 0.72. 0.69, and 0.7 in 5-year ROC; 0.93,
0.81, 0.72, 0.68, and 0.69 in 7-year ROC; 0.88, 0.69, 0.7, and 0.66 in 10-
year ROC (GSE1456 lacked 10-year survival data; Figure 4B). These
data indicated that the predictive ability for risk score model was
effective and reliable in BRCA patients.

To provide a quantitative method for predicting the
individualized clinical prognosis on breast cancer patients, we
next established a nomogram model that integrated the risk score
and a series of clinical information including age, T/N stage, stage
I/II/III/IV and molecular type (Basal, Normal, Her2, TNBC,
Luminal A, Luminal B) in training cohort patients. The total
point can be calculated in each breast cancer patient for
predicting the 3-, 5-, 7- and 10-year overall survival (Figure 4C).
The calibration curves for nomogram were applied to indicate the
consistency, the result revealed good predictive accuracy between
the practical and predicted OS for BRCA patients in 3-, 5-, 7- and
10-year (Figures 4D–G). DCA was evaluated the precision for
nomogram, the results indicated that nomogram had preeminent
clinical validity in predicting OS of BRCA patients (Figure 4H).
Furthermore, time-dependent ROC analysis showed that the
nomogram was the most accurate and powerful predictor for OS
compared with other clinical features (Figure 4I), suggesting this
nomogram had a good predictive power. Together, these findings
validated risk score model can serve as an effective tool in predicting
the prognosis of BRCA patients.

Association of CSRGs risk score with
immune score and immune cell infiltration in
BRCA patients

The complexity and diversity of the TME have an impact on
immunotherapy response (Binnewies et al., 2018). Numerous
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FIGURE 4
Validation of the CSRGs risk model, conduction and validation of nomogram in BRCA patients. (A) The Kaplan–Meier curves illustrated the survival
probability between high-risk and low-risk groups in GSE1456, GSE3494, GSE7390 and GSE20685 datasets. (B) The ROC analysis showed the AUC for 3-,
5-, 7- and 10- year survival in the training dataset and testing datasets. (C) The nomogram was established by incorporating clinical parameters and the
risk score to predict the probability of 3-, 5-, 7- and 10-year survival for breast cancer patients. (D–G)Calibration plot of the nomogramdisplayed the
actual and predicted survival outcome for 3- (D), 5- (E), 7- (F) and 10-year (G). (H) DCA of the nomogram for 3-, 5-, 7- and 10- year survival benefit; the
straight line represents the assumption that no patients died; the wavy lines represent predictive survival; the curve lines represent actual survival. (I) The
time-dependent ROC analyzed AUC for the predictive value compared nomogram with other parameters in BRCA patients.
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FIGURE 5
Correlation analysis of CSRGs risk score, immune score and immune cell infiltration in BRCA. (A) Violin plot illustrated the association between risk
score and both immune and stromal scores in TME. (B) The Kaplan-Meier analysis was utilized to evaluate the OS between the low-immune and high-
immune groups in BRCA patients. (C) The relationship between the immune score and risk score was displayed by box plot. (D) Kaplan-Meier survival
analysis showed the OS among four patient groups stratified by both immune score and CSRGs risk score. (E) Box plots described the estimated
proportion of 15 infiltrative immune cells in TME. (F)Heatmap of the 15 infiltrative immune cells for patients in high-risk and low-risk score groups. (G) Box
plots illustrated the different immune cell proportions in two risk score groups. (H) Scatter diagram showed the linear relationship between risk score and
infiltrative immune cell types. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; NS, not significant.
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studies revealed that TME status were valuable predictive indicators
for tumor immune response (Zeng et al., 2019; Chen et al., 2021; Wu
et al., 2021). We then used the ESTIMATE algorithm based on
immune and stromal cells to calculate the TME score and further
evaluate the relationship with CSRGs risk score. The split violin map
demonstrated that the CSRGs risk score was strongly associated with
immune score and stromal score in the TME (Figure 5A, p < 0.0001).
To explore the impact of immune score on prognosis in BRCA
patients, we also used the median value as a cut-off point to classify
immune score as either high score group (n = 540) or low score
group (n = 540). The Kaplan-Meier curve analysis showed the
survival probability of a high-immune score was inferior to a
low-immune score (Figure 5B, p = 0.023). Correlation analysis
revealed the CSRGs risk score exhibited a negative connection
with the immune score (Figure 5C, R = −0.31, p < 2.2e-16).
Next, we combined the immune score and risk score to
undertook further survival analysis of BRCA patients. The
Kaplan-Meier analysis showed the high-immune + low-risk
group had the best survival benefit, the worst survival was noted
in the low-immune + high-risk group, indicating that a high-
immune score and low-risk score are significant favorable
prognostic indicators in BRCA (Figure 5D, p < 0.0001). Taken
together, these analyses suggest that the CSRGs risk score and its
integration with the immune score could provide a prognostic risk
stratification.

