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Gene clustering is one of the important techniques to identify co-expressed gene
groups from gene expression data, which provides a powerful tool for
investigating functional relationships of genes in biological process. Self-
training is a kind of important semi-supervised learning method and has
exhibited good performance on gene clustering problem. However, the self-
training process inevitably suffers frommislabeling, the accumulation of whichwill
lead to the degradation of semi-supervised learning performance of gene
expression data. To solve the problem, this paper proposes a self-training
subspace clustering algorithm based on adaptive confidence for gene
expression data (SSCAC), which combines the low-rank representation of gene
expression data and adaptive adjustment of label confidence to better guide the
partition of unlabeled data. The superiority of the proposed SSCAC algorithm is
mainly reflected in the following aspects. 1) In order to improve the discriminative
property of gene expression data, the low-rank representation with distance
penalty is used to mine the potential subspace structure of data. 2)
Considering the problem of mislabeling in self-training, a semi-supervised
clustering objective function with label confidence is proposed, and a self-
training subspace clustering framework is constructed on this basis. 3) In order
to mitigate the negative impact of mislabeled data, an adaptive adjustment
strategy based on gravitational search algorithm is proposed for label
confidence. Compared with a variety of state-of-the-art unsupervised and
semi-supervised learning algorithms, the SSCAC algorithm has demonstrated
its superiority through extensive experiments on two benchmark gene
expression datasets.
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1 Introduction

The recent development of biological experiments has generated vast amounts of gene
expression data. Thus, comprehending and interpreting the enormous number of genes has
become a significant challenge (Diniz et al., 2019; Maâtouk et al., 2019; Li and Yang, 2020;
Summers et al., 2020; Nisar et al., 2021; Dang et al., 2022). Semi-supervised learning
(Chapelle et al., 2006) is a focused issue in the analysis of gene expression data, the research
branches mainly include semi-supervised gene clustering (Yu et al., 2014; Yu et al., 2016; Xia
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et al., 2018; Liu et al., 2021), semi-supervised gene classification
(Huang and Feng, 2012; Zhang et al., 2021), semi-supervised gene
selection (Mahendran et al., 2020), and semi-supervised gene
dimensionality reduction (Feng et al., 2021). In this paper, we
focus on the semi-supervised gene clustering problem for identify
co-expressed gene groups, which can provide a useful basis for the
further investigation of gene function and gene regulation in the
field of functional genomics (Maâtouk et al., 2019). When clustering
gene expression data, practical dataset usually exists in the form of a
large amount of unlabeled data and a small amount of labeled data.
However, unsupervised clustering algorithms inherently lack the
ability to utilize the label information in exploring the pattern of
gene expression data, and the clustering results are often
unsatisfactory. Comparatively speaking, semi-supervised
clustering can make full use of prior knowledge, such as pairwise
information or class labels, to guide the partition of unlabeled data,
thus can improve the clustering quality of gene expression data.

Most of the existing semi-supervised learning methods use
raw data directly for analysis (Gan et al., 2013; Wu et al., 2018; Li
et al., 2019). In recent years, many scholars have found in their
research that the intrinsic structure of data is often smaller than
its actual dimensionality, and it may be easier to mine the cluster
structure of data in subspaces (Basri and Jacobs, 2003). Subspace-
based low-dimensional feature representation of data has been
successfully applied to various applications, such as image
segmentation (Liu et al., 2013; Fei et al., 2017; Xu et al., 2023)
and biological data analysis (Shi et al., 2019; Wang et al., 2019;
Zheng et al., 2019; Lu et al., 2020; Sun et al., 2021; Huang andWu,
2022). One of the representative algorithm is low-rank
representation (LRR) (Liu et al., 2013), which assumes that the
dataset is sampled from multiple mutually orthogonal subspaces
in the data space, and uses rank to measure the sparsity of matrix.
LRR only focuses on the global structure of data, and ignores the
local structure hidden in data. To overcome this drawback, Wang
et al. (2019) introduced mixed-norm and Laplacian
regularization into LRR to identify differentially expressed
genes for tumor clustering. Lu et al. (2020) incorporated the
constraints of the non-negative symmetric low-rank matrix and
graph regularization for cancer clustering. To preserve the
neighbor relationship among data, Fei et al. (2017) proposed a
low-rank representation algorithm with distance penalty
(LRRADP), which adds a distance penalty term on the basis of
LRR to ensure that the representation vectors of the neighboring
data in the original data space are still close in the representation
space, thereby enhancing the locality of the model and data
discriminability. Aiming at guaranteeing block diagonal
property of LRR, Xu et al. (2023) presented a projective block
diagonal representation approach, which rapidly pursues a
representation matrix with block diagonal structure. By
assuming that cells with the same type are in the same
subspace, Zheng et al. (2019) proposed a self-expression
clustering method with non-negative and low-rank constraints
for cell type detection. Besides, to effectively integrate multiple
omics data, various multi-view subspace clustering algorithms
based on LRR were developed for cancer subtyping (Shi et al.,
2019; Sun et al., 2021; Huang and Wu, 2022).

