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Introduction: Native Hawaiian and other Pacific Islander (NHPI) populations
experience higher rates of immunometabolic diseases compared to other
racial-ethnic groups in Hawaii. As annual NHPI mortality rates for suicide and
type 2 diabetes mellitus (T2DM) exceed those of the state as a whole,
understanding the social and biological mechanisms underlying these
disparities are urgently needed to enable preventive strategies.

Methods: A community-based approach was used to investigate the
immunoepigenetic-gut microbiome axis in an NHPI-enriched cohort of Oahu
residents (N = 68). Self-esteem (SE) data was collected using a modified
Rosenberg self-esteem (SE) assessment as a proxy measure for mental
wellbeing in consideration for cultural competency. T2DM status was
evaluated using point-of-care A1c (%) tests. Stool samples were collected for
16s-based metagenomic sequencing analyses. Plasma from blood samples were
isolated by density-gradient centrifugation. Peripheral blood mononuclear cells
(PBMCs) were collected from the same samples and enriched for monocytes
using negative selection techniques. Flow-cytometry was used for
immunoprofiling assays. Monocyte DNA was extracted for Illumina EPIC array-
based methylation analysis.

Results: Compared to individuals with normal SE (NSE), those with low SE (LSE)
exhibited significantly higher plasma concentrations (pg/ml) of proinflammatory
cytokines IL-8 (p = 0.051) and TNF-α (p = 0.011). Metagenomic analysis revealed
that the relative abundance (%) of specific gut bacteria significantly differed
between SE groups - some of which directly correlated with SE scores. Gene
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ontology analysis revealed that 104 significantly differentially methylated loci (DML)
between SE groups were preferentially located at genes involved in
immunometabolic processes. Horvath clock analyses indicated epigenetic age
(Epi-Age) deceleration in individuals with LSE and acceleration in individuals
with NSE (p = 0.042), yet was not reproduced by other clocks.

Discussion: These data reveal novel differences in the immunoepigenetic-gut
microbiome axis with respect to SE, warranting further investigation into its
relationship to brain activity and mental health in NHPI. Unexpected results
from Epi-Age analyses warrant further investigation into the relationship
between biological age and disparate health outcomes among the NHPI
population. The modifiable component of epigenetic processes and the gut
microbiome makes this axis an attractive target for potential therapeutics,
biomarker discovery, and novel prevention strategies.

KEYWORDS

health disparities, depressive symptoms, epigenetic aging, self-esteem, immune system,
gut microbiome, DNA methylation, Native Hawaiians and other Pacific Islanders

Introduction

Native Hawaiians and other Pacific Islanders (NHPI) are
burdened by a disproportionately high prevalence of and mortality
to chronic, preventable diseases including those linked with
immunometabolic dysregulation such as diabetes and obesity
(Kaholokula et al., 2010; Nakagawa et al., 2015; Ing et al., 2019;
Uchima et al., 2019). These health disparities extend to mental
health and have been exacerbated by the COVID-19 pandemic
(Juarez et al., 2022). In addition, clinically underserved NHPI
communities are reported to be three times less likely to receive
mental health services and treatment compared to Non-Hispanic
White People (U.S Department of Health and Human Services,
Office of Minority Health, 2019). Furthermore, NHPI have a higher
prevalence of having depressed mood, suicidal thoughts and attempts,
and the usage of illicit drugs (Yuen et al., 2000; Subica and Wu, 2018).
While existing literature seeks to characterize the biological basis of
mood disorders, few have extended further research into mental health
disparities of the NHPI population, including assessments of self-
esteem (SE).

SE is an important cognitive component of mental health
applied in several studies. The Rosenberg Self-Esteem Scale (SE
score) is the most widely used measure of global SE with evidence
of generalizability across ethnic groups (Rosenberg, 1962;
Miyamoto et al., 2001). It is a 10-item scale consisting of
5 positively- and 5 negatively-phrased statements. Participants
respond with a “strongly disagree,” “disagree,” “agree,” or
“strongly agree,” with a score of 0, 1, 2, and 3, respectively,
for each statement on the Likert scale, with the total score ranging
from 0 to 30.

While SE is not clinically defined by the Diagnostic and
Statistical Manual (DSM-5; Uher et al., 2014), its relationship
with health outcomes has been used extensively in biomedical
research. Existing literature implicates low SE (LSE) as an
indicator for various depressive disorders (Steiger et al., 2014;
Park and Yang, 2017) and anxiety disorders (Rosenberg, 1962;
Peñate et al., 2020). While conventionally perceived as a
diagnostic tool for mental illness, SE functions as an independent
factor of overall wellbeing (Centers for Disease Control and

Prevention, 2018; Niveau et al., 2021), extending to its
increasingly recognized association with physical health outcomes
(Trzesniewski et al., 2006). LSE is reportedly associated with chronic
illnesses such as metabolic (Luyckx et al., 2016) and cardiovascular
disorders (O’Donnell et al., 2008), which are thought to stem from
inflammatory dysregulation (Liberale et al., 2021). Such studies have
prompted further investigation of the gut microbiome, as it
modulates systemic inflammation, and as evidence continues to
grow around its association with mental health.

Indeed, dysbiosis of the gut microbiome has been associated with
depression (Jiang et al., 2015; Madison and Kiecolt-Glaser, 2019;
Johnson, 2020). Fecal transplantation from a healthy to a depressed
individual has demonstrated sufficiency in reducing major depressive
symptoms (Doll et al., 2022). Preclinical studies have shown that major
depressive symptoms can be induced in mice via fecal transplantation
(Kelly et al., 2016; Zheng et al., 2016). Expanding research in this study
area approaches a consensus that changes to the gut microbiome result
in far-reaching changes to brain chemistry and activity (Foster and
McVeyNeufeld, 2013). At the level of host physiology, these changes are
thought to be partially mediated by inflammatory pathways.

Compromised immune function and increased serum levels of
proinflammatory cytokines have been found in depressed
individuals compared to unaffected controls (Howren et al., 2009;
Schmidt et al., 2014; Lee and Giuliani, 2019). Furthermore,
epigenetic processes have been observed to influence depressive
symptoms (Nemoda et al., 2015; Emeny et al., 2018; Zhu et al., 2019).
While previous studies have described epigenetic regulation of genes
commonly linked with depressive symptoms (Carlberg et al., 2014;
Booij et al., 2015; Murgatroyd et al., 2015; Maud et al., 2018), little is
known about the relationships between epigenetic regulation of
immune cell function and inflammation in the context of gut
microbial dysbiosis and SE.