Low-level infiltration of cytotoxicity immune cells can heighten
tumor immune escape and impede clinical outcomes (Stanton and
Disis, 2016). We then investigated the 22 human immune cell
proportions in BRCA patients using the CIBERSORTx algorithm
(Supplementary Figure S7A), the proportions of 15 infiltrated
immune cells in TME was estimated after eliminating
unobservable infiltrated immune cells (Figure 5E; Supplementary
Table S5). Next, the infiltrative levels of 15 immune cells in high-risk
score and low-risk score groups were displayed in a heat map, we
observed that the majority of immune cells were closely related to
the risk score (Figure 5F). The different proportion of these immune
cells in two risk score groups was estimated, it was observed that
B cells naïve, T cells CD8, T cells CD4 memory resting, T cells
CD4 memory activated, T cells regulatory Tregs, Macrophages M0/
M1/M2 and Neutrophils has significant difference (Figure 5G, *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). As depicted in the
scatter plot (Figure 5H), the high-risk score group was positively
associated with Macrophages M2, Macrophages M0 and
Neutrophils; the low-risk score was correlated with elevated DC
resting, Macrophages M1, T cells regulatory Tregs, T cells follicular
helper, T cells CD4 memory activated, T cells CD4 memory resting,
T cells CD8, and B cells naïve. Hence, we concluded that the risk
score model can estimate the level of majority infiltrated immune
cells for breast cancer patients.

Immune signature analyses of GSRGs risk
score in BRCA

To investigate the immune characteristics of the CSRGs risk
score in BRCA patients, we performed gene set enrichment analysis
(GSEA) with annotations of immunoSigDB. Significantly enriched
immune features in high-risk and low-risk groups were descripted in

dot plot, the results are represented in the volcano plot where the red
dots represented the immune features enriched in the high-risk
group (n = 93) while blue dots represented the low-risk group (n =
860) (Figure 6A; Supplementary Table S6). The significantly
enriched immune features in the high-risk group such as: NK
cells decreased, macrophages decreased, unstimulated peripheral
blood mononuclear cells (PBMC) increased, CD3/CD28 activated
CD4+T cells decreased (Figure 6B, upper panel); the significantly
enriched immune features in the low-risk group such as: B cells
decreased, dendritic cells increased, CD25+CD4+T cells decreased,
monocytes increased (Figure 6B, lower panel). These findings
demonstrated that risk score was associated with tumor immune
response.

To investigate whether the risk score had potential effect for
therapy reactiveness in BRCA patients, we next integrated the
immunophenotype score (IPS) into the proposed model, the
results revealed that low-risk score was positive correlation with
a higher IPS score (Figure 6C, p < 0.0001). Next, we detected the
expression of 9 representative immune checkpoints (ICPs) in BRCA
patients and discovered that all ICPs were strongly associated with
risk score. The result showed that the expression of PVRwas positive
correlation with high-risk score group, and other ICPs were positive
to low-risk score group (Figure 6D, p < 0.01, p < 0.0001). By
estimating the tumor immune dysfunction and exclusion (TIDE),
we observed higher risk score performed a higher TIDE score
(Figure 6E; Supplementary Figure S8A, p < 0.0001). These results
indicated that low-risk score patients might be benefit from ICP
inhibitors in BRCA.