As an essential semi-supervised learning method, self-training
(Nie et al., 2012; Gan et al., 2013; Wu et al., 2018; Xia et al., 2018; Li

et al., 2019) has been successfully applied to various applications
including the analysis of gene expression data. Self-training can be
regarded as a kind of self-learning method, which consists of two
main steps (Li et al., 2019): semi-supervised learning using labeled
data to update the predicted labels of unlabeled data; expansion of
labeled dataset by selecting unlabeled data as newly labeled data
based on some rules. These two steps are repeated until some
stopping criteria are reached. For the task of self-training
classification, Gan et al. (2013) suggested utilizing unlabeled and
labeled data to reveal the true data space structure by cluster analysis,
along with a semi-supervised fuzzy c-means technique, to improve
self-training. However, the algorithm is not appropriate for non-
spherically distributed data (Wu et al., 2018; Li et al., 2019). To
overcome this weakness, Wu et al. (2018) proposed a method of self-
training based on density peak of data (STDP), which uses clustering
by fast search and find of density peaks (DPC) (Rodriguez and Laio,
2014) to build the density-pointing relationship between data, and
newly labeled data are selected to iteratively strengthen the
classification performance of SVM, KNN, and CART on this
basis. Although STDP achieves good classification results for
non-spherically distributed data, the problem of mislabeling in
the self-training process is not considered. In fact, mislabeling of
newly labeled data in a self-training approach is an unavoidable and
very intractable problem (Li et al., 2019). Iterative self-training based
on these mislabeled data will further reinforce the misinformation
and generate more mislabels, leading to mistaken reinforcement
(Xia et al., 2018; Li and Zhu, 2020). To solve this problem,
researchers have proposed various self-training methods based on
partial noise filters in recent years, including multi-label self-training
with editing (Wei et al., 2013), dynamic safety assessment self-
training based on semi-supervised learning and data editing (Liu
et al., 2019), etc. To further exploit unlabeled data in the filter and
overcome the parameter dependence problem, Li et al. (2019)
proposed a self-training method based on density peaks and an
extended parameter-free local noise filter (STDPNF), which can
filter out part of mislabeled newly labeled data. However, as with
other self-training algorithms using local noise filters, STDPNF still
needs to entirely solve the problem of mislabeling.

On the other hand, for the self-training clustering task, Nie et al.
(2012) proposed an active self-training clustering (ASTC), which
utilizes Gaussian fields and harmonic functions (GFHF) (Zhu et al.,
2003) to achieve label propagation. ASTC considers the probability
of data being partitioned into various clusters as Bayesian posterior
probability, and iteratively selects unlabeled data with large
probability values as newly labeled data to optimize the label
fitness process of GFHF and improve the label prediction
accuracy. To address the problem of partitioning cancer gene
expression data, Xia et al. (2018) proposed a self-training
subspace clustering algorithm under low-rank representation
(SSC-LRR), which introduces LRR to extract subspace structures
from cancer gene expression data, iteratively clusters low-rank
representation matrix and noise matrix using the K-means
algorithm, and selects unlabeled data with the same clustering
labels on the two matrices as newly labeled data for self-training
learning. SSC-LRR achieves encouraging cancer classification on
several benchmark gene expression datasets, and the advantage of
low-rank representation in extracting discriminative features from
data is analyzed through experimental results.
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Despite the success of the above self-training methods,
mislabeling a considerable amount of newly labeled data is
inevitable (Xia et al., 2018; Li et al., 2019), and its accumulation
will lead to the problem of mistaken reinforcement and seriously
affect the performance of the self-training methods. In fact, in the
self-training clustering problem on gene expression data, different
newly labeled data should have different label confidences. The
higher the semi-supervised learning value of a newly labeled datum,
the more likely this datum has a correctly predicted label, so it
should be assigned a higher label confidence. Based on the above
analysis, for gene expression data with partial labels, a self-training
subspace clustering algorithm based on adaptive confidence
(SSCAC) is proposed in this paper, with the following main
contributions. Firstly, a self-training subspace clustering
framework based on GFHF is designed in this paper, which
reveals the subspace structure of gene expression data through
low-rank representation, and achieves iterative semi-supervised
learning of unlabeled data using the label propagation capability
of GFHF on the basis of the constructed similarity matrix. Secondly,
to tackle the problem of mislabeling, an improved GFHF objective
function with label confidence and the corresponding adaptive
adjustment strategy of label confidence based on the gravitational
search algorithm (Rashedi et al., 2009) are proposed. The negative
impact of mislabeled data can be mitigated by reducing the label
confidences of low-value newly labeled data, and the clustering
accuracy on gene expression data can thus be improved.

2 Proposed algorithm

Although existing self-training methods have improved the
partition accuracy of unlabeled data to some extent, the mislabeling

problem of newly labeled data is still one of the important challenges in
self-training methods (Xia et al., 2018; Li et al., 2019), which makes it
difficult to accurately identify co-expressed gene groups on gene
expression data with partial labels. During the iterative self-training,
the falsely predicted labels will be accumulated gradually and lead to the
problem of mistaken reinforcement. One major reason is that once the
newly labeled data are selected, self-training methods always fully trust
their predicted labels in the semi-supervised classification or clustering
process, i.e., it is implicitly assumed that all newly labeled data have the
same label confidence. This will obviously make both correctly and
incorrectly labeled data act on the semi-supervised learning task with
equal strength, and ignore the difference in value of different newly
labeled data for semi-supervised learning. In view of this, a self-training
subspace clustering algorithm based on adaptive confidence for gene
expression data (SSCAC) is proposed in this paper. The proposed
algorithm uses density relationships to select newly labeled data, and
constructs a self-training subspace clustering framework based on
GFHF and the low-rank representation with distance penalty.
SSCAC differs from the existing self-training methods in that the
semi-supervised clustering objective function with label confidence
and the adaptive adjustment strategy of label confidences. The
proposed algorithm aims to weaken the supervisory guidance of
low-value newly labeled data by reducing their label confidences,
thus alleviating the problem of mislabeling in the self-training
process and improving the generalization ability of the algorithm.

2.1 SSCAC objective function

Currently, low-rank representation has achieved good clustering
results as a typical representation model for learning the subspace
structure of gene expression data (Xia et al., 2018; Shi et al., 2019;

FIGURE 1
A framework of SSCAC.
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Wang et al., 2019; Zheng et al., 2019; Lu et al., 2020; Sun et al., 2021;
Huang andWu, 2022). In this paper, the proposed SSCAC algorithm
constructs a self-training subspace clustering framework based on
the low-rank representation with distance penalty (LRRADP) (Fei
et al., 2017) by using the high coordination between Gaussian fields
and harmonic functions (GFHF) (Zhu et al., 2003) and low-rank
representation.

