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Tumor subtype andmenopausal status are strong predictors of breast cancer (BC)
prognosis. We aimed to find and validate subtype- or menopausal-status-specific
changes in tumor DNAmethylation (DNAm) associated with all-cause mortality or
BC progression. Associations between site-specific tumor DNAm and BC
prognosis were estimated among The Cancer Genome Atlas participants (n =
692) with Illumina InfiniumHumanMethylation450 BeadChip array data. All-cause
mortality and BC progression were modeled using Cox proportional hazards
models stratified by tumor subtypes, adjusting for age, race, stage, menopausal
status, tumor purity, and cell type proportion. Effect measure modification by
subtype and menopausal status were evaluated by incorporating a product term
with DNAm. Site-specific inference was used to identify subtype- or menopausal-
status-specific differentially methylated regions (DMRs) and functional pathways.
The validation of the results was carried out on an independent dataset
(GSE72308; n = 180). We identified a total of fifteen unique CpG probes that
were significantly associated (P ≤ 1 × 10−7) with survival outcomes in subtype- or
menopausal-status-specific manner. Seven probes were associated with overall
survival (OS) or progression-free interval (PFI) for women with luminal A subtype,
and four probes were associated with PFI for women with luminal B subtype. Five
probes were associated with PFI for post-menopausal women. A majority of
significant probes showed a lower risk of OS or BC progressionwith higher DNAm.
We identified subtype- or menopausal-status-specific DMRs and functional
pathways of which top associated pathways differed across subtypes or
menopausal status. None of significant probes from site-specific analyses met
genome-wide significant level in validation analyses while directions and
magnitudes of coefficients showed consistent pattern. We have identified
subtype- or menopausal-status-specific DNAm biomarkers, DMRs and
functional pathways associated with all-cause mortality or BC progression,
albeit with limited validation. Future studies with larger independent cohort of
non-post-menopausal women with non-luminal A subtypes are warranted for
identifying subtype- and menopausal-status-specific DNAm biomarkers for BC
prognosis.
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Introduction

Breast cancer (BC) is the most frequently diagnosed cancer in
women. In 2020, BC accounted for 6.9% (approximately 2.3 million
cases) of new cancer deaths globally (Sung et al., 2021). Advancements
in screening and treatment options have contributed to improvements
in BC prognosis (Goldhirsch et al., 2011). Epigenetic dysregulation is a
hallmark of cancer (Jones et al., 2016) and thus epigenetic patterns may
serve as predictors of risk and prognosis to guide more personalized
treatment plans to further improve patient outcomes. Both in vitro and
population-based studies have implicated aberrant histone and DNA
methylation (DNAm) in BC tumorigenesis and progression (Dumont
et al., 2008; Elsheikh et al., 2009; Stone et al., 2015). Several population-
based epigenomic studies of BC tissues have investigated the prognostic
utility of DNAm at specific CpG loci as the potential candidate
biomarker for BC survival (Hao et al., 2017; Xiao et al., 2018; de
Almeida et al., 2019; Du et al., 2019; Liu et al., 2020; Tao et al., 2020).
These studies have demonstrated a selected panel of CpG loci can
potentially be used to distinguish high- and low-risk groups for all-cause
mortality among BC patients, improving prediction of BC prognosis.

However, prior studies of the DNAm and BC survival have focused
on identifying a panel of prognostic CpG probes that are agnostic to BC
molecular subtypes or menopausal status (Hao et al., 2017; de Almeida
et al., 2019; Du et al., 2019; Liu et al., 2020; Tao et al., 2020). BC is
heterogeneous cancer with different intrinsic subtypes defined by
female hormone-receptor status (Koboldt et al., 2012). Subtypes are
distinguished using gene expression arrays or immunohistochemistry,
and include luminal A, luminal B, HER-2, normal-like and basal-like.
BC prognosis differs by the subtypes (Byler et al., 2014; Ohnstad et al.,
2017; Yang and Polley, 2019), which have guided the use of subtype-
specific therapeutic regimens (Goldhirsch et al., 2011). Indeed, Xiao
et al. examined DNAm sites associated with all-cause mortality among
subjects with luminal BC; however, they did not examine DNAm of
subjects with basal-like subtype or based on menopausal status (Xiao
et al., 2018). Pre-menopausal women have a higher proportion of tumor
subtypes associated with poorer prognosis (e.g., basal-like and HER2),
compared to post-menopausal women (Keegan et al., 2012). Moreover,
the prognosis for pre-menopausal women with luminal A or luminal B
subtype is worse than that of post-menopausal women with the same
subtype (Lian et al., 2017). Thus, prognoses of patients with BC could
differ by their menopausal status in conjunction with their molecular
subtypes. DNAm may provide a means to capture these differences in
biology that are linked to BC outcomes.

In this study, we aimed to identify DNAm sites associated with BC
survival outcomes in breast tumor tissue, which are specific to different
BC subtypes or menopause status. We evaluated these associations
among The Cancer Genome Atlas (TCGA) BC participants with
Illumina Infinium HumanMethylation450 BeadChip (450K) array
data obtained from breast tumor tissue samples. This subset of the
TCGA BC participants had a median overall follow-up time of
27.7 months, which is considered relatively a short follow-up time
for survival analysis (Liu et al., 2018). Thus, in addition to analyzing
overall survival (OS), we analyzed progression-free interval (PFI), which
was defined as the period between the date of diagnosis and the date of
first new tumor event. We conducted an epigenome-wide association

study (EWAS) of these outcomes, accounting for potential effect
measure modification by BC subtypes or menopausal status. We
further validated these associations in an independent cohort of
180 subjects with breast tumor tissue samples. To the best of our
knowledge, this is the first study that has investigated subtype- or
menopausal-status-specific DNAm sites that are associated with all-
cause mortality and BC progression. Identified DNAm sites will
potentially enable clinicians to provide more precise prognosis for
BC patients.