The immunoepigenetic-gut microbiome axis involves
interactions between the gut microbiome, immune function,
and inflammation that underlies immunometabolic
dysregulation (Martin et al., 2018). Maintenance of microbial
health, defined by abundant diversity and enrichment of
microbial short-chain fatty acid (SCFA) producers as examples,
associates with optimal immune function. This favorable microbial
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composition fortifies the colonic epithelial lining and, in turn, buffers
intestinal inflammation through various microbial-induced protective
mechanisms. However, in a state of microbial dysbiosis, the intestinal
barrier becomes susceptible to opportunistic microbial inhabitants.
Dysbiosis subsequently deteriorates the epithelium, propagates
localized inflammation, and provides inflammatory microbial
byproducts with circulatory access. The consequence of prolonged
dysbiosis is the reprogramming of systemic immune cells to
proinflammatory states that ultimately establish and maintain
chronic inflammation, which contributes to the progression of
various non-communicable diseases (Rubas and Maunakea, 2021).
The complicated relationship between the gut microbiome and host
immunomodulatory physiology may be leveraged in developing
therapeutic strategies to address the cognitive facets of mood-related
disorders. In this study, we sought to understand the relationships
between the gut microbiome, epigenetic regulation of inflammation,
and SE, which may explain mental health disparities in the NHPI
population.

Methods

Collection of biometric and SE data

To quantify self-esteem (SE) within our cohort (N = 68), we
administered a Rosenberg SE Scale assessment modified in
consideration for cultural competency. Cumulative SE scores ranging
from 0 to 15 qualified as low SE (LSE) and those ranging from 16 to
30 qualified as normal SE (NSE). Sample questions and corresponding
point-value assignments for each response for SE score data collection
are provided in Supplementary Table S1. We chose to implement a
Rosenberg-adjacent assessment for its reliability across ethnic groups in
adult samples and to remain consistent with existing data collected from
NHPI-enriched cohorts (Singelis et al., 1999; Robins et al., 2001). The
following health measurements were then collected: height, weight,
blood pressure, heart rate, and hemoglobin A1c (%; A1CNow+, PTS
Diagnostics, IN-USA). Blood was collected from participants (up to
20 mL) at our community sites by venipuncture upon biometric data
collection. Patients receiving medical treatment for either type 1 or type
2 diabetes were not included in the study cohort.

Blood sample processing

Plasma and peripheral blood mononuclear cells (PBMCs) were
stratified within 24 h of sample collection using density-gradient
centrifugation in SepMate tubes (Stemcell technologies, Canada).
Five plasma aliquots (1 mL) from each sample were stored at −80°C
until further application. PBMCs were stored at −150°C until the
moment of assay performance.

Quantification of immunometabolic
biomarkers

Plasma concentrations of IFN-γ, IL-1β, IL-6, IL-8 (CXCL8), IL-10,
MCP-1 (CCL2), TNF-α, and VEGF-A were assessed using the 9-Plex
Human ProcartaPlex Panel (ThermoFisher part no. PPX-09, assay

MXEPTU6) in accordance with manufacturer provided protocols.
Samples were centrifuged at 13,000 × g for 2 min to pellet
aggregates. A standard curve was generated using antigen standards
provided by the manufacturer. Bead counts below 35 were excluded
from analysis. Fluorescent signals were analyzed using the Luminex
200™ instrument (R&DSystems, Inc., Minneapolis,MN,United States).
Bio-PlexManager™ software (Bio-Rad Laboratories, Inc., Hercules, CA,
United States) was used for data processing. Glucose levels were
measured using Glucose Colorimetric Detection Kit (Thermo Fisher
Scientific, Inc., Waltham, MA, United States) upon 15-fold sample
dilution. Cortisol was measured using Cortisol Competitive Human
ELISA Kit (EIAHCOR), (Thermo Fisher Scientific Inc., Frederick, MD,
United States). Adiponectin was measured using Adiponectin Human
ELISA Kit (KHP0041), (Thermo Fisher Scientific Inc., Vienna, Austria).
Leptin was measured using Leptin Human Instant ELISA™ Kit
(BMS2039INST), (Thermo Fisher Scientific Inc., Vienna, Austria),
and PYY levels were measured using Human PYY ELISA Kit
(EH387RB), (Thermo Fisher Scientific Inc., Carlsbad, CA, United
States). All assays were performed using protocols provided by
respective manufacturers and was read on a SpectraMax ABS/ABS
PlusMicroplate Reader (MolecularDevices, San Jose, CA,United States).

Stool sample collection and processing

Home stool sample collection kits were distributed to each
participant. These kits included one sample tube containing
RNAlater (5 mL; Thermofisher Scientific, Waltham, MA) as a
sample preservative. Instructions for proper sample collection and
storage were provided verbally and in print. Samples were submitted
by mail or collected by a community research facilitator. Upon receipt,
samples were stored at −20°C before nucleic acid purification.

Stool samples were processed via MagMAX Microbiome Ultra
Nucleic Acid Isolation Kits (Thermo Fisher Scientific, Inc.,
Waltham, MA, United States) for simultaneous DNA and RNA
extraction, using KingFisher Duo Prime automated extraction
system. From each sample, 1–2 μL of purified DNA and RNA
was analyzed using the Thermo Fisher NanoDrop Microvolume
Spectrophotometer to assess sample quality and the Qubit
Fluorometer for quantity (Thermo Fisher Scientific, Inc.,
Waltham, MA, United States). An overview of workflow
methodology for sample processing and subsequent analyses are
illustrated in Figure 1.

16s metagenomic sequencing

DNA (40 ng) isolated from each stool sample was subjected to
polymerase chain reaction (PCR) amplification targeting 16s rDNA
hypervariable regions V2-4 and V6-9 as we previously performed
(Wells et al., 2022). Briefly, amplicon products were pooled (20 μL
per primer set), purified (Agencourt Ampure XP Kit; Beckman
Coulter, Brea, CA, United States), and quantified using the Qubit
dsDNA BR Assay (ThermoFisher Scientific, Warrington, England).
16s rDNA libraries were prepared from 150 ng of pooled amplicons
(Ion Plus Fragment Library Kit; Thermo Fisher Scientific, Austin,
TX, United States) and barcoded using Ion Xpress Barcode Adapters
(Life Technologies, Carlsbad, CA, United States). DNA libraries
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were pooled (80 pmol from up to 60 libraries) and loaded onto Ion
530™ chips (Ion S5 Next-Generation Sequencing System) in
preparation for sequencing.

16s Metagenomics Kit analysis was performed using Ion
Reporter™ Software v5.18.4.0 (ThermoFisher Scientific).
Chimeric sequences were automatically identified and removed.
Reads were mapped to reference databases Greengenes v13.5 and
MicroSEQ ID v3.0. Gut microbiome profiles were compiled using
metagenome taxonomic data via the Curated MicroSEQ(R) 16s
Reference Library v2013.1. Raw abundance values were subsampled
at 10,000 reads per sample to control for inequivalent read numbers
across samples. Subsampling was performed on the species-level
operational taxonomic unit (OTU) table via the rrarefy function of
the vegan R package (Oksanen et al., 2022). Samples with less than
10,000 total reads were excluded from the dataset. Upstream
taxonomic ranks were determined by systematically comparing
family-level OTU data to the NCBI database via the
classification function of the taxize R package (Chamberlain
et al., 2020). Family-level OTU table was the preferred
classification input due to large amounts of unclassified
upstream classifications when using genus and species-level
OTU tables. Genus and species-level OTU tables were joined
onto the family-OTU table to form a comprehensive taxonomic
classification. Subsampled reads on the species-level were
converted to per-sample relative abundance values via the
“transform” function of the microbiome R package (Lahti

and Shetty, 2022). α-diversity values according to Shannon,
Simpson and Chao-1 indices were computed via IonReporter
v5.18.4.0.