In a semi-supervised learning framework, the dataset is usually
formulated as X = [x1, x2, . . ., xl, xl+1, . . ., xn] = [XL, XU] ∈ Rm×n,
where xi|li�1 and xi|ni�l+1 are labeled and unlabeled data, XL and XU

are the labeled and unlabeled datasets, c is the number of clusters, the
corresponding label set is La = {1, . . ., c}, the label of datum xi is yi ∈
La. In order to make different newly labeled data act on semi-
supervised gene clustering with different strengths, this paper
introduces label confidence to GFHF semi-supervised clustering,
and the proposed SSCAC objective function is:

1
2
∑n
i,j�1

Fi − Fj

���� ����2Wij + λ∞ ∑l
i�1

F i − μiY i

���� ����2 (1)

where F � [FT
1 , . . . , F

T
n ]T ∈ Rn×c is the label prediction matrix,

vector Fi denotes the attribution of xi to each cluster; Y �
[YT

1 , . . . ,Y
T
n ]T ∈ Bn×c is the binary label indication matrix, vector

Yi corresponds to the label of xi, if the label yi = k then Yik = 1,
otherwise Yik = 0; λ∞ is a very large constant; μi ∈ (0, 1] is the label
confidence of the labeled datum xi(i = 1, 2, . . ., l);Wij is the element
of the LRRADP affinity matrix W obtained by:

W � Z + ZT( )/2 (2)
In LRRADP, Z ∈ Rn×n is the low-rank representation matrix and

Zi is the vector of coefficients of datum xi represented by other data;
E ∈ Rm×n is the noise matrix. The iterative update equations are as
follows (Fei et al., 2017):

Zp+1 � argmin
Z

Zp

���� ����*+ βp
2

X − XZp − Ep + Λ1,p/βp����� �����22 +
����Zp −Hp + Λ2,p/βp����22( )

(3)

Ep+1 � argmin
E

Ep

���� ����1 + βp
2

X − XZp − Ep + Λ1,p/βp����� �����22 (4)

where ‖Z‖* = ∑iσi(Z) is the nuclear norm of Z, which is used as a
convex approximation of matrix rank, σi(Z) denotes the i-th singular
value of Z; ‖.‖1 and ‖.‖2 are the l1-norm and l2-norm, respectively;
auxiliary variable H, Lagrange multipliers Λ1, Λ2 and penalty
parameter β are determined by the following equations:

Hp+1 � argmin
H

λ2tr Ξ D ⊗ Hp( )( ) + βp
2

Zp −Hp + Λ2,p/βp����� �����22 (5)
Λ1,p+1 � Λ1,p + βp Xp+1 − Xp+1Zp+1 − Ep+1( ) (6)

Λ2,p+1 � Λ2,p + βp Zp+1 −Hp+1( ) (7)
βp+1 � min βmax, ρβp( ) (8)

In the update equations, λ1 > 0 and λ2 > 0 are balance parameters
to trade off among the low-rank representation, noise and adaptive
distance penalty.

In the SSCAC objective function defined by Eq. 1, the first term is
the same as that of the original GFHF, which ensures the smoothness of
data labels on the LRRADP graph. The second term is the label fitness
term, which incorporates the label confidence μi and applies it to the
label indication vector Yi of the labeled datum xi. Actually, the objective
function of GFHF is a special case of that of SSCAC with μi = 1 for each
labeled datum xi(i = 1, 2, . . ., l). That is, the SSCAC objective function is
the extension of that of GHFH, which further considers the label
confidences of the labeled data and can be applied to self-training
clustering. Minimizing Eq. 1 can achieve both themanifold smoothness
of the partition results in subspaces and the maximum matching
between the predicted label and the label of labeled data under the
effect of label confidence.

In the self-training process of SSCAC, newly labeled data are
selected based on density-pointing relationships between data (Wu
et al., 2018; Li et al., 2019) and added to the labeled dataset XL to
guide the next iteration of self-training learning. The newly labeled
data selection strategy will be detailed in the next Subsection. The
rules for setting the label confidence μi in Eq. 1 are as follows: 1) if xi

FIGURE 2
Convergence analysis of proposed updating strategy of confidence vector in SSCAC. (A) Gal; (B) Yeast.
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is an initially labeled datum, set the label confidence μi = 1 with
complete confidence in its label accuracy; 2) if xi is a newly labeled
datum of the current iteration of self-training, μi is initialized to a
random number within (0,1], and then adaptively adjusted based on
the semi-supervised learning value of xi. The specific strategy is
detailed in Section 2.3; 3) only the label confidences of the newly
labeled data selected in the current iteration are adjusted, the
adjusted confidences remain unchanged in the subsequent
iterations of self-training.

The advantage of adding the label confidence in Eq. 1 is that the
value can effectively regulate the supervision strength of newly
labeled data on semi-supervised gene clustering, which improves
the clustering accuracy on gene expression data. The analysis is as
follows: 1) if the newly labeled datum xi is mislabeled, i.e., the
position of 1 in the label indication vector Yi does not match that of
the actual label, the label prediction vector Fi will be predicted in the
wrong direction under the effect of the second term of Eq. 1, and the
larger the label confidence μi, the larger the prediction bias. In the
first term of Eq. 1, the elements corresponding to data in the same
subspace in the LRRADP similarity matrixW are relatively large and
those corresponding to data in different subspaces are small, so that
labels are mainly propagated among data in the same subspace, then
the mislabeled datum xi will lead to the label prediction bias of
unlabeled data in the same gene clustering. Therefore, reducing the
label confidence of mislabeled datum xi can effectively mitigate its
negative impact on semi-supervised gene clustering; 2) if the newly
labeled datum xi has correct label, the second term of Eq. 1 can guide
Fi to obtain correct prediction, and then realize correct label
propagation for unlabeled data in the same subspace under the
effect of the first term of Eq. 1. Obviously, increasing the label
confidence of correctly labeled datum is beneficial to improve the
partition accuracy of unlabeled data.