Materials and methods

Study population

The breast cancer data set of 862 samples and corresponding
Infinium 450K DNAm data were obtained from TCGA Genomic
Data Commons (GDC), which houses molecular profiles of different
cancer types from the TCGA project. The data set included four
different survival outcomes, including overall survival, progression-
free interval, disease-specific survival, and disease-free interval. These
outcomes were defined and curated using available clinical information
by Liu et el. and were made available in GDC (Liu et al., 2018). BC
subtypes of samples were classified based on Spearman distance
between samples’ expression profiles and 50-gene centroids
(representing different subtypes) constructed using the Prediction
Analysis of Microarray (PAM) algorithm (Tibshirani et al., 2002).
Inclusion criterion was availability of OS or PFI endpoints.
Exclusion criteria were based on tumor types, stages and
missingness of covariates which were included in the model.
Specifically, we excluded subjects whose menopausal status (n = 80),
age (n = 1), race (n = 16) and tumor stage (n = 7) information were
missing. We also excluded subjects with stage four cancer (n = 16), and
adjacent normal samples (n = 110) and HER2 subtype (n = 46). We
randomly chose one sample from a subject if the subject had multiple
samples. Subjects whose race was not white were categorized as other,
and whose stage was not three was categorized as stage one or two. The
menopausal status was categorized into two categories, post-
menopause, or pre- or peri-menopause. For this study, we analyzed
overall survival and progression-free interval outcomes.

In the end, our study included 692 breast tumor samples from
female TCGA BC participants. A majority of these participants were
post-menopausal (Table 1). Tumor subtypes of TCGA participants
were previously classified using the 50-gene PAM50 model (Parker
et al., 2009; Koboldt et al., 2012), with 415 samples classified as
luminal A, 141 as luminal-B, and 136 as basal-like (Table 1). During
follow-up, 87 participants died, and 94 progressed to a new tumor
event. The median follow-up time was 42 months (IQR = 55) for OS
endpoint and 27 months (IQR = 36) for PFI endpoint (Table 1).

Preparation of DNAm data

We used minfi (Version 1.34.0) in R (Aryee et al., 2014) to
normalize, correct for background noise, and convert the raw signal
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intensities into beta-values. The raw DNAm data was preprocessed
using Noob (normal-exponential out-of-band) background
correction with dye-bias normalization in minfi. We included
485,512 CpG loci in our analysis of the TCGA and GEO datasets.

Estimation of cell purity and cell proportions

The purity of each tumor sample was estimated using the
InfiniumPurify (Version 1.3.1) R package (Qin et al., 2018). First,
the top 1000 informative, differentially methylated CpG sites

(iDMCs) were selected using the rank-sum test to detect
significant differences in methylation levels (beta-values) between
tumor and normal samples. Additionally, the variances of
methylation levels of tumor samples were required to be greater
than 0.005 for iDMCs. Next, iDMCs were categorized as
hypermethylated if the mean beta-values of the tumor samples
were greater than the normal samples, and into the
hypomethylated group, otherwise. Beta-values of hypomethylated
iDMCs were transformed into 1− beta-values, and those of
hypermethylated iDMCs were identity transformed. The
distribution of the transformed beta-values was estimated using

TABLE 1 Summary of subject characteristics.

Variable TCGA (n � 692) GEO (n � 180) p-value4

Age 0.148

< 60 373 108

≥ 60 318 72

Missing 1 0

Race

White 515 -

Other 163 -

Missing 14 -

Stage

I & II 500 -

III 174 -

Missing 18 -

Menopause status

post-menopause 449 -

Pre & peri-menopause 174 -

Missing 69 -

Subtype < 0.001

luminal A 415 52

luminal B 141 63

Basal 136 65

Purity2 0.643 (0.170) 0.595 (0.125) < 0.001

Cell Proportion2

CE1 0.114 (0.213) 0.058 (0.147) < 0.001

CE2 0.025 (0.087) 0.044 (0.098) 0.013

CE3 0.106 (0.166) 0.125 (0.178) 0.281

CE4 0.063 (0.123) 0.051 (0.109) 0.142

CE5 0.166 (0.210) 0.106 (0.200) < 0.001

NE 0.06 (0.132) 0.069 (0.116) 0.704

St 0.116 (0.142) 0.168 (0.168) < 0.001

Im 0.109 (0.170) 0.143 (0.266) 0.001

OS

Event3 87 (13%) 29 (16%) 0.213

Follow-up time1 42 (55) 42 (37) 0.789

PFI

Event3 94 (12%) -

Follow-up time1 27 (36) -

CE, cancer epithelia cell; NE, normal epithelial cell; St, stromal cell; Im, immune cell; OS, overall survival; PFI, progression-free interval;
1Median follow-up time in months (IQR);
2Median (IQR);
3Count (Percentage);
4Pearson’s Chi-squared test or Wilcoxon rank sum test
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the Gaussian kernel, of which the mode was taken to be estimated
tumor purity. The tumor type was set as breast cancer because no
normal samples were used.

The cell-type proportions of each sample was estimated using
the RefFreeEWAS (Version 2.2) R package (Houseman et al., 2014).
The cell proportions for each sample were estimated by non-
negative matrix factorization (NMF), which decomposes the beta
matrix into a cell-type-specific methylation matrix and a cell
proportion matrix. We used an existing cell-type-specific
methylation matrix to initialize the NMF rather than estimating
it de novo. This cell-type-specific methylation matrix was previously
estimated using the informative probes selected based on reference
DNAmethylation profiles of known cell lines, and the TCGA breast
cancer data set (Onuchic et al., 2016). Eight cell types were inherited
from the initial cell-type specific methylation matrix, and thus no
estimation of the number of cell types was conducted. The number
of iterations was set to 100. The final cell-type-specific methylation
matrix did not differ much from the initial cell-type-specific
methylation matrix.