PBMC specimens, monocyte enrichment,
and nucleic acid isolation

Viable cryopreserved PBMCs of approximately 1 × 107 from
individuals were first thawed in AIM-V Serum Free Media (Thermo
Fisher Scientific, Inc., Waltham, MA, United States) supplemented with
1:50 DNase (Sigma-Aldrich, St. Louis, MO, United States), washed, and
resuspended in wash buffer (PBS, 3% BSA, and 1 mM EDTA). Aliquots
of 1.25 × 105 cells (PBMCs) were taken from each sample before
enrichment for flow cytometry-based cellular phenotyping assays to
determine cell type composition. Monocytes were enriched from
PBMCs using the Negative-Selection, Human Monocyte Enrichment
Kit without CD16 Depletion (StemCell Technologies, Inc., Vancouver,
BC, Canada) following themanufacturer’s guidelines utilizing the purple
EasySepTMmagnet (StemCell Technologies). Cells were counted before
cell separation using the Countess® Automated Cell Counter (Life
TechnologiesTM, Carlsbad, CA, United States) to determine the
minimal cell concentration required for cell: antibody/magnetic bead
binding for effective monocyte enrichment. Negatively-selected cells
were counted again after monocyte enrichment to partition the
appropriate number of cells required for flow cytometry (1.0 ×

FIGURE 1
Overview of themethodology used in this study. (A) Application of amodified Rosenberg self-esteem (SE) assessment to categorize low SE (LSE) and
normal SE (NSE) groups. (B) Upon the separation of the plasma, inflammatory and metabolic markers were quantified by multianalyte immunoassay and
enzyme-linked immunosorbent assay (ELISA), respectively. From the peripheral blood mononuclear cells (PBMCs), flow cytometry was performed for
immunoprofiling, followed by monocyte enrichment and an EPIC array for epigenetic profiling. (C) Following nucleic acid purification from stool
samples, DNA was used to quantify the relative abundance of gut bacteria viametagenomic sequencing and butyrate-kinase (BUK) gene copies via real-
time PCR (rtPCR). RNA was reverse-transcribed to cDNA for BUK transcript rtPCR.
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105–1.25 × 105 cells) to confirm the efficiency of monocyte enrichment,
while the remainder of enriched cells were pelleted and resuspended in
lysis buffer for subsequent purification of nucleic acids. DNA and RNA
were isolated from enrichedmonocytes using theMagMAXFFPEDNA/
RNA Ultra Kit (Thermo Fisher Scientific) according to manufacturer
recommendations for animal cell applications. Nucleic acid
concentrations were quantified using the Qubit® 2.0 Fluorometer
(Thermo Fisher Scientific) following manufacturer protocols. Qubit®
dsDNA HS Assay Kit and Qubit® RNA BR Assay Kit (Thermo Fisher
Scientific) were used for DNA and RNA, respectively. DNA and RNA
were stored at −20°C and −80°C, respectively.

Validation of monocyte enrichment by flow
cytometry

To confirm the enrichment of monocytes by negative selection,
an aliquot of PBMCs (1.25 × 105 cells) for all subjects pre- and post-
enrichment was analyzed by a flow cytometer for monocytes, T cells,

NK cells, and B cells. Aliquots were stained with yellow amine
fluorescent reactive dye (YARD; Thermo Fisher Scientific), then
with anti-CD16 Brilliant Violet 421 (Clone 3G8), anti-CD3 V500
(Clone UCHT1), anti-CD14 Qdot®605 (Clone Tu€K4), anti-CD56
Pe-Cy7 (Clone B159), anti-CD19 PE-Cy7 (Clone SJ25C1), anti-
CD20 Pe-Cy7 (Clone 2H7), and anti-HLA-DR APC-H7 (Clone
G46-6) for identification of leukocyte subpopulation frequencies.
Anti-CD16 was purchased from BioLegend, Inc., San Diego, CA,
United States. Anti-CD3, anti-CD56, anti- CD20, anti-CD19, and
anti-HLA-DR were obtained from BD Bioscience, San Jose, CA,
United States. Anti-mouse Ig/Negative Control (FBS)
Compensation Particle Set (BD Bioscience) was used for
compensation analysis of fluorescent signals emitted by each
fluorochrome from the multi-colored cellular phenotyping panel
employed. Anti-mouse Ig compensation beads were stained with
each fluorochrome-conjugated antibody in separate wells. ArCTM
Amine Reactive Compensation Bead Kit (ThermoFisher Scientific)
reactive bead/negative beads were used for compensation of YARD
(Live/Dead stain) fluorescent signals. Stained cells from PBMCs,

TABLE 1 Sociodemographic and biometric summary of our NHPI-enriched cohort stratified by self-esteem score. Biometric summary of our cohort displaying
comparative and correlational analyses with respect to self-esteem score.

Total cohort SE groups SE score correlation

LSE NSE P Rc P

Participants (N; %) 68 23 (34%) 45 (66%)

Sex (N; %) 0.914a

Female 42 (62%) 14 (61%) 28 (62%)

Male 26 (38%) 9 (39%) 17 (38%)

Age (mean ± SEM) 38 ± 2 42 ± 4 35 ± 3 0.059b −0.25 0.039

SE Score 17.07 ± 0.31 14.48 ± 0.21 18.40 ± 0.31 <0.001b

A1C (mean ± SEM) 5.84 ± 0.22 5.68 ± 0.31 5.92 ± 0.29 0.948b −0.06 0.623

T2DM categories (N; %) 0.228a

Non-diabetic 50 (73%) 15 (65%) 35 (78%)

Pre-diabetic 4 (6%) 3 (13%) 1 (2%)

Diabetic 14 (21%) 5 (22%) 9 (20%)

BMI (mean ± SEM) 32 ± 1 34 ± 2 31 ± 2 0.133b −0.22 0.074

BMI categories (N; %) 0.287a

Normal 15 (22%) 4 (17%) 11 (24%)

Overweight 8 (12%) 1 (4.3%) 7 (16%)

Obese 45 (66%) 18 (78%) 27 (60%)

Ethnicity (N; %) 0.619a

NHPI 47 (69%) 15 (65%) 32 (71%)

non-NHPId 21 (31%) 8 (35%) 13 (29%)

Bold p-values indicate statistical significance at α = 0.05.
aFisher’s exact test.
bMann-Whitney U test with Bonferroni-Dunn p-value adjustment.
cSpearman correlation coefficient.
dIndividuals classified as “non-NHPI” include those who self-identified as Asian (7.35%), Non-HispanicWhite People (5.88%), and other non-NHPI, participants with undisclosed racial-ethnic

data (17.65%).
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enriched monocytes and compensation particles were analyzed
using a 4-laser BD LSRFortessa flow cytometer (BD Bioscience).
The data was analyzed using the FlowJo software (Tree Star, Inc.,
Ashland, OR, United States). The frequency (%) of each cell type was
determined by event count (specific event/total events) with debris
exclusion. Successful enrichment was observed for all samples in
each group with an average monocyte enrichment of at least 90%.
High-quality enrichment was necessary to diminish background
noise caused by mixed cell populations, as the heterogeneity of cell
populations confounds downstream DNA methylation analyses.

