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SIRT1 is a member of the sirtuin family functioning in the process of removal of acetyl groups from different proteins. This protein has several biological functions and is involved in the pathogenesis of metabolic diseases, malignancy, aging, neurodegenerative disorders and inflammation. Several long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) have been found to interact with SIRT1. These interactions have been assessed in the contexts of sepsis, cardiomyopathy, heart failure, non-alcoholic fatty liver disease, chronic hepatitis, cardiac fibrosis, myocardial ischemia/reperfusion injury, diabetes, ischemic stroke, immune-related disorders and cancers. Notably, SIRT1-interacting non-coding RNAs have been found to interact with each other. Several circRNA/miRNA and lncRNA/miRNA pairs that interact with SIRT1 have been identified. These axes are potential targets for design of novel therapies for different disorders. In the current review, we summarize the interactions between three classes of non-coding RNAs and SIRT1.
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INTRODUCTION
As a member of the sirtuin family, Sirt1 has a function in removal of acetyl groups from different proteins. This nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase has several biological functions and is involved in the pathogenesis of metabolic diseases, malignancy, aging, neurodegenerative disorders and inflammation (Rahman and Islam, 2011). SIRT1 has a lot of substrates including a number of transcription factors. These transcription factors include p53, FoxO family, HES1, HEY2, PPARγ, CTIP2, p300, PGC-1α, and NF-κB (Haigis and Guarente, 2006; Michan and Sinclair, 2007; Yamamoto et al., 2007; Pillarisetti, 2008). The enzymatic reaction catalyzed by SIRT1 leads to generation of nicotinamide and transfer of the acetyl group of the substrate to cleaved NAD, producing a distinctive metabolite, namely, O-acetyl-ADP ribose (Pillarisetti, 2008).
SIRT1 has an important role in the regulation of energy homeostasis in response to accessibility to nutrients. In the liver tissue, SIRT1 enhances expression of the nuclear receptor PPARα, thus regulating lipid homeostasis. Deletion of Sirt1 in this tissue has been shown to impair PPARα signaling and decrease ß-oxidation of fatty acids, resulting in the development of hepatic steatosis, induction of inflammatory responses in liver, and endoplasmic reticulum stress (Purushotham et al., 2009).
In addition to the regulation of metabolic pathways, SIRT1 is involved in the carcinogenic processes. Its expression has been found to be increased in both hematological malignancies (Bradbury et al., 2005) and solid tumors (Huffman et al., 2007; Stünkel et al., 2007). Possibly acting as an oncogene, SIRT1 interacts with p53 and induces its deacetylation at its C-terminal Lys382 residue (Vaziri et al., 2001), thus inactivating this tumor suppressor.
In fact, SIRT1 is involved in a variety of human disorders including malignant and nonmalignant conditions. Recently, researchers have focused on identification of the interaction between non-coding RNAs and SIRT1 in these disorders. These investigations have led to identification of a number of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) that regulate expression of SIRT1. In the current review, we provide an overview of these non-coding RNAs.
SIRT1-INTERACTING MIRNAS
A class of non-coding RNAs known as miRNAs regulate gene expression by binding to specific target genes in distinct pathways, thereby modulating the expression of various genes (Ghafouri-Fard et al., 2021a; Hussen et al., 2021; Hussen et al., 2022a). Mature miRNAs are formed by further processing of pre-miRNAs, which are formed from the transcribed nucleic acids that make up primary miRNAs. Several miRNAs have been shown to target SIRT1, thus regulating its expression. Dysregulation of SIRT1-targeting miRNAs is involved in the pathogenesis of sepsis and its complications, non-alcoholic fatty liver disease (NAFLD), chronic hepatitis, hepatic and myocardial ischemia/reperfusion (I/R) injury, cardiac fibrosis, heart failure, myocardial infarction, osteoarthritis, kidney injury, diabetic nephropathy, cerebral I/R Injury, spinal cord injury, epilepsy and a number of malignant conditions (Table 1; Figure 1). In sepsis, upregulation of miR-181a (Wu Z. et al., 2021), miR-133a (Chen L. et al., 2020) and miR-195 (Yuan et al., 2020) has been shown to lead to downregulation of SIRT1 and aggravation of inflammatory responses. miR-29a, miR-34a and miR-182 are among SIRT1-interacting miRNAs being involved in the pathogenesis of hepatic disorders. For instance, miR-29a via modulating the GSK-3β/SIRT1 could ameliorate mouse non-alcoholic steatohepatitis (Yang et al., 2020). Alterations in the miR-34a/SIRT1/FXR/p53 axis have been found to induce NAFLD in rats (Alshehri et al., 2021). Moreover, miR-34a via mediating the SIRT1/p53 axis could enhance liver fibrosis in patients with chronic hepatitis (Li X. et al., 2020).
TABLE 1 | SIRT1-interacting miRNAs.
[image: Table 1][image: Figure 1]FIGURE 1 | SIRT1 works with a lot of molecules, some of which are transcription factors. p53, the FoxO family, HES1, HEY2, PPAR, CTIP2, p300, PGC-1, and NF-B are all transcription factors. Dysregulation of SIRT1-targeting miRNAs plays a role in the pathogenesis of sepsis and its complications, chronic hepatitis, ischemia/reperfusion (I/R) injury to the liver and heart, cardiac fibrosis, myocardial infarction, osteoarthritis, diabetic nephropathy, and a number of malignant diseases like colorectal cancer.