Site-specific analysis

All statistical analyses were performed using R. The site-specific
analysis was conducted using TCGA data. PH assumptions were
assessed by examining log-log survival curves of OS and PFI for
covariates including age, ethnicity, stage, menopausal status, and
subtype. The log-log survival curves of PFI and OS for subtype
overlapped noticeably across different subtypes. For this reason, Cox
PH models was stratified by tumor subtype, allowing the baseline
hazards functions to vary across the subtypes. The association
between DNAm and our outcomes were assessed for each probe
separately, with beta-values standardized across samples, such that
the effect sizes corresponded to a one standard deviation increase in
DNAm. All models were adjusted for age, race, stage, menopause status,
tumor purity, and cell type proportion. For each model, the genome-
wide significance level of 1 × 10−7 was established using Bonferroni
correction to account for multiple testing of 485,512 probes. Model A
tested the association of beta-values and the survival outcome stratified
by the tumor subtypes. Model B assumed the association between beta-
values and the survival outcome could depend on tumor subtype by
integrating a product term between subtype and site-specific DNAm.
Thus, under this model, we were able to compute the estimates of log
hazards and their P-value for each of the subtype. Model C assumed the
association between beta-values and the survival outcome could depend
on menopausal status (post-menopausal vs. pre- and peri-menopause),
by including a product term betweenmenopausal status andDNAm. As
in Model B, we were able to compute the estimates of log hazards and
their P-values for each menopausal status. During the model fitting, a
small number of probes producedwarnings due to a lack of convergence.
These probes were excluded from further analysis.

Functional pathway and differentially
methylated region analysis

We used the functional class scoring (FCS) robust rank
aggregation approach implemented in the methylGSA (Version

1.6.1) R package (Ren and Kuan, 2019) for the pathway analysis.
This approach uses the site-specific EWAS inference to identify gene
sets enriched among probes that are associated with survival
outcomes. Two types of biases should be corrected for functional
pathway analysis with DNAm data. One is the length bias arising
from differing lengths of pre-defined gene sets based on molecular
and cellular functions, which is addressed by FCS via Gene Set
Enrichment Analysis (Subramanian et al., 2005). The other is the
probe bias arising from different numbers of probes mapped to
gene sets of equal size, which is addressed by the robust rank
aggregation (RRA). RRA computes combined p-value based on
the order statistic of p-values of probes (from site-specific
analyses) mapped to a gene, assuming independent identical
uniform distribution of p-values. We restricted our evaluation
of enrichment to gene sets containing between 100 and 500 genes.
The adjusted p-values of gene sets (enriched pathways) account
for multiple hypothesis testing and the size of gene sets. We defer
readers to (Subramanian et al., 2005) for details on calculation of
adjusted p-values.

The ipDMR approach implemented in the Enmix (Version 1.25.1)
R package (Xu et al., 2020) was used to identify differentiallymethylated
regions (DMRs). The initial DMRs are identified as a region bound by a
pair of adjacent probes across the methylome. These regions are filtered
based on their sizes and combined P-values, each of which is computed
as some function of p-values of probes (from site-specific analyses)
within a region. We defer readers to (Xu et al., 2020) for details on the
form of this function that computes the combined p-values. The initial
DMRs go through another round of filtering andmerging regions based
on their sizes, distances, and adjusted combined P-values. A DMR was
deemed significant if its adjusted combined P-value was less than 0.05.

Validation analysis

We used the Illumina 450K array data of 295 BC tumor tissue
samples available in GEO database (GSE72308) to validate site-
specific analysis results. The samples were obtained from
retrospectively selected frozen samples and prospective cohorts
who were treated with adjuvant and neoadjuvant therapies at
Jules Bordet Institute from 1995 to 2009 (Jeschke et al., 2017).
IHC-based tumor subtypes available in the dataset were taken as the
subtypes of the samples. To be consistent with site-specific analysis
of TCGA data, we removed samples of HER2 subtype. OS endpoint
was the only available outcome that was in common with survival
outcomes available in TCGA data. Age and tumor subtype were the
only available covariates in the data set. Tumor purity and cell type
proportion were estimated using identical methods in the site-
specific analysis. The beta-values of each probe were normalized
across samples before conducting EWAS. Since menopausal status
information was not available, Model C was not fitted. Model A and
Model B were identical to the ones fitted using TCGA data except for
the covariates such as race, stage, andmenopausal status, which were
not available in the GEO data set. EWAS results from each model
were compared to the results from TCGA site-specific analyses. In
particular, log hazards of the probes were compared to examine
whether the directions of the association between beta-values to
survival outcomes were similar between TCGA and GEO EWAS
results.
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FIGURE 1
Manhattan plots of genome-wide associations between DNAm levels and survival outcomes.We employedModels A, B andC to investigate CpG probes
associated with survival outcomes (overall survival and progression free interval) in a subtype or menopausal status specific manner. Model A tested the
association of beta-values and the survival outcomes stratified by the tumor subtypes (no effect measure modifications); Model B tested the association
between beta-values and the survival outcomes under the assumption that the association could be modified by tumor subtype; Model C tested the
association between beta-values and the survival outcomes under the assumption that the association could depend onmenopausal status (post-menopause
vs. pre- and peri-menopause). All models adjusted for age, race, stage, menopausal status, tumor purity and cell type proportion. Here, we show Manhattan
plots of genome-wide associations with at least one genome-wide significant CpG probe. The red line indicates a genome-wide significant level of 1 × 10−7.
The blue line indicates a p-value threshold of 1 × 10−5. (A)Overall survival, Model A; (B) overall survival, Model B (luminal A); (C) progression-free interval, Model
A; (D) progression-free interval, Model B (luminal A); (E) progression-free interval, Model B (lumina-B); (F) progression-free interval, Model C (post-menopause).
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Results

Site-specific results

The association between site-specific DNAm and each clinical
outcome was assessed across methylome. Time to event was
modeled using Cox proportional hazards (PH) models, stratified

by tumor subtype, and adjusted for age, race, stage, menopausal
status, DNAm-estimated tumor purity and cell proportions (8 cell
types). Based on this model, one probe was associated with OS at
genome-wide significance (p < 1 × 10−7; Figure 1; Table 2,
Supplementary Figure S1). Effect measure modification by tumor
subtype or menopausal status was evaluated by further
incorporating product terms between these characteristics and

TABLE 2 Genome-wide significant CpG probes associated with survival outcomes specifically to tumor subtype or menopausal status of women.