Illumina EPIC array-based DNA methylation
analysis

The Illumina Infinium MethylationEPIC BeadChip
(Illumina®, Inc., San Diego, CA, United States) is capable of
quantifying DNA methylation at over 850,000 cytosine-guanine
dinucleotides (CpG) distributed throughout the genome at
single-nucleotide resolution based on the ratio of fluorescent
intensities between the methylated and unmethylated alleles of
each CpG locus. To perform the EPIC microarray using the
Illumina® Infinium® HD Methylation assay (Illumina®, Inc.),
500 ng of genomic DNA from isolated monocytes was first
treated with sodium bisulfite using the EZ DNA
MethylationTM Kit (Zymo Research, Irvine CA,
United States) following manufacturer protocols. Illumina
iScan SQ scanner was utilized for chip imaging to receive
intensities of hybridized CpG probes.

Raw IDAT files were analyzed using R statistical software
(v4.1.2) via the RnBeads package (v2.12.2) (Mueller et al., 2019;
Yassen et al., 2014). RnBeads is a start-to-finish pipeline for
DNA methylation analysis in accordance with previously

established standards and practices (Bock, 2012; Michels
et al., 2013; Wreczycka et al., 2017). The package also
implements multiple normalization methods available in
several other software packages, such as minfi and
Watermelon (Xu et al., 2021). RnBeads is a widely used tool
for DNA methylation analysis (200–300 downloads per month
from Bioconductor) and has been referenced in multiple articles
(Müller et al., 2019). In our case, an RnBeads-centric approach
was utilized due to its ability to pre-process raw data files,
perform differential analysis and output β (beta) value matrices
within a single function, minimizing the risk of administrative
error. CpG-specific methylation (β values; 0.00–1.00, as a
percent from unmethylated to methylated) was determined
following multiple pre-processing steps within the RnBeads
framework. Low quality probes and samples were removed
via the greedycut algorithm, which iteratively produces
subsets of the β matrix until sample and/or probe removal is
no longer necessary to ensure a uniform detection
p-value ≥0.05. One of the generated β matrices is chosen as
the most reliable and undergoes subsequent analyses. The
optimal β matrix is the one that provides the maximum
value of the expression s + 1 – a, where (a) denotes false
positive rate and (s) denotes sensitivity. Potential batch effect
bias was controlled via per-Sentrix ID and position
normalization. Such normalization accounts for the spatial
variance of samples on the physical array. Background
correction was performed using normal-exponential out-of-
band correction via the methylumi package (Davis et al.,
2022). Functional normalization was performed via the minfi
package (Maksimovic et al., 2012; Triche et al., 2013; Aryee et al.,
2014; Fortin et al., 2014; Andrews et al., 2016; Fortin et al., 2016).

Epigenetic signatures were compared across SE groups via the
identification of differentially methylated loci (DML) via Epic Array.

FIGURE 2
Graphical summary of biometric and sociodemographic category distribution across SE groups. Chi-squared tests were performed between SE
groups to assess the independence of categorical distribution for sex (p = 0.914), T2DM (p = 0.228), BMI (p = 0.287), and ethnicity (p = 0.619).
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β-values were compared viaWelch’s t-test, which is the default statistical
test utilized by the RnBeads framework. Variables such as age, A1c (%),
body mass index and sex were not defined as covariates during
differential analysis, given that said variables did not differ
significantly across SE groups (Table 1). CpG sites were further
evaluated via Empirical Bayes permutation t-test between NSE and
LSE groups. Resultant Permutation p-values were adjusted for potential
multiple comparisons errors via the Benjamini–Hochberg method.
Gencode annotations were obtained via the Illumina Epic Array
Manifest file (B5, v1.0). Permutation tests were performed at
1,000 iterations via the RBM_T function of the RBM R package
(v1.26.0) with statistical significance determined at α = 0.05 (Li and
Liang, 2021). Such an approach provides higher statistical power and
reduces false discovery rates for non-normally distributed array-based
data. DML β-value distribution and Δβ values were visualized via the
ComplexHeatmap R package (v 2.12.1) (Gu et al., 2016; Gu, 2022).
Hierarchical clustering of participants and DML were performed using
Euclidean distances. DML were evaluated for pathway enrichment in
accordance with NCBI gene ontology and KEGG databases, via the
gometh function of the missmethyl R package (Phipson et al., 2016).
Separate database searches were performed with promoter and gene-
body exclusive DML. DML were ranked according to permutation Δβ
values to determine the top ten most differentially methylated loci. β-
values for these DML were evaluated individually for effects upon
nominal SE score via linear regression.

Epigenetic clock analyses

DNA methylation data measured by the MethylationEPIC Array
was evaluated for potential molecular indicators of epigenetic age (Epi-
Age) acceleration. Participant age predictions were calculated using the

methylclock package (Pelegí-Sisó et al., 2021) within the R statistical
software. Methylation-based age predictions were obtained via the
Horvath (Horvath, 2013), Hannum (Hannum et al., 2013) and
Levine (PhenoAge) (Levine et al., 2018) predictive models. Results of
Epi-Age acceleration analyses are reported as the difference between the
predicted age from each respectivemodel and chronological age. Positive
values are indicative of Epi-Age acceleration. Negative values are
indicative of Epi-Age deceleration.

Statistical analyses

Comparative analyses of clinical and NGS data were performed
using the Mann-Whitney U test. Non-parametric tests for clinical and
NGS data to fit non-normal data distribution (confirmed using the
D’Agostino and Pearson test for normality). To predict associative
outcomes, several stepwise multiple logistic regression models were
tested on clinical features, and NGS results were identified by Mann-
Whitney U tests followed by multiple testing corrections (FDR-adjusted
p < 0.01). Graphing and statistical analysis were performed using Prism
9, Version 9.0c (GraphPad, La Jolla, CA, United States). All statistical
significance was determined at p < 0.05. Outliers falling beyond the 1.5
IQR range were omitted.

Any immunometabolic hormone quantitation and relative
abundance of gut bacterial taxa that significantly correlated with
SE score were selected as independent variables in linear regression
analysis. Linear regression was performed using the R package (v.
4.2.1) (R Core Team, 2022). SE scores were log-linear transformed to
report the association effects as percentages. All statistical
significance was determined at p < 0.05 with Bonferroni
correction where appropriate. Additionally, for linear regression
analysis, a dummy interaction to the selected relative abundance of

TABLE 2 Intergroup comparison and correlational analyses of immunometabolic biomarker concentrations by SE.