Nowadays, the identification of predictive indicators is crucial
for immunotherapy strategies. To investigate whether the risk score
model could predict immunotherapeutic benefit for breast cancer
patients, we acquired two breast cancer patient cohorts that received
anti-PD-L1 therapy in GEO database. The 69 patients in the
GSE194040 dataset that received Pembrolizumab (anti-PD-L1)
with Paclitaxel therapy and 71 patients from the
GSE173839 dataset that received Durvalumab (anti-PD-L1) with
Olaparib therapy were analyzed. We next assessed the relationship
between risk score and the status of pCR in patients, the results
showed that patients from the complete response group (pCR = 1)
had a lower risk score than failed complete response group (pCR =
0) in GSE194040 cohort (Figure 6F, p < 0.001) and
GSE173839 cohort (Figure 6G, p < 0.0001). However, the risk
score distribution in MP high group (MP = 0) and MP ultra-
high group (MP = 1) performed not significant difference both
in GSE194040 and GSE173839 (Figures 6F, G, NS). Taken together,
these data implied that CSRGs risk score was related to
immunotherapy responsiveness in BRCA patients, but might be
unable to predict the adjunct chemotherapy decision and the risk for
distant recurrence.

Association of CSRGs risk score with
subtypes, CSC score, tumor recurrence and
drug analysis in BRCA patients

The poorer prognosis of breast cancer is affected by various
factors, such as pathological grading and classification, tumor
aggressiveness, therapy resistance and tumor recurrence (Phung
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FIGURE 6
The immune signature and immunotherapy benefit of the risk score in BRCA patients. (A) Dot plot described the significantly enriched immune
features in high-risk and low-risk groups. The red dots represented the immune features enriched in the high-risk group; blue dots represented in low-
risk group. (B) Representatively immune characteristics in GSEAwere shown in a high-risk group and a low-risk group. (C) The relationship was estimated
between risk score and IPS score. (D) Box plot performed the different expression of representative ICPs in the high and low-risk groups. (E) Box plot
showed the relationship between TIDE score and two risk score groups. (F,G) Violin plot illustrated the interrelation between risk score and patients’
distribution from the two pCR groups in GSE194040 cohort (F, left panel) and GSE173839 cohort [(G), left panel]; pCR represented the status of a
pathological complete response; 1 = complete response; 0 = failed complete response. Violin plot descripted the correlation between risk score and
patients’ distribution from the two MP groups in GSE194040 cohort [(F), right panel] and GSE173839 cohort (G, right panel); MP represented the
MammaPrint status; 0 = MammaPrint high risk 1 (MP1); 1 = MammaPrint (ultra) high risk 2 (MP2). **p < 0.01; ***p < 0.001; ****p < 0.0001; NS, not
significant.
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FIGURE 7
CSRGs risk score predicted clinical therapeutic benefits of BRCA patients. (A) Violin plot showed the association between risk score and four clinical
stages (stage 1, stage 2, stage 3 and stage 4). (B) The different expression levels of 11 prognosis-related CSRGs in four stages was presented by a box plot.
(C) Violin plot descripted the relationship between risk score and themolecular subtypes of Basal, Her2+, Luminal A, Luminal B, Normal and TNBC in BRCA
patients. (D) The different expression levels of 11 prognosis-related CSRGs in six subtypes were described by box plot. (E) Violin plot displayed the
correlation between the risk score and tumor recurrence in BRCA patients. (F) The different expressions levels of each 11 prognosis-related CSRGs in
primary tumor and recurrent tumor were displayed by box plot. (G) CSCs detected the possibility of tumorigenesis in the low-risk score and high-score
groups. (H) Histogram showed the drug sensibility in the low-risk score and high-score groups for BRCA patients. **p < 0.01; ****p < 0.0001; NS, not
significant.
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et al., 2019; Yu et al., 2019). To identify whether the CSRGs risk score
was related to clinic outcomes, we assessed the association between
risk score and tumor subtype, invasive stage, tumor recurrence,
cancer stem cells (CSCs) and drug sensibility. The violin plot
presented in Figure 7A showed strong correlation between the
four pathological stages of BRCA and the risk score. However, in
the analysis of the 11 prognostic genes expression in the four BRCA
stages, significant differential expression of IL33 and JUN were
noted, and others had no remarkably difference (Figure 7B, NS, p <
0.01, p < 0.0001). In Figure 7C, the molecular subtype of basal,
luminal A, luminal B, her2+, normal and triple-negative breast
cancer (TNBC) were strongly associated with risk score. Next,
the expression level of 11 prognostic CSRGs in the six subtypes
of BRCA were analyzed, we observed that all genes performed
significant difference (Figure 7D, p < 0.0001). Furthermore, we
summarized that the risk score is strongly related to tumor
recurrence in BRCA database (Figure 7E, p = 0.01), but only
HSPA8 and PRKDC performed remarkable expression difference
in the recurrent tumor and primary tumor (Figure 7F, NS, p < 0.01).
We next utilized the cancer stem cells (CSCs) score to estimate stem
cell features in BRCA so as to predict the possibility of
tumorigenesis. Our results showed that the CSCs score was
positively associated with increased risk score, suggesting that the
BRCA cells with higher risk score had more prominent stem cell
features and more likely to differentiate (Figure 7G). In addition, we
investigated the potency of the risk score for forecasting the
therapeutic response to chemotherapies/targeted drugs, the IC50