Overall Survival

Probe Chr Position P -value HR (95% CI) Island Context Gene Region Gene

Model A

cg03985718 2 105924245 6.91E-08 0.48 (0.37-0.63) OpenSea Body TGFBRAP1

Model B (luminal A)

cg04921068 3 160787668 3.84E-08 0.12 (0.06-0.25) OpenSea 3’ UTR PPM1L

cg15462203 1 1277499 4.75E-08 0.52 (0.41-0.66) OpenSea Body DVL1

cg17827670 7 129008130 7.65E-08 0.10 (0.04-0.23) OpenSea 1st Exon; Body; 5’ UTR AHCYL2

Progression Free Interval

Probe Chr Position P -value HR (95% CI) Island Context Gene Region Gene

Model A

cg09926728 10 105519992 1.57E-08 0.59 (0.49-0.71) OpenSea Body SH3PXD2A

cg18703983 2 18097337 8.97E-08 0.53 (0.42-0.67) OpenSea 5’ UTR KCNS3

cg16976520 7 158588852 9.62E-08 0.52 (0.41-0.66) OpenSea Body ESYT2

Model B (luminal A)

cg17735983 19 59074482 3.01E-08 2.44 (1.78-3.35) Island Body MZF1;LOC100131691

cg09926728 10 105519992 3.28E-08 0.58 (0.48-0.70) OpenSea Body SH3PXD2A

cg10678486 18 48494218 5.47E-08 1.84 (1.48-2.30) N Shore TSS200 ELAC1

cg13447284 17 63116336 8.11E-08 0.48 (0.37-0.63) N Shelf

Model B (luminal B)

cg24328142 10 71234693 3.04E-08 0.33 (0.22-0.49) OpenSea Body TSPAN15

cg03216043 19 10928639 3.87E-08 0.15 (0.08-0.29) OpenSea Body;TSS1500 DNM2;MIR199A1

cg22776912 15 81630789 5.85E-08 0.17 (0.09-0.32) OpenSea Body TMC3

cg06956006 17 40066945 9.47E-08 0.14 (0.07-0.29) OpenSea Body ACLY

Model C (post-menopause)

cg09926728 10 105519992 6.44E-10 0.57 (0.48-0.68) OpenSea Body SH3PXD2A

cg16976520 7 158588852 1.03E-08 0.46 (0.36-0.60) OpenSea Body ESYT2

cg00175150 1 150486261 1.32E-08 0.49 (0.39-0.63) N Shore 3’UTR ECM1

cg15348839 2 232224846 4.19E-08 0.53 (0.43-0.67) OpenSea

cg12511487 13 50418481 8.23E-08 0.39 (0.28-0.55) N Shelf

We conducted genome-wide association analysis between DNAm levels and survival outcomes (overall survival and breast cancer progression), using TCGA breast cancer DNAm data. A

stratified Cox PH (by tumor subtype) was used to model the association. Model A tested the association of beta-values and the survival outcomes stratified by the tumor subtypes (no effect

measure modifications); Model B tested the association between beta-values and the survival outcomes under the assumption that the association could be modified by tumor subtype; Model C

tested the association between beta-values and the survival outcomes under the assumption that the association could depend on menopausal status (post-menopause vs pre- and peri-

menopause). All models adjusted for age, race, stage, menopausal status, tumor purity and cell type proportion. The genome-wide significance level was 1 × 10−7. Chr, chromosome; HR, hazards

ratio; CI, confidence interval; UTR, untranslated region; TSS200, 0-200 bp upstream of transcription start site; TSS1500, 200-1500 bp upstream of transcription start site.
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DNAm. Three additional luminal A subtype-specific probes met
genome-wide significance. These probes were significantly
associated with OS only after accounting for effect measure

modification by tumor subtype. For all four probes, an increase
in DNAm was associated with a lower hazard of all-cause mortality.
All four probes were located in open sea regions and none of the

FIGURE 2
Kaplan-Meier curves comparing estimated survival probabilities between low and high methylation groups, stratified by both tumor subtype and
menopausal status. We selected stratified Kaplan-Meir curves of top six probes based on p-values of stratified log-rank test (not shown) among the CpG
probes that met genome-wide significance level of 1 × 10−7 in the site-specific analyses: (A) cg04921068 (luminal A specific) associated with overall
survival; (B) cg15462203 (luminal A specific) associated with overall survival; (C) cg22776912 (luminal B specific) associated with progression free
interval; (D) cg15348839 (post-menopause specific) associated with progression free interval; (E) cg12511487 (post-menopause specific) associated with
progression free interval; (F) cg16976520 (post-menopause specific) associated with progression free interval. Each panel is a stratum created by
stratifying by both tumor subtype (luminal A, luminal B and basal-like) and menopausal status (post-, and pre- and peri-menopausal status). The low and
high methylation groups were categorized with respect to median beta-values of the probe. The 95% confidence interval of survival probability at each
time point is represented by the shaded region.
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probes were located within promoter regions (Table 2). Kaplan-
Meier (KM) plots for the probes presented in Table 2 are presented
in Figure 2, stratified by both tumor subtype and menopause status,
and with site-specific DNAm dichotomized by the median. These
results were consistent with the direction of associations estimated
from the site-specific Cox PH models.

Similar models were used to identify site-specific associations
with PFI. A majority of genome-wide significant sites were found
to be luminal A, luminal B and/or post-menopausal specific
(Figure 1; Figure 2; Table 2, Supplementary Figure S1). There
were 10 probes that were significantly associated with PFI only
after accounting for effect measure modification by tumor subtype
or menopausal status. Higher DNAm was associated with a
reduced hazard of disease progression for all but two probes,
cg17735983 and cg10678486, both of which were specific to the
luminal A subtype (Table 2). While most of the probes were in
open sea regions and gene bodies, cg17735983 was located in an
CpG island, and cg10678486 was located within 200 bp of the
transcription start site (TSS200) of ELAC1. Probe cg09926728 was
associated with PFI overall, but this association was strongest
among participants with the luminal A subtype and
postmenopausal women (Supplementary Figure S5I). The
estimated hazard ratios (HRs) for this probe were similar across
different models ranging between 0.57–0.59. Similarly, higher
methylation at cg16976520 was associated with a reduced
hazard of progression overall, which was strongest among the
post-menopausal women (Figure 2F; Supplementary Figure S5M).
Among post-menopausal women, the rates of progression were
higher among women with the luminal A and luminal B subtypes
with lower methylation at cg16976520, relative to those with the
basal-like subtype (Figure 2F).

