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Introduction: The physical interactions between enhancers and promoters are
often involved in gene transcriptional regulation. High tissue-specific enhancer-
promoter interactions (EPIs) are responsible for the differential expression of
genes. Experimental methods are time-consuming and labor-intensive in
measuring EPIs. An alternative approach, machine learning, has been widely
used to predict EPIs. However, most existing machine learning methods
require a large number of functional genomic and epigenomic features as
input, which limits the application to different cell lines.

Methods: In this paper, we developed a random forest model, HARD (H3K27ac,
ATAC-seq, RAD21, and Distance), to predict EPI using only four types of features.

Results: Independent tests on a benchmark dataset showed that HARD
outperforms other models with the fewest features.

Discussion: Our results revealed that chromatin accessibility and the binding of
cohesin are important for cell-line-specific EPIs. Furthermore, we trained the
HARD model in the GM12878 cell line and performed testing in the HeLa cell line.
The cross-cell-lines prediction also performs well, suggesting it has the potential
to be applied to other cell lines.

KEYWORDS

enhancer-promoter interaction, machine learning, ChIA-PET, random forest, epigenomic
signals

1 Introduction

Enhancers and promoters are two of the most critical regulatory elements of gene
transcription in the eukaryotic genome (Maston et al., 2006). The physical interactions
between them precisely regulate spatiotemporal gene expression, which contributes to
complex cellular functions. Aberrant connections between enhancers and promoters may
lead to abnormal expression of disease-related genes (Krijger and De Laat, 2016). Therefore,
the study of how enhancers and promoters interact can improve our understanding of health
and disease. The primary mechanism of enhancer-promoter interaction is chromatin
looping (Rubtsov et al., 2006; Miele and Dekker, 2008), which allows distal enhancers to
contact the target gene promoters in three-dimensional space (Lv et al., 2021). Such long-
range regulatory interactions play a significant role in tissue-specific gene expression
(Maston et al., 2006; De Laat and Duboule, 2013) and can link the regulatory element to
the target gene (Corradin et al., 2014). In recent decades, the identification of EPIs has relied
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on high-throughput experimental techniques, such as chromosome
conformation capture (3C) (Dekker et al., 2002), 4C (Splinter et al.,
2012), 5C (Sanyal et al., 2012), Hi-C (Lieberman-Aiden et al., 2009),
Hi-C capture (Schoenfelder et al., 2015), DNase-Hi-C (Ma et al.,
2015), and ChIA-PET (Li et al., 2012; Heidari et al., 2014). These
experimental approaches are effective in identifying EPIs but are
time-consuming and expensive (Ecker et al., 2012). Thus, a more
cost-effective method is required for predicting enhancer-promoter
interactions. To address this problem, machine learning methods
are used to predict EPIs by using available genomic or
epigenomic data.

Many deep learning methods have been proposed for
predicting EPIs based on DNA sequence, including SPEID,
SIMCNN, and EPIVAN. SPEID (Singh et al., 2019) and

SIMCNN (Zhuang et al., 2019) employ CNN-based approaches,
while EPIVAN (Hong et al., 2020) incorporates an attention
mechanism for improved prediction accuracy. Although they
achieved good results using only DNA sequences, the cell-line-
specific nature of EPIs (Heidari et al., 2014; Ma et al., 2015)
presents a challenge (Lv et al., 2021; Ao et al., 2022a). For
instance, the same pair of enhancer and promoter contacts in
some cell lines, but not in others, despite the DNA sequences have
not changed (Schöler and Gruss, 1984). To address this issue,
several models have been developed to identify cell-line-specific
EPIs using epigenomic signals, including chromatin accessibility,
the binding of special transcription factors, and histone
modification levels. For example, RIPPLE (Roy et al., 2015)
provides a systematic approach for predicting and interpreting

FIGURE 1
The overall framework of the HARD model. First, ATAC-seq, H3K27ac, and RAD21 epigenomic signals were selected as essential features to predict
EPIs. Then, the enhancer and promoter were divided into 40 and 50 bins, respectively, with 50 bp per bin. Deeptools was used to extract the epigenomic
signals. The epigenomic signal matrix was combined with the distance between the enhancer and promoter. Finally, we input the final feature matrix to
the random forest learning machine for training and testing.
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EPIs in a cell-line-specific manner using a variety of epigenomic
features. However, many epigenomic signals are not available for
all cell lines.

Based on the aforementioned analyses, we considered using as few
epigenomic features as possible to build machine learning models to
predict cell-line-specific EPIs. Loose chromatin is a prerequisite for loop
formation. The H3K27ac ChIP-seq and ATAC-seq data are often used
to represent chromatin accessibility. Chromatin interaction decays with
distance. RAD21 is a subunit of cohesin that play important role in a
loop formation. Therefore, the four types of features were extracted to
train the models. By comparing several machine learning classifiers, the
random forest was selected due to the high accuracy. Finally, we
compared our HARD model with the sequence-based and other
epigenomic features-based models. The results showed that our
model outperformed them both in the same cell line and cross-cell-
lines.