value of the 199 drugs obtained from GDSC database was estimated
by the ridge regression algorithm in BRCA patients (Supplementary
Table S7), the result revealed that low-risk score was positively
related to Daporinad, Camptothecin, Vincristine, Epirubicin, and
Trametinib, etc.; meanwhile, the high-risk score was more sensitive
to Bortezomib, Dactinomycin, Staurosporine, Docetaxel and
Paclitaxel (Figure 7H), these data demonstrated that risk score
was associated with drug sensitivity. Taken together, we inferred
that the CSRGs risk model was effective in forecasting clinic features
in BRCA.

Discussion

Over the past few decades, cGAS-STING as a center pathway of
cytoplasmic DNA sensor induces a protective immune defense and
provides anti-tumor immunity (Chen et al., 2016). In this research,
we identified 35 differentially expressed CSRGs that were contained
in immune-related DEGs of patients with BRCA. Of which,
11 CSRGs shown promise as plausible prognostic indicators in
BRCA. The biological functions involved in the non-catalytic
roles of cGAS include regulation of DNA repair, chronic
inflammatory associated with NF-κB and MAPK pathway,
cytokines signaling such as the TNF pathway, autophagy and
lysosome-dependent cell death (Qi et al., 2020; Zhang et al.,
2020). Consistently, our KEGG and GO analysis demonstrated
that CSRGs were markedly enriched in cytosolic DNA-sensing
pathway, cytokines activity, and cytokine receptor binding, etc. In
our proposed risk model, the low-risk group had a lower hazard
ratio and mortality than the high-risk group. The nomogram model
could accurately predict the 3-, 5- and 10-year survival probability of

individual BRCA patients, and the internal and external validation
further affirmed the creditability. These results strongly suggested
that CSRGs risk score was identified as a potential prognostic
indicator and provide a promising strategy for improving clinic
outcomes in BRCA patients.

Here, we reported the cGAS-STING-related genes have strong
correlation with immune cells infiltration and immune checkpoints
expression in BRCA. Recent evidence indicates that the various
immunotherapy effect is dependent upon the activation of cGAS-
STING-related genes in BRCA. Some genes involved in our risk
model have been reported. IL33 facilitates immunosuppressive
(Jovanovic et al., 2014), and fibroblast-derived IL33 modifies the
immune microenvironment to promote breast cancer growth and
metastases (Shani et al., 2020). Induction or recombinant IL-33
enhances immune checkpoint blockade treatment in breast cancer
(Blomberg et al., 2023). IFN-γ-driven immunosuppressive pathway
has been a target in MUC1-C alone or combination with ICPs
treatment for TNBC (Yamashita et al., 2021). HSPA8 is a new
biomarker related to prognosis and immune infiltration in TNBC
(Ying et al., 2022). CCL5 mediates breast tumor progression and
recurrence by interacting with the CCR3 axis (Yamaguchi et al.,
2021), recruiting macrophages (Walens et al., 2019) and regulating
the CD4+/CD8+, CCR5+/CD4+ or Treg/CCR5+ cell ratios (Qiu et al.,
2022). IFI16-dependent STING pathway can potentiate
HER2 breast cancer responses to immunotherapy (Ong et al.,
2022). Considering these findings, the CSRGs will be potential
useful biomarkers to provide novel therapeutic strategy for breast
cancer.