The matrix form of the SSCAC objective function is:

tr FTLF( ) + tr F − μ ⊗ Y( )TU F − μ ⊗ Y( ) (9)
where L ∈Rn×n is the graph Laplacianmatrix, L=D−W,D is a diagonal
matrix,Dii =∑jWi,j;U ∈ Rn×n is also a diagonal matrix, the first l and the
remaining n − l diagonal elements are λ∞ and 0, respectively; ⊗ denotes
theHadamard product; μ ∈Rn×c, if the label of xi(i= 1, 2, . . ., l) is k(k= 1,
2, . . ., c), then the k-th element in the i-th row vector is the label
confidence of xi, and all the other elements in the row vector are 0. For
each unlabeled datum, all elements in the corresponding row vector are
set to 0. By setting the derivative of Eq. 9 with respect to F to zero, the
following equation can be easily obtained:

F � L + U( )−1UμY (10)
Then the predicted label of the unlabeled datum xi can be

assigned by:

ŷi � argmax
k

Fik (11)

2.2 Newly labeled data selection strategy
based on density relationships

In the self-training process, how to select newly labeled data
from the unlabeled dataset XU and iteratively expand the labeled

datasetXL is an important issue. Most self-training learningmethods
(Nie et al., 2012; Xia et al., 2018) rely entirely on the performance of
learning models and ignore the potential density information in
datasets. Relatively speaking, the strategy based on the data density
relationships is not restricted by the distribution of initially labeled
data and entire data space (Wu et al., 2018), and is more suitable for
self-training learning on non-spherically distributed data.

In the self-training process of SSCAC, newly labeled data are
selected based on density-pointing relationships between data
(Wu et al., 2018; Li et al., 2019). The strategy utilizes clustering
by fast search and find of density peaks (DPC) (Rodriguez and
Laio, 2014), and for each datum xi, its local density ρi can be
defined as:

ρi � ∑
j

χ dij − dc( ), χ x( ) � 1, x< 0
0, x≥ 0

{ (12)

where dij is the Euclidean distance between xi and xj, and dc is the
cut-off distance. It can be seen that the value of local density ρi is the
number of data whose distance from xi is less than dc. In addition,
DPC defines the minimum distance between xi and other data with
higher local densities as follows:

δi � maxj dij( ), ∀j, ρi ≥ ρj
minj: ρi < ρj dij( ), others

⎧⎨⎩ (13)

The newly labeled data selection strategy calculates ρi and δi for each
datum xi and make xi point to its nearest datum xj with a higher local
density, then xj is called the “next” datum of xi and xi is the “previous”
datum of xj. Then, the strategy constructs the density-pointing
relationships of low-density data to high-density data by selecting the
“next” and “previous” unlabeled data of labeled data in batches and set
their selection orders. Specifically, all the “next” data of data in the
original labeled dataset XL are firstly selected from the unlabeled dataset
XU, and their selection orders are set to 1. That is, these data are viewed as
the ones that should be labeled in the first iteration of self-training and
used as the newly labeled data to expand the labeled dataset. In the next
iteration, all the “next” data of the newly labeled data of the previous
iteration are selected from XU, and their selection orders increase by 1.
This step repeats until there exists no “next” data of the newly labeled
data of the previous iteration inXU. If there are still unselected data inXU,
the selection orders of these remaining data can be set according to the
“previous” relationships using the similar process. It can be seen that the
unlabeled data with the same selection orders form the newly labeled
dataset of the same iteration of self-training, on which basis the proposed
SSCAC algorithm can expand the labeled dataset XL iteratively and
realize self-training clustering.

2.3 Adaptive adjustment of label confidence
based on gravitational search algorithm

According to the analysis of the SSCAC objective function in the
previous subsection, it is obvious that the value of different newly
labeled data should vary for semi-supervised learning. If the newly
labeled datum xi is mislabeled, its incorrect label will propagate to
the unlabeled data in the same subspace, making these data together
with xi have significant differences in the label prediction vectors
from those of the correctly labeled data in that subspace. In this case,
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Eq. 1 will inevitably result in a large function value, and xi can be
regarded as a low-value newly labeled datum. Conversely, the newly
labeled datum xi with correct label can propagate its correct label in
the subspace it belongs to, so that the unlabeled data in this subspace
will obtain similar label prediction vectors to those of the correctly
labeled data. In this case, the objective function value of Eq. 1 will be
relatively small, and xi can be regarded as a high-value newly labeled
datum. Therefore, the SSCAC algorithm proposed in this paper
measures the semi-supervised learning value of newly labeled data
by the objective function value of Eq. 1, and on this basis, achieves
the adaptive adjustment of label confidence.

Gravitational search algorithm (GSA) (Rashedi et al.,
2009) is an optimization method based on the law of
gravity, which is easy to implement and requires fewer
parameters. It has been proven in the literature that GSA
outperforms heuristic search algorithms such as PSO and
GA (Mirjalili et al., 2012; Kumar et al., 2013). The search
particles in GSA are a set of individuals that attract each other
and generate motion in the solution space, the position of the
individual is the solution of the optimization problem. Under
the influence of gravity, the individuals move toward the
individuals with heavier masses, which correspond to better
solutions. To distinguish from the iterations of self-training
learning, the iteration index of GSA is referred to as time in
this paper. In the r-th iteration of self-training, let I be the
number of newly labeled data, Xr � (xr1, xr2, . . . , xri , . . . , xrI) be
the set of newly labeled data, we use the label confidences of
these newly labeled data to compose the label confidence
vector. Specifically, the label confidence vector can be
represented as the positions of particles when optimized by
GSA, the position of GSA particle a at time t is defined by:

μra t( ) � μ1,a t( ), μ2,a t( ), . . . , μi,a t( ), . . . , μI,a t( )( ), a � 1, 2, . . . , N

(14)
where N is the population size, μi,a(t) is the label confidence of the i-
th newly labeled datum xri in particle a at time t, which is initialized
to a random number within (0,1].