miR-128 has been shown to be involved in the pathogenesis of chronic angiotensin II infusion-induced cardiac remodeling through modulation of SIRT1. Silencing this miRNA in the heart tissues of mice could ameliorate angiotensin II-induced cardiac dysfunction, hypertrophy, fibrosis and oxidative stress damage. Angiotensin II could induce upregulation of miR-128 in cell culture. Treatment of cells with miR-128 antagomir could attenuate angiotensin II -induced apoptosis and oxidative damage possibly through targeting the SIRT1/p53 pathway. Suppression of this miRNA could also activate PIK3R1/Akt/mTOR pathway, restrain angiotensin II-induced autophagy in cardiomyocytes, and mitigate oxidative stress and apoptosis (Zhan et al., 2021).
SIRT1-interacting miRNAs are also involved in the pathogenic processes in the acute myocardial infarction. Suppression of miR-29a has been shown to protect against myocardial I/R injury through influencing expression of SIRT1 and subduing oxidative stress and NLRP3-associated pyroptosis (Ding et al., 2020). In addition, miR-200a-3p has been found to aggravate doxorubicin-induced cardiotoxic effects through targeting PEG3 via SIRT1/NF-κB signaling pathway (Fu et al., 2021). miR-181a-5p is another miRNA which participates in the cardiomyocyte apoptosis induced by hypoxia–reoxygenation via regulation of SIRT1 (Qi et al., 2020). Moreover, an experiment in an animal model of acute myocardial infarction has shown that miR-124-3p targets SIRT1 to influence cell apoptosis, inflammatory responses, and oxidative stress through regulation of the FGF21/CREB/PGC1α axis (Wei et al., 2021). Besides, miRNAs that modulate expression of SIRT1 can affect pathogenesis of heart failure. For instance, downregulation of miR-22 by targeting SIRT1/PGC-1α could alleviate this disorder (Wang et al., 2021b). Finally, miR199/SIRT1/P300 axis has apotential function in the patheticlogy of this disorder (Asensio-Lopez et al., 2021).
Lastly, three SIRT1-interacting miRNAs have been revealed to participate in the carcinogenesis. miR-373 is a tumor suppressor miRNA that inhibits proliferation of pancreatic cancer cells through influencing activity of SIRT1/PGC-1α/NRF2 axis (Yin et al., 2021). On the other hand, miR-34a acts as an immunosuppressive miRNA in colorectal cancer via regulation of SIRT1/NF-κB/B7-H3/TNF-α axis (Meng et al., 2021). Lastly, miR-199a-5p has a role in repression of stemness of squamous cell carcinoma cells through influencing activity of SIRT1 and CD44ICD cleavage signaling (Lu et al., 2020).
SIRT1-INTERACTING CIRCRNAS
Circular RNAs (CircRNAs) are common in all animals, from viruses to mammals. They are single-stranded, endogenous covalently closed RNA molecules with highly stability. The biosynthesis, regulation, localization, destruction, and modification of circRNAs have all seen great progress (Sayad et al., 2022). CircRNAs play a role in a wide range of human disorders, particularly malignancies (Ghafouri-Fard et al., 2021b; Ghafouri-Fard et al., 2022). The impact of SIRT1-interacting circRNAs in the regulation of SIRT1 has been assessed in diabetes and its complications, rheumatoid arthritis, chronic cerebral ischemia, osteoarthritis, intervertebral disc degeneration as well as malignant disorders, particularly glioma (Table 2). All of these circRNAs have been shown to act as molecular sponges for miRNAs to subsequently affect expression of miRNAs targets (Figure 2). For instance, hsa_circ_0115355 has been found to regulate activity of miR-145/SIRT1 axis, thus enhancing function of pancreatic ß cells in patients with type 2 diabetes mellitus (Dai et al., 2022). CircHIPK3 is another circRNA which participates in the pathogenesis of diabetic complications. Expression of this circRNA has been significantly reduced in HK-2 cells following exposure with high glucose. Forced upregulation of circHIPK3 could reverse high glucose-induced pathologic events in HK-2 cells. SIRT1 has been found to be the target of miR-326 and miR-487a-3p, two downstream genes of circHIPK3. Silencing of these two miRNAs could induce proliferation and decrease apoptosis in high glucose-induced HK-2 cells. Taken together, upregulation of circHIPK3 can reduce the effects of high glucose in HK-2 cells via sponging miR-326 or miR-487a-3p and influencing expression of SIRT1 (Zhuang et al., 2021).
TABLE 2 | SIRT1-interacting circRNAs.
[image: Table 2][image: Figure 2]FIGURE 2 | CircRNAs have been proven to serve as molecular sponges for miRNAs, thereby influencing the expression of miRNA targets. SIRT1 has been found to be the target of miRNA genes, which were already being sponged by different types of circRNAs that prevented or enhanced gene expression.
Hsa_circ_0044235 is another circRNA which has been shown to be downregulated in patients with rheumatoid arthritis (RA). Downregulation of this circRNA has been correlated with low levels of SIRT1 expression in these patients. Overexpression of hsa_circ_0044235 could attenuate joint inflammation, cell apoptosis, and joint injury, and reduce NLRP3-mediated pyroptosis but increasing SIRT1 expression. Upregulation of this circRNA could also inhibit caspase-1 content. Mechanistically, hsa_circ_0044235 increases expression of SIRT1 through sponging miR-135b-5p (Chen et al., 2021).
CircularNOP10 and circ0082374 are two putative oncogenic circRNAs that regulate expression of SIRT1. CircularNOP10 has a role in induction of progression of gastric cancer through regulation of miR-204/SIRT1 pathway (Xu J. et al., 2021). In glioma cells, circ0082374 has a role in induction of cell viability, migration, invasion and glycolysis through regulation of miR-326/SIRT1 axis (Wang et al., 2020).