CSRGs score was related to the clinicopathological features of
BRCA in our study. For instance, the clinical stages and molecular
subtype of BRCA had powerful correlation with risk score. The
clinical stage I patients had lower risk score and stage IV performed
the highest risk score. In addition, the risk of BRCA recurrences was
strongly correlated with the original TNM status (Pan et al., 2017).
Whilst the T cell infiltration of patients with early cancer progress
may help control tumor recurrence (Mlecnik et al., 2011). Due to
their self-renewal capacity and potential differentiative capacity,
CSCs was associated with tumor progression, metastasis,
treatment resistance, and poor prognosis (Ding et al., 2020). In
our study, higher risk score was positively associated with tumor
recurrence and stem cell characteristics, inferring that patients in the
high-risk score may be response worse to existing therapies.

Evaluating the TME status may predict the prognosis of patients
and may be used as a biomarker for immunotherapy (Wu et al.,
2021). We calculated TME scores and found that the low-risk score
obviously presented higher immune and stromal scores. Immune
interaction is critical characteristic of tumorigenesis and prognosis,
and we discovered that the immune score performed survival
prediction ability and the higher-immune score had superior OS
in BRCA patients. The prognostic value of immunophenotype may
be more powerful than the traditional staging (Azimi et al., 2012;
Gajewski et al., 2013). PD1/PD-L1 expression and immune
checkpoint therapy have been regarded as important indicators
for clinical guidance and represent immunotherapy
responsiveness (Sharpe and Pauken, 2018; Liu et al., 2021).
However, many challenges still exist of immune checkpoint
therapy for cancers due to the low response rate and immune-
related adverse events in some cancer patients (Darvin et al., 2018).
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Our results indicated that CSRGs risk score was highly correlated to
immune checkpoint scores, including PD1, SIRPA, and LAG4.
Moreover, risk score performed association with immunotherapy
response in breast cancer immunotherapy cohort. The
immunotherapy efficacy depends on the infiltration of effector
CD8+T cells and the presence of tumor-associated macrophages
in TME (DeNardo and Ruffell, 2019; Jiang et al., 2020b). But the
majority of patients show unsatisfied immunotherapies due to the
exhausted and dysfunctional state of immune T cells in the clinic
(Jiang et al., 2020b). Our results discovered that B cells, CD8 T cells,
helper T cells, resting DC cells, monocytes and M1 macrophages
were positively associated with the low-risk group. Consequently,
the low-risk patients may benefit more from immunotherapy, and it
may greatly help to improve immunotherapy while reducing its
immune-suppressive effects. Therefore, the cGAS-STING pathway
may provide new approaches to enhance immunotherapy in breast
cancer.

Without a doubt, there are still some limitations in this study.
The prognostic model was conducted based on the publicly
accessible data, and there was lacking strong support of
laboratory and clinical data. So, it would be necessary to further
validate the practical value of the model through animal and cell
experimental studies, and even larger follow-up studies. In
particular, the biological functions of the 11 genes associated
with cGAS-STING pathway in breast cancer need to be further
elucidated and assessed.

Conclusion

In summary, we constructed a new risk score model using
machine learning arithmetic based on 11 prognostic-related
CSRGs (POLR2K, PYCARD, HSPA8, NFKBIE, EIF2AK2, JUN,
CCL5, IL18, PRKDC, IFNG, IL33) to effectively predict prognosis
and immunotherapy benefits in breast cancer patients. Favorable
performance in validation datasets suggested its believable
perspective in utilization.
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