Based on the SSCAC objective function given in Eq. 9, the GSA
fitness function of particle a at time t is defined as:

fitnessa t( ) � tr FTLF( ) + tr F − μra t( ) ⊗ Y( )TU F − μra t( ) ⊗ Y( )
(15)

For the i-th newly labeled datum xri , the force acting on particle a
from particle b at time t is expressed as:

fi,ab t( ) � G t( )Ma t( ) × Mb t( )
Rab t( ) + ε

μi,b t( ) − μi,a t( )( ) (16)

whereG(t) is gravitational constant at time t,Ma(t) andMb(t) are the
inertial masses of particle a and particle b, Rab(t) is the Euclidean
distance between particle a and particle b, and ε is a tiny constant to
avoid zero denominator. The following equation can be used to
determine the gravitational constant G(t):

G t( ) � G0e
−α t

T( ) (17)
where G0 is the initial value of the gravitational coefficient, α is the
decay coefficient, G0 and α are usually taken as 100 and 20 (Rashedi
et al., 2009), and T is the maximum time.

During the motion of a particle, the inertial mass Ma(t) of
particle a can be updated according to the adapted value:

ma t( ) � fitnessa t( ) − worst t( )
best t( ) − worst t( ) (18)

Ma t( ) � ma t( )
∑N

b�1mb t( ) (19)

wherema(t) is the intermediate variable, best(t) and worst(t) are the best
and worst fitness values among all particles at time t, respectively. In this
paper, the particle position that makes the fitness value Eq. 15 obtain the
minimum value is selected as the label confidence of the newly labeled
data. Here, best(t) and worst(t) are respectively given by:

best t( ) � min
b∈ 1,...,N{ }

fitnessb t( ) (20)
worst t( ) � max

b∈ 1,...,N{ }
fitnessb t( ) (21)

According to Newtonian gravity and the laws of motion, the
gravitational force on particle a in the i-th dimension at time t is the
sum of the gravitational forces from all other particles.

fi,a t( ) � ∑N
b�1,b≠a

randbfi,ab t( ) (22)

where randb is a random number within [0,1]. According to
Newton’s second law, the acceleration of particle a in the i-th
dimension is:

si,a t( ) � fi,a t( )
Ma t( ) (23)

Therefore, the velocity and position of particle a in the i-th
dimension at the next time are updated by:

vi,a t + 1( ) � randa × vi,a t( ) + si,a t( )
μi,a t + 1( ) � μi,a t( ) + vi,a t + 1( ){ (24)

where randa is a random number within [0,1], the initial velocity
vi,a(0) is 0.

When time t reaches T, the position of the particle that obtains
the minimum fitness value is used as the label confidence vector μr

for the newly labeled data Xr at the r-th iteration of self-training.
Then, we can update μ, U and Y in Eq. 9 based on the obtained label
confidence vector μr, the newly labeled data Xr, their predicted labels
respectively, and guide the subsequent iterations of self-training. It
can be seen that the proposed strategy can adaptively adjust the label
confidence based on the semi-supervised learning value of the newly
labeled data. By reducing the label confidences of low-value newly
labeled data, we can effectively reduce their effect on semi-
supervised learning and thus alleviate the problem of mistaken
reinforcement in the self-training gene clustering.

2.4 The procedure of the proposed SSCAC
algorithm

For a set of gene expression data X = [x1, x2, . . ., xl, xl+1, . . ., xn] =
[XL, XU] ∈ Rm×n, the detailed procedure of SSCAC is given in Algorithm
1, and the framework of SSCAC is shown in Figure 1. In SSCAC, the
stopping condition is set to XU =∅ or the clustering accuracy no longer
increases as suggested in the literature (Qu et al., 2019).
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Step 1: Set the parameters, including maximum value of

penalty parameter βmax, iteration stop parameter

ξ, constant ρ, balance parameters λ1 and λ2 of the

LRRADP algorithm, and population size N, maximum

time T, constant ε of the GSA algorithm.

Step 2: For each datum xi in X, initialize its selection order

O(i) = 0, calculate ρi, δi according to Eqs 12, 13, and

findthe“next”and“previous”dataofxibasedon ρi, δi.

Settheiterationindexoftheunlabeleddataselection

r= 1, then set the selection order of unlabeled data by

the following steps.

1) For each datum xi in XU, if xi is the “next” datum of

a datum in XL, set its selection order O(i) = r.

2) Set r = r + 1. For each unselected datum xi in XU, if

xi is the “next” datum of a datum whose selection

order is r − 1, set O(i) = r.

3) If there still exists “next” data of data whose

selection orders are r in XU, then return to 2);

otherwise, set r = r + 1 and go to 4).

4) For each unselected datum xi in XU, if xi is the

“previous” datum of the selected data, then

set O(i) = r.

5) Set r = r + 1. For each unselected datum xi in XU, if

xi is the “previous” datum of a datum whose

selection order is r − 1, set O(i) = r.

6) If there still exists “previous” data of data

whose selection orders are r in XU, then

return to 5); otherwise, get the vector O of

selection order for unlabeled data and go to

Step3.

Step 3: Initialize Z = H = E = Λ1 = Λ2 = 0, β0 = 1. Set the

iteration index of the LRRADP algotirhm p = 0,

calculate Eqs 3–8 iteratively until ‖Zp+1 −
Zp‖/‖Zp‖≥ ξ to obtain the low-rank representation

matrix Z of X, and get the similarity matrix W =

(Z + ZT)/2. Set the iteration index of self-

training r = 1, initialize U and Y based on

initial XL, set label confidence μi = 1 for each

datum in XL, get initial predicted labels

according to Eqs 10, 11.

Step 4: For the r-th iteration of self-training, initialize

the newly labeled dataset Xr = ∅. For each datum xi
whose O(i) = r, label xi according to its predicted

label ŷi, set Xr � Xr ∪ xi{ }.
Step 5: Determine the label confidence vector μr for the

newly labeled data Xr by the following steps.