SIRT1-INTERACTING LNCRNAS
Transcripts larger than 200 nt are known as long non-coding RNAs (lnRNAs), which cannot code for proteins and may possess small open reading frames (ORFs). Because they interact with various proteins, mRNAs and DNA sequences, lncRNAs play significant roles in a number of disorders (Sabaie et al., 2021; Hussen et al., 2022b). GAS5, LincRNA-p21, MCM3AP-AS1, TUG1, SNHG7, SNHG8, SNHG10, SNHG15, Oip5-as1, ILF3-AS1, ANRIL, UCA1 and KCNQ1OT1 are examples of lncRNAs that regulate expression of SIRT1 through sponging miRNAs. These lncRNAs can affect pathogenesis of RA, atherosclerosis, sepsis-associated renal injury (SARI), diabetic nephropathy, ischemic stroke and a number of malignant conditions (Table 3). For instance, GAS5 via regulating the miR-222-3p/Sirt1 axis could alleviate RA (Yang et al., 2021). Moreover, GAS5 via inhibiting the miR-579-3p and activating the SIRT1/PGC-1α/Nrf2 axis could reduce cell pyroptosis in SARI (Ling et al., 2021). In the context of osteoarthritis, MCM3AP-AS1 via modulating the miR-138-5p/SIRT1 axis could protect chondrocytes from IL-1β-induced inflammation (Shi et al., 2021).
TABLE 3 | SIRT1-interacting lncRNAs.
[image: Table 3]SIRT1-interacting lncRNAs have also been shown to affect pathogenesis of malignant conditions. For instance, SNHG10 has been found to sponge miR-543 in non small cell lung cancer (Zhang Z. et al., 2020). Moreover, SNHG7 has been demonstrated to inhibit NLRP3-associated pyroptosis through regulating miR-34a/SIRT1 axis in liver cancer (Chen Z. et al., 2020). GAS5 can inhibit malignant progression of colorecatl cancer cells through regulating macroautophagy and forming a negative feedback loop with the miR-34a/mTOR/SIRT1 axis (Zhang HG. et al., 2021). On the other hand, UCA1 has a role in induction of cell proliferation and suppression of apoptosis through affecting expression of SIRT1 and miR-204 in pediatric AML (Liang et al., 2020). The known interactions that SIRT1 has with a variety of lnRNAs are illustrated in Figure 3.
[image: Figure 3]FIGURE 3 | There are numerous ways in which SIRT1 and the other lnRNAs interact, and it has been demonstrated that these interactions have an impact on pathogenesis conditions.
A number of therapeutic agents such as anthocyanins, ginsenoside-R3, dexmedetomidine hydrochloride, berberine, sorafenib, 17β-Estradiol, phenylpyridinium, tetrahydroxy stilbene glycoside, cisplatin, resveratrol, sulforaphane and liraglutide have been found to affect expression of non-coding RNAs/SIRT1 axes (Table 4). For instance, experiments in animal model of asthma have shown that anthocyanins suppresses inflammatory responses in airways through decreasing activity of NF-κB pathway via the miR-138-5p/SIRT1 axis (Liu Y. et al., 2022). Moreover, ginsenoside Rg3 can alleviate sepsis-related hepatic injury through modulation of TUG1/miR-200c-3p/SIRT1 axis (Wu P. et al., 2021). TUG1/miR-194/SIRT1 axis has been found to be targeted by dexmedetomidine hydrochloride to inhibit hepatocytes apoptosis and inflammatory responses (Gu et al., 2021). Additionally, the effects of berberine in amelioration of hepatic insulin resistance have been revealed to be mediated through regulation of miR-146b/SIRT1 axis (Sui et al., 2021).
TABLE 4 | Effects of drugs on SIRT1-interacting ncRNAs.
[image: Table 4]DISCUSSION
SIRT1 has a role as a deacetylase and is able to deacetylate a range of substrates. Thus, it participates in the regulation of a wide array of physiological processes such as gene expression, metabolic pathways and aging (Haigis and Guarente, 2006; Michan and Sinclair, 2007). This protein has functional interactions with lncRNAs, miRNAs and circRNAs. In fact, a complicated network exists between these non-coding RNAs and SIRT1. Hsa_circ_0115355/miR-326, hsa_circ_0115355/miR-487a-3p, HIPK3/miR-145, hsa_circ_0044235/miR-135b-5p, circ_0000296/miR-194-5p, circ_0001103/miR-375, CIDN/miR-34a-5p, NOP10/miR-204, circ-0082374/miR-324 are examples of circRNA/miRNA pairs that interact with SIRT1. Similarly, GAS5/miR-222-3p, GAS5/miR-579-3p, GAS5/miR-34a, MCM3AP-AS1/miR-138-5p, TUG1/miR-9-5p, TUG1/miR-29c-3p, TUG1/miR-204, SNHG8/miR-425-5p, SNHG7/miR-9, SNHG7/miR-34a, SNHG15/miR-141, SNHG10/miR-543, Oip5-as1/miR-29a, ILF3-AS1/miR-212-3p, ANRIL/miR-7-5p, UCA1/miR-204 and KCNQ1OT1/miR-124 are lncRNA/miRNA pairs that regulate expression of SIRT1 in different contexts. These interactions are possibly involved in the pathoetiology of a number of human disorders such as sepsis, cardiomyopathy, heart failure, non-alcoholic fatty liver disease, chronic hepatitis, cardiac fibrosis, myocardial ischemia/reperfusion injury, diabetes, ischemic stroke, immune-related disorders and cancers. In cancers, SIRT1-interacting non-coding RNAs not only affect cell proliferation but also regulate stemness and immunosuppressive responses in the tumor niche.
SIRT1 is a potential target for design of novel therapies. Most importantly, a number of drugs used for treatment of diverse asthma, sepsis, liver injury, insulin resistance, postmenopausal osteoporosis, Parkinson’s disease, diabetic nephropathy and cancers exert their effects through modulation of non-coding RNAs/SIRT1 axis. Thus, identification of the interactions between non-coding RNAs and SIRT1 has practical significance in design of novel therapeutic strategies for diverse disorders. Remarkably, non-coding RNAs that modulate expression of SIRT1 are putative modulators of the response of patients to different drugs.
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attenuate blood-brain
barrier damage