Self-esteem (SE) groups SE correlation

NSE LSE Pa Rb P

Immunometabolic hormone quantitation (mean ± SEM)

Adiponectin (μg/mL) 3.45 ± 0.34 1.68 ± 0.18 0.004 0.34 0.013

Leptin (ng/mL) 10.90 ± 1.14 11.37 ± 1.23 0.259 −0.12 0.344

Pyy (pg/mL) 72.73 ± 5.84 88.23 ± 22.74 0.774 0.12 0.404

Cortisol (ng/mL) 25.84 ± 2.26 21.09 ± 2.89 0.272 0.22 0.079

Insulin (μIU/mL) 3.13 ± 0.11 3.72 ± 0.22 0.014 −0.39 0.004

Cytokine and other biomarker quantitation (mean ± SEM)

TNF-α (pg/mL) 1.62 ± 0.28 2.49 ± 0.39 0.011 −0.27 0.031

IL-6 (pg/mL) 2.12 ± 0.38 4.47 ± 1.28 0.075 −0.26 0.044

IFN-γ (pg/mL) 1.42 ± 0.22 1.83 ± 0.33 0.295 −0.15 0.253

IL-10 (pg/mL) 3.67 ± 0.50 3.38 ± 0.63 0.823 0.09 0.484

IL-1β (pg/mL) 4.60 ± 0.52 6.13 ± 0.86 0.129 −0.10 0.439

IL-8 (pg/mL) 22.65 ± 1.85 31.03 ± 3.59 0.051 −0.17 0.176

GLP-1*3 (pg/mL) 43.54 ± 3.05 38.24 ± 4.78 0.613 0.06 0.655

CRP (ng/mL) 141.15 ± 27.73 162.09 ± 48.53 0.553 −0.19 0.142

MCP-1 (pg/mL) 234.17 ± 24.73 309.80 ± 48.47 0.305 −0.09 0.483

VEGF-A (pg/mL) 254.35 ± 36.20 311.48 ± 52.19 0.307 −0.21 0.098

Bold p-values indicate statistical significance at α = 0.05.
aMann-Whitney U tests.
bSpearman correlation coefficient.
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gut bacterial taxa were used to control for the samples with zero
selected relative abundance value.

Results

Sociodemographic and biometric summary
of NHPI-enriched cohort

A summary of sociodemographic data within our NHPI-
enriched cohort is presented in Table 1. 69% of participants self-
identified as NHPI (N = 47). Participants age ranged from 17 to
79 years, with an average of 38 years, and were predominantly
female (62%). Survey scores qualified 66% of participants with
NSE (N = 45) and the remaining 33.8% with LSE (N = 23). The
relationships between the SE score groups and
sociodemographic categories of interest were statistically
insignificant. As illustrated in Figure 2, the categorical
distributions of sex, T2DM risk, BMI, and ethnicity across
the SE groups were also statistically insignificant, altogether
indicating that these factors are unlikely covariates of SE in this
cohort.

Immunometabolic biomarkers in the
context of self-esteem

Plama levels of immunometabolic biomarkers and comparative
immune cell profiling upon SE stratification are summarized in
Table 2. Compared to NSE individuals, LSE individuals exhibited
lower concentrations of immunometabolic hormone adiponectin
(p = 0.004). Furthermore, adiponectin bioavailability correlated
positively with SE scores (R = 0.34; p = 0.013). This trend
suggests that LSE may exacerbate NHPI predisposition to T2DM
by way of reduced bioavailability of adiponectin. As adiponectin is
known to play a role in insulin signaling and inflammatory pathways
(Ouchi and Walsh, 2007), its reduction may be partially responsible
for the onset of insulin resistance and systemic inflammation and
T2DM pathophysiology. This notion is reinforced by the observed
negative correlation between SE score and circulating insulin
(R = −0.39; p = 0.004), indicating glycemic dysregulation with
decreasing SE score.

Conversely, proinflammatory cytokine concentration of TNF-α
(p = 0.011) and chemokine concentration of IL-8 (p = 0.051) were
higher in the LSE relative to the NSE group. TNF-α and IL-8 play
important roles in adipose tissue metabolism and function and have
been linked to various inflammatory diseases (Bruun et al., 2001;
Popko et al., 2010). Indeed, depression is characterized by an
increase in levels of various proinflammatory factors, and LSE
has been found to be a good predictor for depression later in life.
Thus, our observation of TNF-α and IL-8 being higher in the LSE
group is consistent with this previous finding.

While IL-6 levels did not significantly differ between SE groups,
it did exhibit a significantly negative correlation with SE score
(R = −0.26; p = 0.044). As chronic exposure to high levels of IL-
6 has been found to mechanistically induce insulin resistance by
upregulating SOC-3 expression (an inhibitor of insulin signaling)
and impair insulin receptor signal transduction (Rehman and

Akash, 2017), these results suggest that LSE may exacerbate
immunometabolic dysregulation via elevated levels of IL-6, and
downstream pathophysiological effects resembling T2DM
progression.

Metagenomic analysis of the gut
microbiome

Relationships between gut bacterial taxa and SE are
summarized in Table 3. A graphical summary of phylum-
level gut microbiome composition is provided in Figure 3 for
each participant upon SE stratification. Quality control data
summarizing metagenomic sequencing are provided in
Supplementary Table S3.

Compared to those for individuals with NSE, relative abundance
values for gut bacterial families Coriobacteriaceae (p = 0.014) and
Clostridiales.Family.XIII.Incertae.Sedis (p = 0.016) were significantly
higher in LSE individuals. Additionally, the respective relative
abundances of these families were positively associated with SE
score (Coriobacteriaceae: R = 0.26; p = 0.034;
Clostridiales.Family.XIII.Incertae.Sedis: R = 0.38; p = 0.002). The
opposite trend was observed after intergroup comparison for
families Acholeplasmataceae (p = 0.015), Oxalobacteraceae (p =
0.029), Brucellaceae (p = 0.025), Rhizobiaceae (p = 0.025),
Gracilibacteraceae (p = 0.049), and Pseudanabaenaceae (p =
0.015). Of these taxa, Acholeplasmataceae (R = −0.26; p = 0.033)
and Oxalobacteraceae (R = −0.32; p = 0.008) were significantly
negatively associated with SE score. Although SE score
demonstrated additional significant relationships with
Veillonellaceae (R = 0.28; p = 0.022), Verrucomicrobiaceae
(R = −0.31; p = 0.010), and Syntrophomonadaceae (R = −0.25;
p = 0.043), sample distribution among their respective relative
abundance values did not significantly differ between SE groups.

Genera that were differentially abundant between SE groups
included Mitsuokella (p = 0.016), Collinsella (p = 0.020),
Herbaspirillum (p = 0.034), Cloacibacillus (p = 0.049), and
Lachnoclostridium (p = 0.051). Of these genera associations with
SE score were observed to be significantly positive for Mitsuokella
(R = 0.29; p = 0.015) and Collinsella (R = 0.27; p = 0.023), and
negative for Herbaspirillum (R = −0.28; p = 0.021) and
Lachnoclostridium (R = −0.27; p = 0.028).