1) For each particle a(1 ≤ a ≤ N), randomly

generate each element of its initial

position μr
a(0) within (0,1]. Set the particle

search time t = 1.

2) For each particle a, calculate its fitness value

at time t according to Eq. 15, update its position

μr
a(t) according to Eqs 16–24.

3) If t < T, then set t = t + 1 and return to 2);

otherwise, the position of the particle with

minimum fitness value is used as the label

confidence vector μr and go to Step 6.

Step 6: Set XL = XL ∪ Xr, XU = XU − Xr, update μ, U and Y. Update

the label prediction matrix F and predicted labels

of the data according to Eqs 10, 11. If XU = ∅ or the

clustering accuracy no longer increases compared

with the previous iteration, stop and output the

clustering result; otherwise, set r = r + 1 and

return to Step 4.

Algorithm 1
Note that when the stopping condition is that the clustering
accuracy no longer increases, the labels of the remaining data in
XU are obtained based on F.

3 Experimental results and analysis

3.1 Experimental setup

In this paper, comparative experiments are conducted in two
benchmark gene expression datasets, as shown in Table 1. The Gal
dataset (Ideker et al., 2001) is composed of gene expression
measurements for 205 genes involved in galactose use in
Saccharomyces cerevisiae. The gene expression profiles were
measured with four replicate assays across 20 time points and the
expression patterns reflect four functional categories. Yeast is a UCI
dataset, which aims to predict the localization sites of proteins in cells
and contains 1,484 yeast genes with eight methods of predicting protein
localization sites in dimensions. Besides, we also demonstrate the
applications of the proposed algorithm in other datasets, details of
the datasets are tabulated in Supplementary Table S1, and the clustering
results can be seen in Supplementary Tables S2, S3.

To verify the effectiveness of the SSCAC algorithm proposed in
this paper for gene expression data, SSCAC is compared with three
unsupervised clustering algorithms and four semi-supervised
learning algorithms, including the K-means clustering based on
the original gene expression data X, the K-means clustering based
on the low-rank representation matrix Z (LRR + Kmeans) (Xia
et al., 2018), the NCut clustering based on the LRR similarity
matrix W (LRR + NCut) (Liu et al., 2013), SSC-LRR (Xia et al.,
2018), STDP (Wu et al., 2018), STDPNF (Li et al., 2019), and
LRRADP + GFHF (Fei et al., 2017) algorithms, where SSC-LRR,
STDP, and STDPNF are self-training methods. To illustrate the
effectiveness of the filter in the STDPNF algorithm, both STDP and

TABLE 1 The description of experimental datasets.

Index Datesets Types Number of genes(n) Number of features(m) Classes(c)

1 Gal Gene expression 205 80 4

2 Yeast Gene expression 1,484 8 10
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STDPNF use KNN as the base classifier. Based on the suggestion of
the literature (Xia et al., 2018), the balance parameter λ in LRR and
SSC-LRR algorithms is tuned within [2−3, 24], and the parameter
value corresponding to the optimal clustering result is selected, so
we set λ = 0.1 for all the datasets. In LRRADP + GFHF and SSCAC,
we set the balance parameters λ1 = 100, λ2 = 1 and λ∞ = 1 × 105, and
the maximum value of penalty parameter βmax = 104, iteration stop
parameter ξ = 10−5, constant ρ = 1.01. And we set the maximum
time of the adaptive adjustment of label confidence T = 100,
population size N = 50, and constant ε = 2.2204e − 16 in
SSCAC, the cut-off distance dc is the corresponding value of
data distance sorted in ascending order of 2%, and the other
parameters in comparison methods are set as suggested in the
original studies. Similar to literature (Nie et al., 2012; Fei et al.,
2017), the experiments in this paper form the initial labeled dataset
XL by randomly selecting 10% of the data in each dataset, and the
rest of the data form the unlabeled dataset XU. All algorithms are
run 10 times with randomly selected initial labeled data, and the
algorithm performance is evaluated using the mean value of the
results.

3.2 Evaluation metrics

To assess the partition performance, we use two popular metrics,
accuracy (ACC) and Normalized mutual information (NMI).

(1) ACC is calculated by

ACC � ∑n
i�1δ yi,map ŷi( )( )

n
(25)

where yi and ŷi denote the true label and predicted label of xi,
respectively, map(ŷi) denotes the mapping match between the true
label and the predicted label, and δ(yi,map(ŷi)) � 1 when

yi � map(ŷi), otherwise, it is 0. The closer the value of ACC is
to 1, the higher the partition accuracy is.

(2) NMI is calculated by

NMI � 2I A, B( )
H A( ) +H B( ) (26)

where A and B denote the vectors consisting of the true and
predicted labels corresponding to the partition results,
respectively. I(A, B) denotes the mutual information measure,
H(A) and H(B) denote the entropy of A and B, respectively. The
value of NMI is between 0 and 1, and a larger value of NMI indicates
a better partition performance.

3.3 Comparative results and analysis

Table 2 shows the ACC and NMI results of eight algorithms
on two benchmark gene expression datasets. The optimal and
suboptimal results are marked with bold and italics,
respectively.

From the results in Table 2, it can be seen that.

(1) For the two benchmark gene expression datasets, the clustering
results of the SSCAC algorithm proposed in this paper are
significantly better than those of the comparison algorithms,
indicating the effectiveness of the proposed self-training
subspace clustering framework and the adaptive adjustment
strategy of label confidence. In addition, the performance of the
semi-supervised learning methods outperforms that of the
unsupervised clustering algorithms in general, reflecting the
advantages of the semi-supervised learning methods.