SNHG? by targeting the
miR-9/SIRT axis could
alleviate damage in
PCI2 Cells

SNHGIS by targeting the
miR-141/SIRT1 axis could
enhance oxidative stress
damage

Oips-asl via activating the
SIRT1/AMPK/PGCla axis
by sponging miR-29a
could attenuate
myocardial I/R injury

ILF3-AS1 via targeting the
miR-212-3p/SIRT1 axis
and the PI3K/Akt pathway
could regulate ML

ANRIL via targeting the
mil -5p/SIRT1 axis

could protect H9c2 cells
ainst hypoxia-induced

inay

TUGI via targeting
SIRTI by regulating miR-
204 could enhance brown
remodeling of white
adipose tissue in diabetic
mice

SNHGIO via sponging
miR-543 could upregulate
tumor suppressive
SIRT1 in NSCLC.

SNHG7 via targeting the
miR-340/SIRT] axis could
inhibit NLRP3-dependent
pyroptosis

GASS via targeting the
miR-34a/mTOR/

SIRTI axis could inhibit
‘malignant progression
in CRC.

Silencing UCAI via
targeting miR-204 by
repressing SIRT1 could
accelerate apoptosis in
pediatric AML.

KCNQIOT by targeting
the miR-124/SP1 axis
could modulate RB cell
proliferation and invasion
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diseases pathways
Sepsis miR- - RAW264.7 (Down) Nrf2, p-65, NF- | Inhibition of miR-181a via | Wu et al.
181a (Up) p, TNF-q, IL-1§, | targeting SIRT1 by (2021a)
IL-6,Bcl-2, Bax | activating Nrf2 and
inhibiting NF-kB could
attenuate sepsis-induced
inflammation and
apoptosis
Sepsis miR- Serum samples: RAW264.7 (Down) ALT, AST, 1L-1B, | miR-133a by targeting Chen et al.
133a (Up) | sepsis (n = 60), IL-6, TNF-a SIRTI could aggravate (2020a)
normal group (n = inflammatory responses in
30), C57BL/6] mice sepsis
Sepsis miR- - NCM460 (Down) Bal-2, Bax, elF2a, | miR-195 via targeting the | Yuan et al.
195 (Up) ATF4, CHOP, SIRTI/elF2a axis could (2020)
GRP78 enhance intestinal epithelial
cell apoptosis
Sepsis miR-197 HI2 (Down) Bcl-2, Bax, IL-6, | miR-197 by modulating | Liu et al.
SIRT1 could participate (2022a)
IL-1B, Caspase- | cardiomyocyte injury
3,p53
Septic miR-22 (-) | miR-22-flox mice, | Cardiomyocyte | (Down) TNF-q, IL-6, IL- | Downregulation of miR-22 | Wang et al.
cardiomyopathy aMHC-Cre mice, 1B, LC3-UIL p62, | by targeting SIRTI could | (2021a)
littermates wild- Atg7, Caspase-3/ | alleviate septic
type (WT) mice 9, Bax, Bcl-2 cardiomyopathy
Non-alcoholic miR- C57BLI/6 mice HepG2 ©) GSK-3B, CD36, | miR-29a via modulatingthe | Yang et al.
steatohepatitis 29 () PERK, IREla, GSK-3B/SIRT1 could (2020)
(NAFLD) XBPIs, CHOP | ameliorate mouse non-
alcoholic steatohepatitis
NAFLD miR- Wistar rats - (Down) FXR, p53, ALT, | Alteration of miR-34a/ Alshehri et al.
34a (Up) AST, y-GGT, SIRTI/FXR/pS3 axis could | (2021)
induce NAELD in rats
TNF-q, IL-6,
Chronic hepatitis | miR- CHC (n =41), (Down) 53, TBA, miR-34a via mediating the | Li et al. (2020a)
C (CHC) 34a (Up)  healthy control AST, ALT SIRT1/p53 axis could
samples (n = 18) enhance liver fibrosis in
patients with chronic
hepatitis
Hepatic /R Injury | miR- Black/Swiss mice,  Hepatocyte (Down) XBPI, NLRP3, | SIRTI via modulating the | Li et al. (2021a)
182 () C57BLI6] WT mice ALT, IL-1p, TNF- | miR-182-mediated XBP1/
@ IL-18, NLRP3 axis could alleviate
Caspase-1 hepatic IR injury
Cardiac Fibrosis ~ miR- C57BL/6 | mice HoC2 (Down) PIK3R1, p53, p62, | Downregulation of miR- | Zhan et al.
128 (Up) Bdl-2, Bax, 128 via targeting the SIRT1/ | (2021)