At the species level, the relative abundance of Lachnoclostridium
clostridioforme (p = 0.007), Alistipes sp. (p = 0.012), Bacteroides
intestinalis (p = 0.021), Blautia faecis (p = 0.007), Sutterella
parvirubra (p = 0.049), Desulfovibrio sp. (p = 0.049), Bacteroides
caccae (p = 0.044), Parabacteroides johnsonii (p = 0.049),
Parabacteroides goldsteinii (p = 0.030), Bacteroides cellulosilyticus
(p = 0.023), Roseburia faecis (p = 0.040), Lachnobacterium sp. (p =
0.049), Cloacibacillus evryensis (p = 0.049), and Eubacterium eligens
(p = 0.030) were significantly higher in the LSE group, whereas
Alistipes indistinctus (p = 0.034), Collinsella aerofaciens (p = 0.030),
Bulleidia p.1630.c5 (p = 0.049), Mitsuokella jalaludinii (p = 0.016),
and Mitsuokella multacida (p = 0.016) were significantly lower. Of
these species, C. aerofaciens (R = 0.27; p = 0.028), Bulleidia p.1630.c5
(R = 0.28; p = 0.020), M. jalaludinii (R = 0.30; p = 0.014), and M.
multacida (R = 0.30; p = 0.014) exhibited a significant positive
correlation with SE score, whereas L. clostridioforme (R = −0.34; p =
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0.004), Alistipes sp. (R = −0.32; p = 0.009), Bacteroides intestinalis
(R = −0.27; p = 0.024), and B. faecis (R = −0.24; p = 0.040) negatively
correlated with SE score. No significant trends were observed for
gut microbial α-diversity in the context of SE (Supplementary
Table S2).

Monocyte methylation states and epigenetic
clock analysis as an indicator of LSE

Inclusion-exclusion criteria of DML associated with SE are
summarized in Figure 4.

TABLE 3 Intergroup comparisons and linear regression analyses for the mean relative abundance of identified gut bacterial taxa at the family, genus, and species
levels with respect to SE.

Self-esteem (SE) groups SE linear regression

NSE LSE Pa R2 P

Family-level relative abundance (%; mean ± SEM)

Coriobacteriaceae 3.25E-02 ± 7.87E-03 9.67E-03 ± 2.03E-03 0.014 0.26 0.034

Acholeplasmataceae 0.00E+00 ± 0.00E+00 1.15E-03 ± 8.64E-04 0.015 −0.26 0.033

Clostridialesb 1.24E-04 ± 4.50E-05 0.00E+00 ± 0.00E+00 0.016 0.38 0.002

Oxalobacteraceae 6.96E-04 ± 2.25E-04 8.00E-03 ± 6.59E-03 0.029 −0.32 0.008

Brucellaceae 1.47E-04 ± 1.44E-04 1.80E-03 ± 1.30E-03 0.025 −0.18 0.134

Rhizobiaceae 7.33E-05 ± 7.33E-05 1.23E-03 ± 7.65E-04 0.025 −0.19 0.127

Gracilibacteraceae 0.00E+00 ± 0.00E+00 1.83E-04 ± 1.69E-04 0.049 −0.23 0.054

Pseudanabaenaceae 0.00E+00 ± 0.00E+00 9.67E-03 ± 6.38E-05 0.015 −0.21 0.085

Verrucomicrobiaceae 1.04E-04 ± 5.07E-05 2.65E-04 ± 1.45E-04 0.132 −0.31 0.010

Veillonellaceae 2.68E-02 ± 3.92E-03 2.37E-02 ± 1.17E-02 0.061 0.28 0.022

Syntrophomonadaceae 1.13E-04 ± 7.92E-05 4.17E-04 ± 2.94E-04 0.089 −0.25 0.043

Genus-level relative abundance (%; mean ± SEM)

Mitsuokella 1.29E-03 ± 5.70E-04 8.39E-04 ± 4.66E-04 0.016 0.29 0.015

Collinsella 8.12E-03 ± 2.63E-03 6.59E-03 ± 2.80E-03 0.020 0.27 0.023

Herbaspirillum 3.87E-03 ± 3.14E-03 8.52E-04 ± 3.14E-04 0.034 −0.28 0.021

Cloacibacillus 1.67E-04 ± 1.67E-04 8.26E-05 ± 8.26E-05 0.049 −0.17 0.165

Akkermansia 2.44E-04 ± 2.44E-04 1.35E-04 ± 9.15E-05 0.124 −0.31 0.009

Lachnoclostridium 2.28E-03 ± 6.04E-04 2.32E-03 ± 6.17E-04 0.051 −0.27 0.028

Megasphaera 1.70E-03 ± 7.68E-04 4.36E-03 ± 1.68E-03 0.261 0.24 0.046

Species-level relative abundance (%; mean ± SEM)

Blautia faecis 3.56E-05 ± 1.86E-05 1.48E-04 ± 5.58E-05 0.007 −0.25 0.040

Lachnoclostridium clostridioforme 1.33E-03 ± 3.89E-04 2.98E-03 ± 7.99E-04 0.007 −0.34 0.004

Alistipes sp. 3.56E-04 ± 1.72E-04 1.15E-03 ± 4.05E-04 0.012 −0.32 0.009

Mitsuokella jalaludinii 9.47E-04 ± 3.48E-04 0.00E+00 ± 0.00E+00 0.016 0.30 0.014

Mitsuokella multacida 4.67E-04 ± 1.93E-04 0.00E+00 ± 0.00E+00 0.016 0.30 0.014

Bacteroides intestinalis 7.80E-04 ± 4.05E-04 9.13E-04 ± 3.60E-04 0.021 −0.27 0.024

Collinsella aerofaciens 9.83E-03 ± 2.86E-03 2.61E-03 ± 7.34E-04 0.030 0.27 0.028

Bulleidia p.1630.c5 4.49E-04 ± 2.00E-04 0.00E+00 ± 0.00E+00 0.049 0.28 0.020

Bacteroides cellulosilyticus 3.09E-04 ± 2.87E-04 7.35E-04 ± 4.06E-04 0.023 −0.20 0.094

Eubacterium eligens 6.83E-03 ± 2.76E-03 1.23E-02 ± 3.73E-03 0.030 −0.09 0.459

Parabacteroides goldsteinii 1.11E-03 ± 1.10E-03 3.91E-04 ± 2.68E-04 0.030 −0.21 0.087

Alistipes indistinctus 3.33E-04 ± 1.63E-04 0.00E+00 ± 0.00E+00 0.034 0.19 0.117

Roseburia faecis 1.40E-02 ± 2.43E-03 2.21E-02 ± 3.76E-03 0.040 −0.19 0.119

Bacteroides caccae 3.83E-03 ± 1.58E-03 5.37E-03 ± 1.32E-03 0.044 −0.22 0.078

Lachnobacterium sp. 0.00E+00 ± 0.00E+00 2.17E-04 ± 2.08E-04 0.049 −0.17 0.165

Sutterella parvirubra 0.00E+00 ± 0.00E+00 3.91E-05 ± 2.72E-05 0.049 −0.24 0.052

Parabacteroides johnsonii 0.00E+00 ± 0.00E+00 4.30E-04 ± 3.32E-04 0.049 −0.22 0.077

Cloacibacillus evryensis 0.00E+00 ± 0.00E+00 3.52E-04 ± 3.26E-04 0.049 −0.17 0.165