2 Materials and methods

The HARD model consists of three primary steps: 1)
constructing positive and negative sets based on the benchmark
database. 2) Extracting epigenomic features that can influence the
formation of EPI. 3) predicting EPIs within the same cell line and
across cell lines (Figure 1).

2.1 Data collection and processing

The enhancer-promoter interaction data were obtained from the
BENGI (Moore et al., 2020) database. To construct a benchmark of

enhancer-promoter interactions, BENGI integrated various
experimental datasets, such as Hi-C, ChIA-PET, genetic
interactions (cis-eQTLs), and CRISPR/Cas9 perturbations. After
removing ambiguous pairs, we selected the RNAPII ChIAPET
data of GM12878 and HeLa cell lines with a fixed positive and
negative sample ratio. Both data have a positive-to-negative sample
ratio of 1:4. To ensure the data is more accurate, the ambiguous
interaction pairs were removed. The RNAPII ChIAPET data only
provides the IDs of cCRE-ELS (cCREs with enhancer-like
signatures) and TSS (transcription start site) without the position
of cCRE-ELS and TSS. We located the cCRE-ELS and TSS in the
genome according to the IDs of hg19-cCREs and GENCODEv19-
TSS, respectively. Then, duplicate data was removed to retain
unique data.

Next, 2,000 bp upstream and 500 bp downstream of the TSS
were defined as the promoter region. For enhancers, upstream
1000 bp and downstream 1000 bp were extracted from the
midpoint of the cCRE-ELS region. Ultimately, 39,070 pairs of
enhancer-promoter interaction were obtained in the
GM12878 dataset, and 1,735 pairs of enhancer-promoter
interaction were obtained in the HeLa dataset. Then, the
dataset was divided into a training set and a test set for the
GM12878 sample. Specifically, 80% of the data was used for
training, and the remaining 20% was used as an independent test
set. To ensure consistency in data distribution across both
datasets, the positive and negative sample ratios of both
divided datasets were maintained at a 1:4 ratio. The above
data processing part and the subsequent classification
experiments were implemented in the python language
environment, and the sklearn library is used. The detailed data
distribution is shown in Table 1.

We selected three epigenomic signal features as our
experimental features, including ATAC-seq, H3K27ac, and
RAD21. The epigenomic signal data, which included ATAC-
seq, H3K27ac, and RAD21, were obtained from the ENCODE
(Ecker et al., 2012) database. The data with IDs ENCFF000XKM,
ENCFF051PGV, and ENCFF706HLO corresponded to
sequencing data in bigWig format of RAD21, ATAC-seq, and
H3K27ac in the HeLa cell line, respectively. Similarly, the data
with IDs ENCFF000WCT, ENCFF180ZAY, and ENCFF440GZA

TABLE 1 Distribution of samples.

Data set Positive samples Negative samples

GM12878 training 6251 25,005

GM12878 test 1563 6251

Hela 347 1388

FIGURE 2
The area chr1:116,919,153–116,921,153 selected in the first matrix box is an enhancer subarea. The second matrix box selected region cr1:
116,924,718–116,927,218 is the promoter region of the ATP1A1 gene. The third matrix box selected region chr1:116,959,158–116,961,658 is the promoter
region of the ATP1A1-AS1 gene. The three tracks in the figure were generated from the bigWig data of ATAC-seq, H3K27ac and RAD21 of GM12878 cell
lines.
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corresponded to sequencing data in bigWig format of RAD21,
ATAC-seq, and H3K27ac in the GM12878 cell line, respectively.

2.2 Feature extraction

The above-mentioned features were extracted through the
following steps. First, the genomic site data of EPIs and
epigenomic signal data were imported into deeptools (Ramírez
et al., 2014), a bioinformatics tool used for feature extraction.
Then the enhancer and promoter regions were divided into bins
of 50 bp. Each enhancer region was further divided into 40 bins,

whereas each promoter region was divided into 50 bins. For ATAC-
seq, H3K27ac, and RAD21, it generated a signal value for each bin.
Following feature extraction, the enhancers and promoters were
represented by 120-dimensional and 150-dimensional feature
vectors, respectively. The distance is defined as the number of
base pairs from the midpoint of the enhancer to the midpoint of
the promoter. The epigenomic feature vector and distance feature
vector were concatenated to obtain the final feature matrix. This step
involved combining the feature vectors obtained from the enhancer
and promoter regions into a single matrix, with each row of the
matrix representing a pair of enhancer-promoter interactions. The
final feature matrix was then used as input for the classification
experiments.