PIK3RI axis could
Beclin-1, LC3-I/' | ameliorate cardiac
11, AKT, mTOR | dysfunction
Congestive heart | miR-22 (-) = C57BL/6 mice Cardiomyocyte | (Down) PGC-la, TFAM, | Downregulation of miR-22 | Wang et al.
failure (CHE) 62, LC3-1/11 by targeting SIRTI/PGC-1a | (2021b)
could alleviate CHF.
HE miR- C57BI/6) mice CMs, CFs,CECs | (Down) P300, Yyl, sST2 | miRI99/SIRT1/P300 axis | Asensio-Lopez
199 (Up) via upregulating the etal. (2021)
circulation of soluble
SST2 isoform could
‘modulate heart failure
Myocardial /R~ miR- C57BL/J6 Hoc2 (Down) NLRP3, IL-1/6, | Downregulation of miR- | Ding et al.
Injury 2% (Up) IL-1, TNF-q, 29a by targeting SIRT1 and | (2020)
eNOS, iNOS, inhibiting NLRP3-
Caspase-1 ‘mediated pyroptosis could
ameliorate myocardial IR
Injury
Cardiotoxicity miR-200a- | Wistar rats H9c2, 293T ) PEG3, NF-xp, ‘miR-200a-3p via Fu etal. (2021)
3p (Up) Bax, Bcl-2, IKK, | modulating SIRT1/NF-kB
P65, IkBa axis and by targeting
PEG3 could aggravate
cardiotoxicity
Acute myocardial | miR-181a- | - HIC2 ) Bal-2, Bax, miR-181a-5p via regulating | Qi et al. (2020)
infarction (AMI)  5p () SIRT1 could involve
Caspase-3 cardiomyocyte apoptosis
induced by
hypoxia-reoxygenation
AMI miR-124-  SD rats HIC2 (Down) FGF21, CREB, | miR-124-3p via targeting | Wei et al.
3p (Up) PGCl-q, g IL-1a, | SIRT1 by modulation (2021)
IL-1B, IL-2/6, FGF21/CREB/PGCla axis
IFN-y, TNF-a, | could regulate cell
Bax, Bl-2, apoptosis and oxidative
Caspase-3 stress of acute myocardial
infarction
Osteoarthritis miR-30b- | OA tissue samples | HC-A, (Down) FoxO3a, NLRP3, | NE-kB-inducible miR-30b- | Xu etal. (2021a)
(04) 5p (Up) (n = 40) and NE-f, IL-13, IL- | 5p via modulating SIRT1-
adjacent (n = 1) 6/18, TNF-q, Bax, | FoxO3a-mediated
normal tissue Caspase-1/3, NLRP3 inflammasome
samples, SD rats MMP-3/13, ASC | could aggravate joint pain
OA miR- OA tissue samples | - (Down) Collagen-11, miR-122 via targeting Bai et al. (2020)
122 (Up) | (n =29), normal Aggrecan, MMP- | SIRT1 could regulate
cartilage tissue 13, ADAMTS4 | chondrocyte extracellular
samples (n = 29) matrix degradation in
osteoarthritis
Kidney Injury miR- Kunming mice (Down) 53, TNF-q, IL-6, | miR-34a/SIRT1/pS3 axis | Hao et al.
34a (Up) IL-1p, Caspase-9, | could modulate kidney (2021)
Bax, Bel-2 injury
Acute kidney miR-183- | SD rats NRK-52E (Down) PUMA, FOXO3a, | Depletion of miR-183-3p | Li etal. (2021b)
injury (AKI) 3p (Up) TGE-Bl, a-SMA, | via the SIRT1/PUMA/
Vimentin,E- FOXO3a axis could
Cadherin improve renal
tubulointerstitial fibrosis
after AKI.
Diabetic miR-150- | (n = 60) diabetes | Podocyte (Down) P53, p62, AMPK, | Downregulation of miR- | Dong et al.
nephropathy 5p (Up) mellitus patients, p-cadherin, ZO-1, | 150-5p by targeting the (2021)
(DN) C57BLI6] mice LC3-1/1 SIRT1/pS3/AMPK axis
could ameliorate diabetic
nephropathy
DN miR- C57BL/G] mice Podocyte (Down) 53, LC3A/B-I, | The p53/miR-34a/ Liang et al.
34a (Up) LC3A/B-II SIRT1 axis inhibition could | (2021)
ameliorate podocyte injury
in DN.
Cerebral /R miR-192/ | SD rats (Down) FoxO3, SPHK1, | miR-19a/b-3p via targeting | Zhou et al.
Injury b-3p (Up) NE-kB p65, TNF- | the SIRT1/FoxO3/ (2021)
@ IL-6, IL-1p SPHK1 axis could promote
inflammation during
cerebral /R injury
scr miR-324- | SD rats PCI12 (Down) Bal-2, Caspase-3, | Silencing miR-324-5p by | Wang et al.