(2) Among the unsupervised clustering algorithms, LRR + Kmeans
and LRR + NCut perform better overall than the K-means
algorithm based on the original gene expression data X.
Compared with K-means, LRR + Kmeans and LRR + NCut
improve ACC by an average of 1.80% and 1.95% for two
benchmark gene expression datasets. This is because the low-
rank representation matrix Z and the similarity matrix W can
better reflect the properties of the gene expression data in the
low-dimensional subspace, thus more discriminative features
can be extracted from the data (Xia et al., 2018). Compared with
LRR, the LRRADP used in the proposed SSCAC algorithm
further enhances the locality of the model and can better capture
the subspace structure of gene expression data. This advantage
of SSCAC will be further demonstrated and analyzed in
Section 3.7.

TABLE 3 Comparison of ACC and NMI of SSCNAC and SSCAC on two benchmark
gene expression datasets.

Datasets Evaluation metrics SSCNAC SSCAC

Gal ACC 0.9361 0.9371

NMI 0.8153 0.8113

Yeast ACC 0.4966 0.4987

NMI 0.2761 0.2782

Bold values indicates the optimal value.

TABLE 2 ACC and NMI results of each algorithm on two benchmark gene expression datasets.

Datasets Evaluation
metrics

K-means LRR +
Kmeans

LRR +
NCut

SSC−LRR STDP STDPNF LRRADP +
GFHF

SSCAC

Gal ACC 0.8517 0.8639 0.8585 0.8912 0.9059 0.9024 0.9205 0.9371

NMI 0.8006 0.8043 0.7493 0.8079 0.8014 0.7858 0.7562 0.8113

Yeast ACC 0.3647 0.3726 0.3760 0.3261 0.4816 0.4387 0.4926 0.4987

NMI 0.2652 0.2543 0.1421 0.2024 0.2708 0.2781 0.2715 0.2782

Bold and italic values indicates the optimal value and suboptimal values.
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(3) Compared with the self-training algorithms SSC-LRR,
STDP, and STDPNF, the SSCAC algorithm proposed in
this paper has significant advantages. One of the main
reasons is that the compared self-training methods
implicitly assume that all newly labeled data have the
same label confidence. As pointed out in the literature
(Mellor et al., 2015; Xia et al., 2018; Li et al., 2019), the
problem of mislabeling is inevitable, so setting the same
label confidence for both mislabeled and correctly labeled
data will lead to continuous reinforcement of incorrect
labels during label propagation. Besides, the proposed
SSCAC algorithm also outperforms the semi-supervised

LRRADP + GFHF, the analysis and comparison will be
detailed in the following ablation study.

In order to verify the convergence of the proposed updating strategy
of confidence vector in SSCAC, convergence analysis experiments
regarding the number of iterations versus fitness value are done for
two benchmark gene expression datasets, Gal and Yeast. As shown in
Figure 2, the fitness values flatten out with increasing iteration number
and finally converge in approximately 100 iterations. Then, the position
of the particle that obtains theminimum fitness value is used as the label
confidence vector for the newly labeled data, on which basis SSCAC
yields superior clustering results.

FIGURE 3
Impact analysis of the hyper-parameters on the performance of SSCAC. (A) Gal; (B) Yeast.

TABLE 4 The newly labeled data selected in the last three iterations of SSCAC on Gal.

Iterations of self-training Newly labeled data Real labels Predicted labels Label confidences

7 x23 3 3 0.0090

7 x65 3 3 1.0000

7 x92 2 1 0.1821

7 x101 1 1 0.7275

7 x108 2 1 0.1990

7 x128 4 4 1.0000

7 x152 3 3 1.0000

7 x165 1 1 0.9626

8 x24 1 1 0.8331

8 x40 1 1 0.1622

8 x99 1 1 0.7804

8 x163 1 1 0.8924

9 x30 3 3 0.6928

9 x183 1 1 0.8974
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3.4 Ablation study

In order to validate the effectiveness of label confidence, we
also conduct an ablation study. The ablation algorithm is referred
to as SSCNAC, i.e., SSCAC without label confidence. In SSCNAC,
the same label confidence μi = 1 is implicitly set for each newly
labeled datum xi in the self-training process, thus SSCNAC is a
self-training subspace clustering algorithm based on original
GFHF. The parameter setting of SSCNAC is the same as that
of SSCAC, and the performance of SSCNAC and SSCAC in terms
of ACC and NMI is reported in Table 3. The optimal values of
Table 3 are shown in bold. From Table 3, it can be seen that the
proposed SSCAC algorithm achieves better clustering
performance over SSCNAC. As with other self-training
algorithms, SSCNAC performs self-training with complete
confidence in the label accuracy of newly labeled data, and
therefore suffers from the problem of mislabeling.
Comparatively speaking, the proposed SSCAC algorithm

introduces label confidences into the semi-supervised
clustering objective function and adaptively adjusts them
based on semi-supervised learning values, thus can effectively
mitigate the negative impact of mislabeled data on self-training
learning. This advantage of SSCAC will be further demonstrated
in Table 4.

Moreover, from Tables 2, 3, we can also observe that the
clustering results of SSCNAC outperform those of LRRADP +
GFHF, with an average improvement of 1.25% and 4.75% in ACC
and NMI, respectively. In essence, the SSCNAC algorithm with
fixed-label confidence is a direct extension of LRRADP + GFHF on
self-training, which gives SSCNAC the ability to learn from
unlabeled data in self-training framework and therefore has
better generalization performance. The above results
demonstrate the positive role of unlabeled data in self-training
learning and the effectiveness of the proposed self-training
subspace clustering framework based on GFHF for gene
expression data.

FIGURE 5
Visualization of original gene expression data and low-rank representationmatrices onGal. (A) Image of original datamatrix X; (B) Image of LRR low-
rank representation matrix Z; (C) Image of LRRADP low-rank representation matrix Z.