Functional pathway analysis results

We evaluated gene ontology (GO) enrichment among the
site-specific associations with BC outcomes, taking into account
the length bias of a gene and the number of probes per gene
(Supplementary Figures S2 and Supplementary Figure S3). For
each endpoint, GO enrichment was assessed based on the overall
model, as well as models incorporating effect modification by
either subtype or menopausal status. The number of significantly
(adjusted p-value ≤ 0.05; Materials and methods section)
enriched pathways ranged from 7 to 155 for OS, and from
0 to 217 for PFI. While the ten most significantly enriched
GOs differed between each model, there were some overlap
between significantly enriched GOs by different prognosis
outcomes and different strata. The GOs related to axon
development were associated with OS among both post-
menopausal, and pre- and peri-menopausal women. These
GOs were also associated with PFI for both luminal A
subtypes and post-menopausal women. The GOs related to
insulin regulation (GO:0050796 and GO:0030073) were
significantly associated (adjusted p-value ≤ 0.05) with OS and
suggestively associated (adjusted p-value ≈ 0.1) with PFI among
pre- and peri-menopausal women. The GOs related to regulation
of neuron death were associated with PFI for the luminal B
subtype.

Differentially methylated region analysis

To identify DMRs associated with our outcomes, we applied an
approach that integrates site-specific inference between proximal
loci. Significant DMRs differed by tumor subtype and menopausal
status (Table3; Table 4; Figure 3, Supplementary Table S1,
Supplementary Figure S4). These included a DMR within the
promoter of ELAC1 that was associated with PFI among the
luminal A tumor samples, but not among the luminal B and
basal-like samples (Figure 3A). In particular, this DMR was the
most significant among all DMRs containing at least four probes,
and included a genome-wide significant CpG probe, cg10678486,
which was identified in the site-specific analysis to be associated with
PFI for women with luminal A tumor subtype. We identified
271 luminal A specific DMRs that were associated with OS
(Table 3). Only one out of three genome-wide significant luminal
A subtype-specific probes associated with OS appeared within these
significant DMRs. Similarly, only one of the three probes
significantly associated with PFI was within one of the 42 DMRs
associated with PFI (Table 3). These results indicated a majority of
DMRs were not driven by one strong site-specific association, but
several weaker associations in the same direction among proximal
loci (Table 4). Several DMRs were not close to known genes. For
example, an identified DMR specific to luminal A subtype did not
reside near any known gene, but in a region indicated by chromatin
state of promoter upstream TSS (Supplementary Table S1,
Supplementary Figure S4F).

Validation results

Validation of results of TCGA site-specific analyses was carried
out on Illumina 450K array data profiled from BC tissue of
180 patients available in GEO database (GSE72308) (Jeschke
et al., 2017). We were only able to analyze associations with OS
since GEO dataset did not include any other common type of
survival outcome. These validation models did not adjust for race
and stage, or evaluate effect modification by menopausal status as
these characteristics were missing from the GEO data. Tumor purity
and cell proportion of samples were estimated and included in the
models. The age of amajority of subjects was less than 60 years old in
both TCGA and GEO. At alpha level of 0.05, there were no
significant age differences between the two datasets (p-value =
0.148) based on binary categorization of the age variable. More
than 50 percent of tumor subtypes of TCGA samples was luminal A,
whereas the subtypes of GEO samples were relatively balanced
across luminal A, luminal B and basal-like subtypes (Table 1).
The median follow-up times for all-cause mortality were not
significantly different (p-value = 0.789) between the two datasets
at alpha level of 0.05. We compared the top 20 most significant
(arranged by increasing order of p-values) associations with OS
identified from TCGA site-specific analyses to those estimated
among the GEO dataset. While the directions of associations
were similar, most did not reach statistical significance,
potentially due to the smaller sample size of the GEO dataset.
Associations with similar magnitudes between the two datasets
include the overall association with DNAm at cg05497253
(Figure 4A), as well as the luminal A subtype-specific
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associations at cg05860556 and cg13328771 (Figure 4B), and the
basal-like-subtype specific associations at cg04706201 and
cg14253517 (Figure 4D).

Further, we compared p-values for the 20 most significantly
enriched GOs identified from the TCGA site-specific analysis results
to the p-values of matching GOs identified from the GEO site-
specific analysis results (Figure 5). Several GOs seemed to be
consistent across datasets. Specifically, for the luminal A subtype-
specific associations, GO:0031012 (extracellular matrix) and GO:
0042383 (sarcolemma) showed consistent results between TCGA
and GEO (Figure 5B). For the luminal B subtype-specific
associations, GO:0007389 (pattern specification process), GO:
0001216 (DNA-binding transcription activator activity), and GO:
0001228 (DNA-binding transcription activator activity) showed
consistent results between TCGA and GEO (Figure 5C). For the
basal-like subtype-specific associations, GO:0007269
(neurotransmitter secretion) and GO:0099643 (signal release
from synapse) showed consistent results across datasets (Figure 5D).