5p (Up) Bax, TNF-a, modulating SIRT1 could | (2021¢)
IL-1p alleviate rats SCL.
ccrs miR-34c- | SD rats - (Down) TNF-q, IL-6, IL- | Downregulation of miR- | Mo et al. (2020)
5p (Up) 1B, STAT3 34c-5p via targeting the
SIRT1/STAT3 axis could
alleviate neuropathic pain
Epilepsy miR-135a- | - BV2 ©) Caspase-3/9 Downregulation of miR- Wang et al.
5p (Up) 1352-5p via targeting (2021d)
SIRTI could protect glial
cells against apoptosis in
epilepsy
MDD miR- C57BLI6] mice (Down) PGC-1a, FNDCS, | miR-138 by targeting Li etal. (2020b)
138 (Up) BDNF SIRT1 could enhance
depressive-like behaviors in
the hippocampus
Migraine miR34a- | SD rats trigeminal ) COX2, PGE2, miR-342-5p via inhibiting | Zhang et al.
5p () ganglionic cells P65, NE-«B, IL- | SIRTI could enhance the | (2021a)
16,113 1L-1B/COX2/PGE2 axis
and stimulate the release of
CGRP in trigeminal
ganglion neurons in rats
DFUs miR-489- | SD rats HUVECs ) VEGF, Bcl-2, Bax, | Alteration in miR-489-3p/ | Huang et al.
3p () Caspases-3/9, SIRT1 axis could enhance | (2021a)
PI3K, AKT, wound healing in DFU.
eNOS, iNOS
DR miR- - hRMEC (Down) Nrf2, Caspase-3 | Overexpression of miR-221 | Chen et al.
221 (Up) Bax, Bdl-2, via inhibiting SIRT1 could | (2020b)
Keap-1 enhance apoptosis of
hRMEC.
ALL miR-146a- | SD rats BEAS-2B (Down) NE-p, TNF-a, | Depletion of miR-146a-3p | Yang and Li
3p (Up) IL-1B, L4, IL-6, | via upregulating SIRT1 and | (2021)
1L-10 ‘mediating NF-xB could
attenuate ALL
uuo miR-155- | - NRK-49F (Down) a-SMA, Collage-1, | miR-155-5p via modulating | Wang et al.
5p (Up) Fibronectin SIRTI promotes renal (2021¢)
interstitial fibrosis
- miR- - HUVECs ©) P53, SA-B-gal miR-217 via modulating, Wang et al.
217 (Up) the SIRT1/p53 axis could | (2021f)
enhance endothelial cell
senescence
- miR-204-  C57BL/6] HCI1 ©) PPARY miR-204-5p by targeting | Zhang et al.
5p () SIRT1 could enhance lipid | (2020a)
synthesis in mammary
epithelial cells
- miR-128- | - BMSCs ) 1L-6, IL-1B, MiR-128-3p by regulating | Wu etal. (2020)
3p (Up) MMP-9, MCP-1 | SIRTI expression could
mediate inflammatory
responses in BMSCs
- miR-34a-  Human SMG-Cé, ) CTRP6, AMPK, | CTRPG via targeting the | Qu et al. (2021)
5p,miR-  submandibular TNF-a, Bel-2, Bax | AMPK/SIRTI axis by
34a-3p (-) | gland tissue samples Caspase-3/8/9/12, | modulating miR-34a-5p
(n = 114), human Cytochrome-C, expression could attenuate
parotid gland tissue TNF-a-induced apoptosis
samples (n = 114),
serum samples (n =
114), SD rats
- miR-146a- | (n = 45) bone tissue | MC3T3-E1 ) Collagen-1 ‘miR-146a-5p via targeting | Zheng et al.
5p (Up) samples, KO mice SIRT1 could regulate bone | (2021)
mass
PCa miR- - AsPC1, €] PGC-la, NRE2, | miR-373 via modulating | Yin etal. (2021)
373 () Bax, Bdl-2, the SIRT1/PGC-1a/
PANC-1 Caspase-3/8/9, | NRE2 axis could suppress
PARP, eNOS, cell proliferation in
iNOS pancreatic cancer cells
CRC miR- CRC tissue and HCT-8, ©) NF-kp, p65, B7- | miR-34a via modulating Meng et al.
34a (Up) | ANT samples, H3, TNF-a the SIRTI/NE-kB and B7- | (2021)
DABI/J mice, HCT-116, H3/TNF-a axis could
NOD-SCID mice induce
CHO, PBMCs immunosuppression in
colorectal cancer
scC miR-199a- | BALB/c nude mice | A431, NHSF | (Up) CD44ICD, OCT4, | miR-199-5p by targeting | Lu et al. (2020)
5p (Down) SOX2, Nanog SIRT1 and CD44ICD