FIGURE 4
ACC of each algorithm with different ratio of initially labeled data. (A) Gal; (B) Yeast.
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3.5 Analysis of hyper-parameters

In the proposed SSCAC algorithm, λ1 and λ2 are balance
parameters to trade off among the low-rank representation, noise
and adaptive distance penalty. Figure 3 shows the impact of the two
hyper-parameters on the performace of SSCAC. As can be observed,
the proposed SSCAC algorithm is comparatively unaffected by
hyper-parameters that are close to the ideal. To be more precise,
we advise setting λ1 = 100 and λ2 = 1.

3.6 Analysis of the impact of initially labeled
data ratio

In order to analyze the impact of initially labeled data size on
algorithm performance, we increase the initially labeled data ratio
from 10% to 90% and conducted experiments, all algorithms are run
10 times. The average ACC curves of semi-supervised SSC-LRR,
STDP, STDPNF, LRRADP + GFHF, SSCNAC and SSCAC
algorithms are given in Figure 4.

It can be seen from Figure 4 that, in general, the partition
accuracy of each algorithm increases along with the size of
initially labeled data, the reason is that the increase in
available label information helps to obtain models that fit the
data more closely. It can also be seen from Figure 4 that in all
cases, the ACC values of the proposed SSCAC algorithm are
higher than those of the comparison algorithms, and this
advantage of SSCAC is more evident in the cases when the
initially labeled data ratios are relatively low. This is because
that in such cases, the newly labeled data occupies a larger
proportion of the labeled dataset and therefore plays a
dominant role in the self-training process. Thus, the adaptive
adjustment strategy of label confidence of SSCAC can reduce the
influence of mislabeled data to a greater extent. As the proportion
of initially labeled data increases, the dominant role of the newly
labeled data in the self-training process decreases, and the semi-
supervised learning performance of each algorithm tends to be
similar. The above results and analysis indicate that the SSCAC
algorithm proposed in this paper is more suitable for solving the
semi-supervised clustering problem with less initially
labeled data.

3.7 Analysis of the contribution of each part
of the proposed SSCAC model

In this section, we discuss the contribution of each part of the
proposedmodel. The SSCACmodel describedbyEq. 9 consists of two
parts: tr(FTLF) and tr(F −μY)TU(F − μY), which together make the
model have high clustering accuracy. tr(FTLF) is the manifold
smoothness term of the objective function, the LRRADP low-rank
representationmatrixZadopted inSSCACcaneffectivelyenhancethe
sparsity of the similarity matrix W and improve the discriminative
property of gene expression data, which can then improve the
clustering accuracy through the graph Laplacian matrix L. To
illustrate the advantage of the LRRADP low-rank representation,
visualization of the original data matrix and the low-rank
representation matrixs of LRR and LRRADP are plotted on the Gal

dataset, as shown in Figure 5, and the data in each subplot are sorted
according to their cluster labels in an ascending order. As seen from
Figure 5, the low-rank representation matrix Z in both Figures 5B, C
hasablock-diagonal structure, i.e., the fourhighpixel rectangles along
thediagonalofZcorrespond to the fourGalgeneclusters, respectively.
It is obvious that compared with the original data matrix X, the low-
rank representationmatrix Z can better reveal the subspace structure
of gene expression data, i.e., the block-diagonal structure. Comparing
Figures 5B, C, it can be seen that since LRRADP considers the locality
of gene expression data while focusing on the global low-rank
constraint, the resulting low-rank representation matrix Z is more
sparse and the diagonal-block structure ismore obvious, and thus can
provide more discriminative information for SSCAC.

On the other hand, the second term of the SSCAC model,
tr(F − μY)TU(F − μY), incorporates the label confidence μ with
the aim to reduce the label confidences of mislabeled data
through the proposed adaptive adjustment strategy of label
confidence, and mitigate their negative impact during the self-
training iterations. In order to verify the effectiveness of the
adaptive adjustment strategy of label confidence in the SSCAC
model, we focus on the newly labeled data, as well as their real
labels, predicted labels, and label confidences during the self-
training process. In our experiments, all algorithms are run
10 times with randomly selected initial labeled data. Thus, the
newly labeled data selected during the iteration of SSCAC are
different for different initial labeled data. Here, we take one case
of random selection of initial labeled data on GAL as an example,
where SSCAC achieves convergence in nine iterations. The newly
labeled data selected in the last three iterations and their label
confidences are reported in Table 4, and similar results can be
obtained for other iterations.

As seen fromTable 4, the adaptive adjustment strategy proposed in
this paper can effectively reduce the label confidences of themislabeled
data, such as x92 and x108 in the 7-th iteration, and assign large
confidences to the correctly labeled data. From Table 4, we can also
observe that the label confidence of the correctly labeled datum x23 is
rather small. As pointed out in the literature (Chen et al., 2011), even
though some datum has correct label, it may have less impact on
supervised learning due to its low partition uncertainty. Therefore, it
is reasonable to assign a lower confidence to such correctly labeled
datum. Compared with the existing self-training methods that do not
consider the label confidence of newly labeled data, SSCAC can
adaptively adjust the strength of supervisory guidance for different
newly labeled data in the self-training process and effectively mitigate
the negative impact of mislabeled data, which helps to significantly
improve the clustering accuracy on gene expression data.

4 Conclusion

To deal with the widely existing problem of mislabeling in self-
training learning tasks, a novel self-training subspace clustering
algorithm for gene clustering is proposed in this paper. In particular,
label confidences are integrated into the self-training clustering model,
and the corresponding determination strategy of label confidences is
proposed to adaptively adjust the supervision strength of newly labeled
data according to their semi-supervised learning values. Moreover, the
low-rank representation with distance penalty is adopted to improve
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discriminative property of gene expression data. Compared with other
state-of-the-art unsupervised and semi-supervised learning algorithms,
the proposed SSCAC algorithm can effectively mitigate the negative
impact of mislabeling and improve the stability and accuracy of gene
clustering. In our future work, we will consider biological knowledge
such as Gene Ontology annotation information, and extend the
proposed model to multi-view clustering framework to further
improve clustering performance on gene expression data.
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