Discussion

In this study, we detected subtype- or menopausal-status-
specific changes in DNAm associated with OS and PFI for BC
across the genome. We also investigated functional pathways
enriched among the site-specific associations with these BC
survival outcomes. Several previous studies that aimed to identify
shifts in DNAm associated with BC prognosis acknowledged these
relationships may differ across tumor subtypes (Hao et al., 2017; de
Almeida et al., 2019; Du et al., 2019; Liu et al., 2020; Tao et al., 2020).
Unfortunately, these prior studies did not directly evaluate effect
modification by subtype or menopausal status. Xiao et al. examined
associations between subtype-specific DNAm and OS (Xiao et al.,
2018). However, their analyses were limited to subjects with luminal
BC and did not examine effect modification based on menopausal

status and associations between DNAm and BC progression. Tumor
subtype and menopausal status inform patient treatment, and are
associated with different prognoses and treatment responses. In fact,
alterations in DNAm can induce resistance to chemotherapy or
hormone therapy for BC patients, and recent developments in
epigenetic therapies combined with conventional therapies seem
promising (Vietri et al., 2021; Schröder et al., 2022). Thus, studying
the subtype- and menopausal-status-specific DNAm sites in
association with BC prognosis could potentially improve the
precision of BC prognoses and help to identify potential drug
targets. To the best of our knowledge, our study is the first to
report subtype- or menopausal-status-specific genome-wide
significant probes that can potentially be utilized as prognostic
BC biomarkers. These CpG probes have not been reported in the
previous tissue-based BC studies that aimed to find DNAm
biomarkers for BC prognosis prediction, indicating potential
existence of lurking DNAm sites for BC prognosis that can be
detected only after accounting for effect modification by subtype or
menopausal status. This was illustrated in our site-specific results
where we have found multiple CpG probes whose DNAm levels
were significantly associated with BC progression or all-cause
mortality, only in models that incorporated effect modification
by subtype or menopausal status.

A study by de Almeida et al, (2019) examined genome-wide
differential methylation between BC tissue and matched normal
tissue using TCGA’s 450K array data. They reported that all of CpG
loci associated with poor prognosis (with respect to overall survival)
were hypermethylated. In the current study, two CpG loci were
associated with increased risk of BC progression with higher
methylation levels. In addition, they have found adjusting for ER
status of samples rendered some of identified prognostic CpG
probes no longer significantly associated with survival outcomes.
This indicates an evidence of effect measure modification by subtype
on methylation levels on survival outcomes, which consistent with
the current study’s findings.

TABLE 3 Summary of genomic regions associated with breast cancer prognosis.

Event Model3 # of Probes1 Size1,2 # of DMR # of GWS Probes in DMR # of GWS Probes

OS Model A 2 (0.5) 123 (55) 3 0 1

OS Model B (luminal A) 2 (6) 187 (824) 271 1 3

OS Model B (luminal B) 2 (0) 217 (34) 2 0 0

OS Model C (post-menopause) 3 (0) 109 (35.5) 6 0 0

PFI Model A 2 (7.25) 201.5 (283.75) 42 1 3

PFI Model B (luminal A) 2 (8) 186 (1505) 65 2 4

PFI Model B (luminal B) 2 (6) 202 (418.5) 71 1 4

PFI Model B (basal-like) 2 (0) 104 (110) 5 0 0

PFI Model C (post-menopause) 2 (2) 132 (479.75) 72 2 5

PFI Model C (pre- & peri-menopause) 2 (0) 160 (0) 1 0 0

Subtype- or menopausal-status-specific genomic regions associated with survival outcomes were identified using the summary statistics (P-values) results from the site-specific analysis of

TCGA breast cancer DNAm data. OS, overall survival; PFI, progression-free interval; DMR, differentially methylated region; GWS, genome-wide significant (1 × 10−7). 1Median (IQR); 2Size

represents the number of base-pairs in a DMR; 3Models A, B and C correspond to models used in the site-specific analyses. Model A tested the association of beta-values and the survival

outcomes stratified by the tumor subtypes (no effect measure modifications); Model B tested the association between beta-values and the survival outcomes under the assumption that the

association could be modified by tumor subtype; Model C tested the association between beta-values and the survival outcomes under the assumption that the association could depend on

menopausal status (post-menopause vs pre- and peri-menopause). All models adjusted for age, race, stage, menopausal status, tumor purity and cell type proportion.
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TABLE 4 The top four differentially methylated regions containing at least four CpG loci.

PFI, Model B (luminal A), chr18:48494200 – 484949581 (corresponding to Figure 3A)

Probe Position P-value HR(95% CI) Island Context Gene Region Gene

cg16121470 48494201 1.72e-06 1.82 (1.42-2.32) N Shore TSS200 ELAC1

cg10678486 48494218 5.47e-08 1.84 (1.48-2.30) N Shore TSS200 ELAC1

cg22532061 48494536 6.67e-07 1.56 (1.31-1.86) Island 5’UTR ELAC1

cg21461196 48494958 6.80e-07 1.89 (1.47-2.42) S Shore 5’UTR ELAC1

PFI, Model B (luminal A), chr19:59073901 – 590745071 (corresponding to Figure 3B)

Probe Position P-value HR(95% CI) Island Context Gene Region Gene

cg26482665 59073902 5.55e-05 1.99 (1.42-2.78) Island Body LOC100131691;MZF1

cg05014211 59074005 1.99e-05 2.12 (1.50-2.99) Island Body LOC100131691;MZF1

cg19363466 59074265 4.15e-04 1.89 (1.33-2.69) Island Body LOC100131691;MZF1

cg08447733 59074308 1.96e-05 2.15 (1.51-3.05) Island Body LOC100131691;MZF1

cg17735983 59074482 3.01e-08 2.44 (1.78-3.35) Island Body LOC100131691;MZF1

cg00577109 59074507 2.55e-05 1.99 (1.44-2.74) Island Body LOC100131691;MZF1

PFI, Model B (luminal A), chr20:32254215 – 322560711 (corresponding to Figure 3C)

Probe Position P-value HR(95% CI) Island Context Gene Region Gene

cg12710480 32254216 4.50e-04 1.85 (1.31-2.62) N Shore Body;TSS200 C20orf134;NECAB3

cg00478435 32254706 3.02e-05 1.92 (1.41-2.61) N Shore 1stExon;5’UTR;Body C20orf134;NECAB3

cg07470512 32255052 3.99e-04 1.76 (1.29-2.40) Island 1stExon;5’UTR;Body C20orf134;NECAB3

cg03904042 32255491 6.64e-04 1.75 (1.27-2.42) Island 1stExon;Body C20orf134;NECAB3

cg14921437 32255988 8.12e-05 1.95 (1.40-2.71) Island 1stExon;Body C20orf134;NECAB3

cg13403462 32256071 8.36e-05 1.98 (1.41-2.78) S Shore 1stExon;3’UTR;Body C20orf134;NECAB3