dleavage signaling could
repress stemness of cSCC
stem cells
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Asthma Anthocyanins miR-138-  Balb/c mice; treated | HBE; treated | (-) NE- Anth via targeting the | Livetal.
(Anth) 5p (Up) with 250 mg/kg with 10 pg/mL kP p65, | miR-138-5p/SIRTI axis | (2022b)
Anth before each | Anth for 1 h by downregulating NF-k
atomization for 1 h 14/ could inhibit airway
513, inflammation in
asthmatic mice
IEN-y
Sepsis Ginsenoside- TUGI (), CS7BL/6 mice; Hepatocyte; | (Down) LC3-UI, | Rg3 by modulating the | Wu
R3 (Rg3) miR- treated with pretreated with P62, TUG/miR-200c-3p/ etal.
200c3p 20 mgkg Rg3, LP, | 25uM Beclin-1, | SIRTI axis could alleviate | (2021b)
for 1h Rg3 for 6 h septic liver injury
PGCl-a,
AMPK
L Dexmedetomidine  TUGI (), - WRL-68; (Down) Bax, DEX by activating the | Guetal.
hydrochloride miR-194 pretreated with Bcl-2, TUGH/miR-194/ (2021)
(DEX) 001, 0.1, and SIRTI axis could inhibit
1, 5nM DEX TNF-a, | hepatocyte inflammation
for1h | and apoptosis
1L-1p,
16
Insulin Berberine (BBR) miR- C57BL/6] mice; HepG2; (Down) FOXO1 | BBR by regulating the | Suietal.
resistance 146b () treated with 5, treated with miR-146b/SIRT1 axis (2021)
10 mg/kg/day, LP, 530 uM BBR could ameliorate hepatic
for 4 weeks, for 24h insulin resistance
and 48 h
Liver cancer | Sorafenib miR- TCGA and GEO HepG2, PLC, | () LC3-VI, | miR-425 via SIRT1 to | Sun
425 () databases Hep3B, Huh?, promote sorafenib etal.
MIHA; treated ATGL resistance could regulate | (2021)
with 10 M lipophagy in liver cancer
for48h
PMOP 17p-Estradiol (E2) ~ H19 Bone tissue (n = 10),  BMSCs; (Down) ALP, E2 via targeting the miR- | Li et al.
(Down),  serum samples (n = | treated with RUNX2, | 532-3p/SIRT1 axis could | (2021c)
miR- 10), control group | 107 M E2 for enhance the expression of
532:3p (n=10), Wistar rats; | 14 days HI9 to regulate
treated with osteogenic differentiation
0.5 mg/kg/day
E2 subcutaneously
PD Phenylpyridinium  miR- FVB littermate wild- |~ SH-SY5' (Down) P53, Upregulation of miR-132 | Qazi
(MPP) 132() type mice treated with | via activating the SIRT1/ | et al.
1.25 and NE-kB p53 axis could induce PD. | (2021)
2.5 mM MPP,
for12,24,48 h
- Tetrahydroxy mik- - HUVECs; (Down) PAL TSG via targeting the Zhang
Stilbene 34a (Up) pretreated with 1, p21 ‘miR-34a/SIRT1 axis etal.
Glycoside (TSG) 20, 40 pg/ml could attenuate (2022)
TSG for 24 h endothelial cell
premature senescence
AKI Cisplatin (DDP) miR-132-  C57BL/6] mice; HK-2; treated | (Down) NE-«B, | miR-132-3p via targeting | Han
3p ) treated with with 5 pg/ml NE-kp by modulating etal.
20 mg/kg DDP for  DDP for SIRT1 could promote (2021)
24,48h 24,480 DDP-induced apoptosis
in renal tubular epithelial
cells
BLC DDP MSTIP2 - SW 780/DDP, | (-) LncRNA MSTIP2/miR- | Chen
(), miR- RT4/DDP | 133baxis via the SIRT1/ | etal.
133b Caspase- | p53 axis can influence | (2020d)
3 chemoresistance to DDP-
based therapy
- Resveratrol (RSV)  miR- - N9; treated © AMPK, | RSV via targeting the Tufekei
155 () with 10 M NLRP3, | SIRTI/AMPK axis could | et al.
RSV for 1 h NE-«B, | inhibit (2021)
| NLRP3 inflammasome-
1L-1p, induced pyroptosis and
1L-18 miR-155 expression in
‘microglia
- Sulforaphane (SFN)  miR- HUVECs; © Nrf2, SEN via modulating the | Li et al.
34a (Up) pretreated with miR-34a/SIRTI axis by | (2021d)
1.0 pmol/l ARE upregulating Nrf2 could
SEN for 4, protect endothelial cells
8 12h from oxidative stress
DN Liraglutide (LRG) ~ miR- SD rats; treated with | - © AST, LRG via targeting the | Xiao
34a() 6 mg LRG ALT, ‘miR-34a/SIRTI axis etal.
subcutaneously for HIF-la, | could regulate kidneyand = (2021)
12 weeks liver in DN rats
Egr1,
TGE-p1
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ANT Adjacent normal tissue