Desulfovibrio sp. 0.00E+00 ± 0.00E+00 4.35E-05 ± 3.26E-05 0.049 −0.23 0.060

Akkermansia muciniphila 1.51E-04 ± 7.31E-05 2.83E-04 ± 1.44E-04 0.223 −0.28 0.020

Megasphaera hominis 2.36E-03 ± 8.18E-04 9.22E-04 ± 5.30E-04 0.369 0.26 0.034

Lactobacillus mucosae 9.56E-05 ± 8.30E-05 0.00E+00 ± 0.00E+00 0.319 0.26 0.035

Bold p-values indicate statistical significance at α = 0.05.
aMann-Whitney U test (unpaired, two-tailed).
bFamily.XIII. Incertae.Sedis.
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Methylation patterns among DML exhibiting a mean Δβ-value
of >10% upon SE stratification are graphically represented in
Supplementary Figure S1A. DML were significantly
hypomethylated in LSE relative to NSE (p < 0.001), with β-values
of 0.80, 0.40, and 0.10 being the most frequently observed in both SE
groups (Supplementary Figure S1B). The majority of the DML (N =

51; 49%) were located in intergenic regions, most (N = 34; 67%) of
which were hypermethylated with respect to LSE. Significant
differences between the number of DML hypo- and hyper-
methylated were found predominantly at 5′UTR and intergenic
regions (Supplementary Figure S1C), potentially indicating
functional differences in transcription of associated genes.

FIGURE 3
Average relative abundance of gut bacterial phyla across SE groups. Bacterial phyla Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria
(among unclassified bacteria) compose an average of roughly 97% of the gut bacterial population in each group. The remaining 3% of the gut bacteria are
largely composed of members belonging to Verrucomicrobia, Tenericutes, Lentisphaerae, and Fusobacteria. The mean relative abundance of bacterial
phyla is represented for NSE and LSE groups, and for each individual participant.

FIGURE 4
Inclusion-exclusion criteria utilized to determine the final set of differentially methylated loci (DML) upon SE stratification for downstream analyses.
Of the ~850,000 CpG sites considered on the standard Infinium MethylationEPIC Array, those possessing a mean Δβ of <10% between NSE and LSE
groups and/or a p-value of >0.05 during RnBeads differential methylation analysis were eliminated for consideration among differentially methylated loci
(DML). Surviving CpG sites were further evaluated via Empirical Bayes permutation t-test between NSE and LSE groups.
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Gene-ontology (GO) pathway analysis of all DML by SE
showed enrichment of genes involved in biological processes
related to metabolic mechanisms (Figure 5). Existing literature
has described an association between LSE and obesity,
implicating metabolic dysregulation as a link between the
two (Moradi et al., 2022). Although BMI and A1c did not
significantly differ between the SE groups (Table 1), plasma
levels of insulin were significantly higher (p = 0.014) in
individuals with LSE (Table 2).

The top ten most differentially methylated loci (DML) were
further evaluated for potential effects on nominal SE scores via
linear regression (Table 4). The associated gene for each DML was
also obtained via the manifest file. For six of these DML, mean β-
values were significantly associated with SE: cg12914114 (p = 0.028),
cg25436480 (p = 0.021), cg01695532 (p = 0.007), cg18232235 (p =

0.026), cg04402345 (p = 0.015), and cg19288863 (p = 0.004). These
linear regressions are graphically summarized in Supplementary
Figure S2.

Hannum and Levine epigenetic clocks did not indicate any
significant age acceleration or deceleration between the SE
groups. Interestingly, however, Epi-Age calculated using the
Horvath clock indicated deceleration in individuals with LSE
(p = 0.042) and age acceleration in individuals with NSE
(Table 5).

Our mediation analysis of multiple immunometabolic and
inflammatory biomarkers, microbiota, and Epi-Age (Figure 6)
revealed that a 1% difference in plasma levels of adiponectin
between individuals associates with significant independent
differences in both Epi-Age (Horvath) and SE score
by −0.14% (p = 0.019) and 0.05% (p = 0.023), respectively.

FIGURE 5
Gene-ontology (GO) pathway analysis of DML associated with SE. Results are represented in order of enrichment score [-log (p-value)]. BP,
Biological process; CC, Cellular component; MF, Molecular function.

TABLE 4 Intergroup comparisons and linear regression between SE scores and respective β-values of 10 most differentially methylated loci (DML).

β-values (mean ± SEM) SE linear regression

Gene(s) Region CpG NSE LSE pa Coeff. p

cg11956442 UGDH-AS1 5′ UTR Shelf 0.29 ± 0.05 0.56 ± 0.06 0.002 −1.50 0.139

cg03600007 CACNG3 Intergenic — 0.45 ± 0.04 0.68 ± 0.04 0.002 −1.42 0.249

cg12914114 FAM120B Intergenic Island 0.33 ± 0.04 0.55 ± 0.07 0.024 −2.30 0.028

cg25436480 ABP1 Promoter — 0.25 ± 0.04 0.47 ± 0.06 0.002 −2.70 0.021

cg01695532 STRN Intergenic Shelf 0.86 ± 0.03 0.64 ± 0.06 0.017 3.50 0.007

cg19577958 SERPINB9 3′ UTR Shelf 0.35 ± 0.04 0.56 ± 0.06 0.011 −2.01 0.080

cg07791065 - Intergenic — 0.41 ± 0.05 0.62 ± 0.06 0.006 −1.73 0.108

cg18232235 RP11-434C1 Promoter — 0.77 ± 0.04 0.56 ± 0.07 0.009 2.39 0.026

cg04402345 MFAP3 5′ UTR — 0.23 ± 0.04 0.44 ± 0.06 0.013 −2.82 0.015

cg19288863 EYA4 5′ UTR — 0.56 ± 0.04 0.77 ± 0.04 0.004 −3.48 0.004

Bold p-values indicate statistical significance at α = 0.05. a Mann-Whitney U test (non-parametric) comparison.
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While, conditionally, if Veillonellaceae is detected (relative
abundance is more than zero), a difference in 1% of its
relative abundance associates with 1.54-fold difference in the
SE score (p = 0.039). However, the relative abundance of this
taxon was not significantly associated with Epi-Age (Horvath).
Additional results of exploratory multivariate regression
analyses are provided in Supplementary Table S4.

Discussion

Self-esteem (SE) has been shown to be an early indicator of other
depressive disorders (Steiger et al., 2014). Thus, investigating the
pathophysiologic differences associated with low SE (LSE) may aid
in the identification of novel biomarkers predictive of depression to
enable preventative interventions among high-risk populations that
include NHPI. While existing studies have investigated diagnostic
biomarkers related to depression itself, no such research has
elucidated physiological bases for SE as one of its predictors. This
gap in existing data hindered our ability to compare our
observations with those from other ethnic groups. Thus, we
focused on characterizing differences in the immunoepigenetic-
gut microbiome axis in relation to SE from our NHPI-enriched
cohort.