2.3 Classification algorithms

We compared three classifiers, random forest (RF), AdaBoost,
and gradient boosting decision tree (GBDT), for predicting EPIs in
the GM12878 cell line, which is considered a binary classification
problem. All three classifiers proved to be efficient in solving binary
classification problems.

Random forest (Breiman, 2001) is an ensemble learning algorithm.
It uses multiple decision trees to classify data by randomly selecting data
and feature subsets, which helps to reduce the model’s variance and
overfitting risk. By voting or averaging the outputs of multiple decision
trees, the model reduces the error rate and improves accuracy. In the
experiment, a large amount of sample data was used, and setting the
number of decision trees to 100 produced optimal performance.

AdaBoost (Schapire, 2013) assembles multiple weak classifiers to
build a strong classifier, which applies to binary classification
problems and has been shown to perform well on complex
datasets. The algorithm assigns weights to each instance based on

TABLE 2 Comparison of the predictive EPI performance of each classifier in the
GM12878 cell line.

Classifier Sn Sp Precision Acc AUC AUPRC

RF 0.578 0.964 0.799 0.887 0.919 0.773

Adaboost 0.555 0.947 0.725 0.869 0.881 0.688

GBDT 0.568 0.955 0.759 0.878 0.896 0.739

The meaning of bold values is the highest value of a specific performance indicator under

different classifiers.

TABLE 3 Comparison of HARD, EPIVAN and RF (10) models in the GM12878 cell
line.

Classifier Sn Sp Precision Acc AUC AUPRC

HARD 0.578 0.964 0.799 0.887 0.919 0.773

EPIVAN 0.365 0.971 0.720 0.850 0.809 0.603

RF (10) 0.709 0.730 0.396 0.726 0.799 0.540

The meaning of bold values is the highest value of a specific performance indicator under

different classifiers.

FIGURE 3
Comparison of the AUC and AUPRC performance of the three models tested independently in the GM12878 cell line. (A) The red curve is the ROC
curve of the HARDmodel, the blue curve is the ROC curve of the EPIVANmodel, and the yellow curve is the ROC curve of the RF (10) model; (B) The red
curve is the PRC curve of the HARD model, the blue curve is the PRC curve of the EPIVAN model, and the yellow curve is the PRC curve of the RF (10)
model.
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its difficulty level and trains weak classifiers on the weighted data.
Misclassified instances have increased weight, while correctly
classified instances have decreased weight. This process is
repeated multiple times until the ensemble classifier reaches a
satisfactory level.

Gradient boosting decision tree (Friedman, 2001) builds amodel by
summing multiple decision trees. It optimizes the model iteratively by
adding a new decision tree that reduces the prediction error of the
previous trees. The model’s accuracy improves with each iteration,
making it suitable for binary classification problems. In the experiment,
n_estimators, learning_rate, and subsample were set to 100, 0.1, and 1,
respectively.

2.4 Performance evaluation

To evaluate the classification performance of the selected features
and classifiers, we used six metrics: sensitivity (Sn) (Swift et al., 2020),
specificity (Sp) (Swift et al., 2020), precision (Hong et al., 2020; Chen
et al., 2023), accuracy (Shao et al., 2020; Yu et al., 2022), the area under
the curve (AUC) (Myerson et al., 2001), and the area under the
precision-recall curve (AUPRC) (Ozenne et al., 2015). These metrics
serve as the basis for evaluation, and the relevant formulas for their
calculation are shown below.

Sn � recall � TPR � TP

TP + FN
(1)

FPR � FP

FP + TN
(2)

Sp � TN

TN + FP
(3)

precision � TP

TP + FP
(4)

Acc � TP + TN

TP + FP + TN + FN
(5)

In binary classification, there are four possible outcomes: true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN). TP corresponds to the cases where the classifier
correctly predicts the positive class, while FP corresponds to the
instances where the classifier incorrectly predicts the positive class.
Similarly, FN refers to the cases where the classifier incorrectly
predicts the negative class, and TN refers to the instances where the
classifier correctly predicts the negative class. Additionally, TPR
(sensitivity/recall) is the ratio of correctly identified positive
instances to the actual positive instances, while FPR is the
proportion of falsely identified positive instances to the actual
negative instances (Zeng et al., 2020). AUC is calculated by
plotting TPR against FPR at different thresholds and represents
the area under the resulting curve. AUPRC is calculated by plotting
precision against recall at different thresholds and represents the
area under the resulting curve.

3 Results and discussion

3.1 The features of HARD model are closely
related with EPI

The accessibility of chromatin structural regions is associated
with the regulation of gene expression. ATAC-seq is commonly

TABLE 4 Comparison of HARD, EPIVAN and RF (10) models in the HeLa cell line.