OS, Model B (luminal A), chr18:11688987 – 116901451 (corresponding to Figure 3D)

Probe Position P-value HR(95% CI) Island Context Gene Region Gene

cg06070749 11688988 1.45e-03 1.72 (1.23-2.41) N Shore TSS200 GNAL

cg19488391 11689024 7.38e-05 1.89 (1.38-2.59) N Shore TSS200 GNAL

cg02931159 11689032 1.64e-05 1.90 (1.42-2.54) N Shore TSS200 GNAL

cg12253819 11689062 1.92e-05 1.96 (1.44-2.67) Island TSS200 GNAL

cg15616946 11689206 3.51e-06 1.92 (1.46-2.53) Island 1stExon;5’UTR GNAL

cg15653282 11689218 1.00e-06 2.15 (1.58-2.93) Island 1stExon;5’UTR GNAL

cg09331011 11689284 1.35e-04 1.83 (1.34-2.50) Island 1stExon;5’UTR GNAL

cg12585806 11689613 2.31e-06 2.08 (1.54-2.83) Island 1stExon GNAL

cg22318872 11690145 1.70e-02 1.47 (1.07-2.03) S Shore Body GNAL

Subtype- or menopausal-status-specific genomic regions associated with survival outcomes were identified using the summary statistics (P-values) results from the site-specific analyses of TCGA

breast cancer DNAm data. The top four differentially methylated regions containing at least four CpG loci were selected based on adjusted combined P-values of a region (See Materials and

Methods). All of these regions were identified to be specific to luminal A subtype since the summary statistics results were from the site-specific analyses using Model B. Model B tested the

association between beta-values and the survival outcomes under the assumption that the association could bemodified by tumor subtype; the model was adjusted for age, race, stage, menopausal

status, tumor purity and cell type proportion. 1A region containing CpG loci is coded based on the locations of starting and ending CpG loci in terms of their chromosome number and base-pair

positions. chr, chromosome; HR, hazards ratio; UTR, untranslated region; TSS200, 0-200 base-pairs upstream of transcription start site; TSS1500, 200-1500 base-pairs upstream of transcription

start site; N shore, northern shore.
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Some of the genes mapped to the significant probes identified in
this study have previously been associated with BC initiation and
progression. Higher DNAm at cg00175150, a probe within the 3’
untranslated region (UTR) of ECM1, was associated with a reduced

hazard of PFI among post-menopausal women. The ECM1 protein is
secreted by HER2-overexpressing cancer cells, leading to positive
downstream effects on tumor migration and invasion, facilitating
tumor progression (Steinhaeuser et al., 2020). Among women with

FIGURE 3
Selected differentially methylated regions (DMRs). Each subplot depicts a region in the genome around identified DMR (flanking 2000 bp). Here, we
show the top four DMRs based on adjusted p-values (SeeMaterials andMethods), containing at least four CpG probes. (A) Luminal A-specificDMR (chr18:
48494200–48494958) associated with progression free interval; (B) luminal A-specific DMR (chr19:59073901–59074507) associated with progression
free interval; (C) luminal A-specific DMR (chr20:32254215–32256071) associated with progression free interval; (D) luminal A-specific DMR (chr18:
11688987–11690145) associated with overall survival. The first track shows the CpG island context; the second track shows the chromatin state; the third
track shows the gene context (Ensembl); the fourth track shows the p-values of the probes (from the site-specific analyses) for each subtype. Red boxes
represent DMRs. Vertical bars on the chromosome schematic locate plotted regions. Chromatin state color scheme: electric lime, transcribed 3′
preferential and enhancer (Enh) or transcribed 5′ preferential and Enh or transcribed and weak Enh; red, active transcription start site (TSS); orange red,
promoter (Prom) upstream/downstream TSS; yellow, weak Enh or primary H3K27ac possible Enh; white, quiescent; orange, active Enh; pink, poised
Prom; dark purple, bivalent Prom; light green, weak transcription; green, transcribed or strong transcription; gray, repressed polycomb.
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the luminal A subtype, higherDNAmat cg15462203, a probewithin the
gene body of disheveled segment polarity protein 1 (DVL1), was
associated with a reduced hazard of all-cause mortality. The DVL1
gene plays a role in activating Wnt transcriptional pathways (Lee et al.,
2008; Paclíková et al., 2017), which regulate cellular functions such as
cell migration, proliferation and stem cell renewal. DVL1 has been

shown to be overexpressed in primary breast tumors compared to non-
cancerous breast tissues, and DVL1 protein has been found to be more
present in the cytoplasm of cancer cells compared to that of normal
epithelial cells in breast tumors (Nagahata et al., 2003). Also, DVL1 is
involved in regulation ofCYP9A1 transcripts in a promoter specific and
cell-type specific manner. Encoded by CYP9A1, aromatase enzyme

FIGURE 4
The effect measures of association between DNAm and overall survival outcomes quantified from genome-wide association analyses of TCGA and
GEO data. The CpG probes labeled on the x-axis are top 20 significant probes from the TCGA site-specific analyses, which are arranged from left to right
in an increasing order by p-values. We compare effect measures of association between DNAm and overall survival quantified from site-specific analyses
of TCGA and GEO data using (A) Model A, (B) Model B (luminal A-specific), (C) Model B (luminal B-specific) and (D) Model B (basal-like-specific).
Model A tested the association of beta-values and the survival outcomes stratified by the tumor subtypes (no effect measure modifications); Model B
tested the association between beta-values and the survival outcomes under the assumption that the association could be modified by tumor subtype.
The models for TCGA data adjusted for age, race, stage, menopausal status, tumor purity and cell type proportion. The models for GEO data adjusted for
age, tumor purity and cell type proportion.
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converts androgen into estrogen; hence, aromatase enzyme is
considered a main driver of hormone-dependent breast tumors
(Castro-Piedras et al., 2018). Knockout of DVL1 in hormone
receptor positive BC cell lines increased the total aromatase
transcript levels (Castro-Piedras et al., 2018). Moreover, in the same

type of cell lines, the knockout of DVL1 showed a trend of increased
estradiol levels compared to non-target controls, although it was not
statistically significant. These findings suggest the tumor suppressive
role of DVL1 by reducing estrogen production via regulation of
CYP9A1 for hormone receptor positive BC cells. Higher DNAm at