Briefly, we observed individuals with LSE to have relatively
higher levels of inflammatory biomarkers (Table 2). Furthermore,
we observed an inverse relationship between SE and plasma
bioavailability of pro-inflammatory factors (i.e., IL-8, IL-6, and

TNF-α). Conversely, adiponectin levels exhibited a direct
relationship with SE score, which is consistent with existing
literature among depressed individuals (Hu et al., 2015).
Adiponectin has been previously described to exhibit an
inhibitory effect on TNF-α-induced IL-8 synthesis (Kobashi,
et al., 2005). Furthermore, adiponectin is thought to increase
insulin sensitivity, which is inversely proportional to the amount
of insulin the pancreas needs to produce to induce glucose uptake.
Our observations suggest that LSE may exacerbate predisposition to
immunometabolic dysregulation via the inhibitory effects of
adiponectin.

We also identified trends in the gut metagenome that may
characterize features of depressive symptoms that associate with
LSE. Existing literature has described an altered gut microbial
composition in depressed individuals (Jiang et al., 2015), however,
no studies have investigated such differences in the context of SE in
NHPI populations. Exhibiting significance in both intergroup
comparison and correlational analysis, the bacteria we have
identified in this study (Table 3) may serve as candidate biomarkers
of LSE and/or modifiers of SE and warrants further investigation.

In addition to gut bacterial associations with SE, robust
differences in monocyte DNA methylation states at specific loci
involved inmetabolic activity were observed to relate to SE (Table 4).
Indeed, we have identified strong associations with monocyte DNA
methylation levels at specific loci and neurocognitive impairment
(Corley et al., 2016). While the molecular consequences of the
differences in methylation at these loci are unclear, monocytes
traffic into the central nervous system, differentiate into
microglia and induce neuroinflammation. The differentially
methylated CpGs observed in our study that associate with LSE
could potentially serve as biomarkers of exposures underlying the
condition and/or play functional roles in immunometabolic
dysregulation observed in LSE individuals. Our gene-ontology
(GO) pathway analysis revealed that biological processes related
to metabolism were the top hits across the 104 DML associated with
SE (Figure 5), which may implicate functional differences in
immunometabolic activity in individuals with LSE.

Beyond those directly associated with individual SE scores, DML
conventionally representative of Epi-Age (Horvath) exhibited
differential methylation upon SE stratification (Table 5). This
result may suggest that NHPI individuals with NSE are aging
faster than those with LSE. Due to the exploratory nature of our
initial investigations within this cohort, our analyses are limited by

TABLE 5 Mean epigenetic age (Epi-Age) acceleration per SE group. Epi-Age
values are represented here as the difference between mean Epi-Age and
mean chronological age. Positive scores suggest age acceleration, while
negative scores suggest age deceleration.

Total
cohort

Self-esteem (SE) groups

NSE LSE pa

Epi-Age scores (years; mean ± SEM)

Hannum −0.50 ± 1.00 0.05 ± 1.38 −1.59 ± 1.24 0.208

Horvath 1.17 ± 1.18 1.95 ± 1.65 −0.36 ± 1.32 0.042

Levine (PhenoAge) 1.58 ± 1.41 1.24 ± 2.02 2.26 ± 1.40 0.565

Bold p-values indicate statistical significance at α = 0.05.
aKruskal-Wallis non-parametric ANOVA.

FIGURE 6
Multiple-regression analysis of significant interaction between SE scores, adiponectin, and gut microbial abundance of Veillonellaceae.
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sample size and the cross-sectional nature of our study design. While
these limitations restrict the generalizability of this result, the differences
we observed with Epi-Age between SE groups have not been previously
explored in the context of mental health disparities. Among the NHPI
population, age has served as a crucial risk factor for cardiometabolic
pathophysiology, resulting in recommendations to stratify NHPI
populations by age (Uchima et al., 2019). While the small sample
size of our initial investigation limited our capacity to impose such
stratification, the differences in Epi-Age between NSE and LSE groups
in our cohort warrant further investigation in a larger study with
increased representation of the NHPI population and raises additional
questions relevant to racial-ethnic health disparities. As an example, the
prognostic capacity of quantifiable “biological age” metrics in racial-
ethnic groups that are commonly underrepresented in biomedical
research could be explored to explain the disproportionately higher
prevalence of age-related chronic diseases in such populations.

While the functional consequences of the interactions between Epi-
Age, SE, and systemic inflammation remain unclear, our regression
analyses revealed the possibility of multifaceted, integrated, and/or
indirect interactions that characterize individuals with LSE. The
relatively miniscule difference (1%) in adiponectin between individuals
in our cohort was associated with a statistically significant impact on both
the Horvath-derived Epi-Age and SE score (Figure 6). This illustrates a
strong interrelationship within the immunoepigentic gut-microbiome
brain axis that warrants further examination. Our findings lend support
for a hypothesis that immunoepigenetic priming of systemic
inflammation as a partial determinant of disparate mental health
outcomes in NHPIs, potentially via adiponectin-mediated signaling
pathways and specific gut microbial interactions (Figure 7). We
observed that individuals with LSE showed deficiencies in regulatory
activity of adiponectin and subsequent downstream targets involved in
inflammation, gut dysbiosis, and differential DNA methylation at
immunometabolic genes in monocytes.

Several limitations exist for this study including the small sample
size (N = 68) of our cohort. Continued efforts to expand this cohort are
ongoing. A notable limitation is that the SE score stratification of our
cohort is a threshold, as opposed to a continuous variable. SE, as well as
other health conditions, are often characterized by a spectrum, not as a
categorical measure with a threshold score. This self-reported
questionnaire is also subjective, which may contain several potential
sources of bias, suggesting that it may not be the most accurate
representation of one’s mental state. Additionally, our cohort did
not have a medical diagnosis of depression or other mental illness.
However, using SE as a proxy variable for mental wellbeing was
implemented to account for cultural stigmatization surrounding
mental illness and unequal accessibility to professional healthcare to
obtain such diagnoses. Thus, we cannot assume that there is a direct
correlation between LSE and depressive disorders in NHPIs. However,
SE has been previously described to be strongly correlated with
depression in a similar NHPI-enriched cohort of approximately
2,000 participants (Juarez et al., 2022). Another limitation of this
study is the application of the Infinium MethylationEPIC BeadChip
(Illumina) used for the DNA methylation analysis, as is limited to
surveying less than 3% of the total CpG sites within the human genome.
Future studies could employ techniques that offer a more extensive
coverage of CpGs, such as whole genome bisulfite sequencing.

In summary, we have identified the molecular characteristics
underlying LSE in a cohort enriched with NHPI. These associative
data suggest a role for the immunoepigenetic-gut microbiome axis in
SE. The modifiable component of epigenetic processes and the gut
microbiome makes this axis an attractive target for future potential
therapeutics. As LSE is an early indicator of major depressive/mood
disorders, preventive measures could be improved by targeting this axis
given a better understanding of causal relationships. However, this study
investigated the correlations between SE and physiological biomarkers,
which neither imply causation nor explain the high suicide mortality rate
or prevalence of depressive symptoms in NHPI communities. Our initial
findings warrant further investigation to better understand the causal
relationships between inflammation, gut microbial composition, and
epigenetics in the context of SE and other mental health conditions in
a longitudinal study.
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