PPARa peroxisome proliferators-activated receptor a
CTRP6 Clq/Tumor Necrosis Factor-Related Protein-6
HMGCoAR B-Hydroxy f-Methylglutaryl-CoA Reductase
hUC-MSCs Human Umbilical Cord-Derived Mesenchymal Stem Cell
HBE Human Bronchial Epithelial

hTERT RPE-1 Human Retinal Pigment Epithelial Cell Line
FLSs Fibroblast-Like Synoviocytes

PBMCs Human Peripheral Blood Mononuclear Cells
BMSCs Human Bone Marrow Mesenchymal Stem Cells
ALP Alkaline Phosphatase

MPO Myeloperoxidase

CECs Cardiac Endothelial Cells

CFs Cardiac Fibroblasts

CMs Cardiomyocytes

CGRP Calcitonin Generated Peptide

PGE2 Prostaglandin E2

BMEC Microvascular Endothelial Cell

HASMCs Human Aortic Smooth Muscle Cells

HIF-1a Hypoxia-Inducible Factor-1 a

Egr-1 Early Growth Response-1

UA Uric Acid

UREA Urea

Nrf2 Nuclear Factor Erythroid-2-Related Factor 2
ARE Antioxidant Response Element

Neonatal Rats Ventricular Myocytes

BMSCs Bone Marrow Mesenchymal Stem Cells
hRMEC Human Retinal Microvascular Endothelial Cells
CUMS Chronic Unpredictable Mild Stress
HBDH Hydroxybutyratse Dehydrogenase
CK-MB Creatine Kinase MB Activity

NHSF Normal Human Skin Fibroblast

RA Rheumatoid Arthritis

AS Atherosclerosis

SARI Sepsis-associated renal injury

AML Pediatric acute myeloid leukemia
HCC Hepatocellular carcinoma

NSCLC Non-small cell lung cancer

/R Ischemia-reperfusion

NAFLD Non-Alcoholic Fatty Liver Disease
CHC Chronic Hepatitis C

scMp Septic Cardiomyopathy

CHF Congestive Heart Failure

HF Heart Failure

MI Myocardial Injury

AMI Acute Myocardial Infarction

AKI Osteoarthritis (OA), Acute Kidney Injury
DN Diabetic Nephropathy

DR Diabetic Retinopathy

st Spinal Cord Injury

CCIS Chronic Constriction Injury of Sciatic Nerve
MDD Major Depressive Disorder

DFUs Diabetic Foot Ulcers

AL Acute Lung Injury

uvo Unilateral Ureteral Obstruction

PCa Pancreatic Cancer

CRC Colorectal Cancer

cSCC Cutaneous Squamous Cell Carcinoma
RB retinoblastoma

T2DM Type 2 Diabetes Mellitus

CCt Chronic Cerebral Ischemia

IDD Intervertebral Disc Degeneration

GC Gastric Cancer

LT Liver Injury

HIR Hepatic Insulin Resistance

PMOP Postmenopausal osteoporosis

PD Parkinson’s Disease

BLC Bladder Cancer
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