FIGURE 5
The strengths of the functional pathway enrichment by the association signals between DNAm and overall survival outcomes. The top
20 significantly enriched GO terms representing functional pathways are labeled on the x-axis. The GO terms are arranged from left to right in an
increasing order by adjusted p-values obtained from the gene set enrichment analysis. The enriched pathways were identified using the strengths of the
signals indicated by p-values obtained from the site-specific analyses of TCGA and GEO data using (A)Model A, (B)Model B (luminal A-specific), (C)
Model B (luminal B-specific) and (D) Model B (basal-like-specific). Model A tested the association of beta-values and the survival outcomes stratified by
the tumor subtypes (no effect measure modifications); Model B tested the association between beta-values and the survival outcomes under the
assumption that the association could be modified by tumor subtype. Themodels for TCGA data adjusted for age, race, stage, menopausal status, tumor
purity and cell type proportion. The models for GEO data adjusted for age, tumor purity and cell type proportion. The blue dotted lines indicate the
maximum unadjusted enrichment p-value of GOs whose adjusted enrichment p-values were at most 0.05.

Frontiers in Genetics frontiersin.org13

Kim et al. 10.3389/fgene.2023.1133443

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1133443


cg03216043, a probe within the gene body of Dynamin 2 (DNM2),
was found to decrease risk of BC progression among luminal B
tumors. DNM2 plays a role in driving cell migration and invasion
in cancer cells (Eppinga et al., 2012; Chernikova et al., 2018).
Knockdown of DNM2 impairs DNA repair mechanisms of tumor
cells in mice (Wang et al., 2017). In retrospective analysis, lower
expression of DNM2 was associated with favorable response to
chemotherapy for hormonal receptor negative and triple-negative
BC patients. In our study, cg06956006 was mapped to the ACLY
gene, and was related to a lower risk of BC progression given higher
levels of methylation. Upregulation of ACLY gene, which plays an
important role in synthesis of fatty acids in cancer proliferation, is
associated with BC and its recurrence (Yancy et al., 2007; Wang
et al., 2017; Chen et al., 2020). The hazard of BC progression was
greater among patients with higher DNAm at cg17735983, a probe
mapping to MZF1. MZF1 is involved in the signaling pathways of
HER2+ BC and implicated in development of more aggressive BC
(Brix et al., 2020).

We detected several enriched GOs among our site-specific
associations with OS and PFI, which differed by tumor subtype
and menopause status. Of note, a gene set associated with GO:
0050796, tied to insulin secretion, included KCNS3 gene, which
was found in our site-specific analysis and mapped by
cg18703983. This particular probe was significantly associated
with PFI, suggesting that the hypermethylation of this probe is
associated with BC prognosis, in part via the regulation of insulin
secretion.

Our DMR analysis identified several regional changes in DNAm
that were associated with different subtype or menopausal status for
both OS and PFI endpoints. The top four significant DMRs intersected
with ELAC1, MZF1, NECAB3, and GNAL, respectively. Both ELAC1
and MZF1 were associated with PFI among the luminal A tumor
samples in site-specific analyses. ELAC1 and GNAL have not been
reported to be linked with BC. However, NECAB3 was identified to be
tumorigenic by promoting normoxic glycolysis in non-breast cancer
cell lines (Nakaoka et al., 2016).

We note several limitations of our study. Our validation analysis
was limited to 180 individuals, for whom key characteristics
including race, tumor stage and menopausal status were missing.
Thus, we were unable to adjust for these characteristics, which may
have contributed to the lack of significant associations with OS.
Moreover, while BC samples of TCGA subjects were collected before
any adjuvant and neoadjuvant therapies, BC samples from the
validation dataset were collected after patients have undergone
the therapies, possibly leading to perturbed DNAm levels. Non-
etheless, we were able to identify probes with consistent associations
between two the two datasets based on magnitudes and directions
of estimated coefficients. Moreover, we found several cellular
functions associated with OS for luminal A, luminal B, and basal-
like subtypes across the two studies. Another limitation is that
our study included relatively fewer luminal B or basal-like
tumors, and a majority of patients was post-menopausal. We
might be able detect more genome-wide significant associations
specific to luminal B and basal-like subtypes and pre- and peri-
menopausal women with larger sample size. Due to these smaller
strata, we were not able to simultaneously evaluate effect
modification by tumor subtype and menopausal status. Since
pre-menopausal patients have different BC prognoses compared

to post-menopausal patients (Goldhirsch et al., 2011; Keegan
et al., 2012; Lian et al., 2017), stratified analysis by both tumor
subtype and menopause status could improve the precision of BC
prognosis. We also did not have information on patient
treatment status or types of treatments. These can be an
important factor affecting survival outcomes of patients.
Lastly, different clinical sites where BC patients were treated
and recruited could potentially affect the survival outcomes, but
this information was not available to us.

Despite those limitations, our study had several strengths.
These include adjustment for estimated tumor purity and cell
proportions of each sample, which may confound the
associations. In addition, we fitted models stratified by
subtypes and menopause status, yielding probes associated
with two survival outcomes, OS and PFI, in subtype- or
menopausal-status-specific manner.

Overall, our study found that specific patterns of DNAm
were associated with BC prognosis, namely, OS and PFI, and
that these associations differed by molecular subtype or
menopausal status. We were also able to identify genomic
regions and functional pathways that were specific to
molecular subtype or menopausal status. These findings
warrant additional replication studies in larger, independent
datasets as well as further investigations of the functional
implications of these patterns of DNAm. Our detected
genome-wide-associated-CpG loci could improve prognosis
prediction for BC patients and contribute to more tailored
therapeutic regimens.
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