Classifier Sn Sp Precision Acc AUC AUPRC

HARD 0.363 0.953 0.660 0.836 0.831 0.601

EPIVAN 0.513 0.890 0.539 0.815 0.795 0.564

RF (10) 0.144 0.949 0.402 0.786 0.572 0.296

The meaning of bold values is the highest value of a specific performance indicator under

different classifiers.

FIGURE 4
Comparison of AUC and AUPRC performance of the three models in the HeLa cell line. (A) The red curve is the ROC curve of the HARD model, the
blue curve is the ROC curve of the EPIVAN model, and the yellow curve is the ROC curve of the RF (10) model; (B) The red curve is the PRC curve of the
HARD model, the blue curve is the PRC curve of the EPIVAN model, and the yellow curve is the PRC curve of the RF (10) model.
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used to detect open regions of chromatin across the genome.
When combined with activated histone modification, such as
H3K27ac, ATAC-seq can enable the identification of specific
effects on gene expression (Bravo González-Blas et al., 2019).
H3K27ac is primarily enriched in enhancer and promoter regions
(Herrera-Uribe et al., 2020) and is associated with gene activation
(Yan et al., 2019). RAD21 and the insulator-binding protein
CTCF bind to highly conserved promoters and distal
enhancers, contributing to transcriptional regulation (Whalen
et al., 2016; Liu et al., 2021). Numerous studies have shown that
distance is a useful factor for studying EPI (Bianco et al., 2018; Al
Bkhetan et al., 2019). The distance feature has an essential
contribution to many models (Moore et al., 2020; Ao et al.,
2022b).

Figure 2 is an example that epigenomic modification
influences the formation of EPI. The enhancer region (chr1:
116,919,153–116,921,153) interacts with the ATP1A1-AS1
promoter (chr1:116,959,158–116,961,658) and does not
interact with the ATP1A1 promoter (chr1:
116,959,158–116,961,658), according to RNAPII ChIAPET
data of GM12878 cell line. In the enhancer region, the signals
of ATAC-seq, H3K27ac, and RAD21 are enriched, which
indicates that the enhancer is highly activated. The promoter
region of ATP1A1-AS1 is enriched in ATAC-seq, H3K27ac
modifications, and RAD21 binding, whereas the promoter
region of ATP1A1 is not.

3.2 Comparison and selection of classifiers

To select the most accurate classifier, we compared three
classifiers, AdaBoost, GBDT, and RF. We trained the model using
31,256 GM12878 samples with ten-fold cross-validation and
evaluated its performance on an independent test set of
7,814 GM12878 samples. The classifiers were trained and
tested separately, and their performance was compared using
different metrics. A comparison of the metrics of the test set is
shown in Table 2. Results showed that the RF algorithm
outperformed both GBDT and AdaBoost in all metrics.
Specifically, the RF algorithm demonstrated higher Sn, Sp,
precision, accuracy, AUC, and AUPRC values, at 0.578, 0.964,
0.799, 0.887, 0.919, and 0.773, respectively. Notably, the RF
algorithm displayed superior performance in AUPRC and
precision metrics. The RF algorithm merges the strengths of
ensemble learning and tree models, and it is capable of balancing
the error for an unbalanced set of classifiers, making it a suitable
choice for the dataset at hand. Consequently, the HARD model
was constructed using the RF algorithm.

3.3 Comparison with other models in
GM12878 cell line

In order to verify the validity of the HARD model, we next
compared the performance of HARD against the sequence-
based and other epigenomic features-based models. EPIVAN
is a typical representative of sequence-based models, which
outperforms the majority of existing models. RIPPLE utilizes

many epigenomic features to predict EPI. These epigenomic
features include cohesin (RAD21), architectural proteins
(CTCF), marks associated with active gene bodies and
elongation (H3K36me3, H4K20me1), activating marks of
transcription (H3K4me2, H3K27ac, and H3K9ac), open
chromatin (DNase I), a repressive mark (H3K27me3), and a
general transcription factor (TBP). Here, we used ten available
features of RIPPLE to conduct a RF classification model, named
RF (10). Then the HARD model was compared with RF (10) and
EPIVAN in multiple aspects. We trained the models using
31,256 GM12878 sample data with ten-fold cross-validation
and evaluated them using an independent test set of
7,814 GM12878 samples. The comparison results are shown
in Table 3. The results indicated that RF (10) performed best in
terms of Sn, while EPIVAN produced the best results for
Sp. However, each model has its strengths and weaknesses in
terms of Sn and Sp. HARD had shown significant improvement
in all four performance metrics compared to other models.
Specifically, compared to EPIVAN, HARD shows an
improvement of 7.9% and 3.7% in precision and Acc,
respectively, as well as an increase of 11% and 17% in AUC
and AUPRC, respectively. Compared to the RF (10), HARD
shows greater improvements, with increases of 40.3%, 16.1%,
12%, and 23.3% in precision, Acc, AUC, and AUPRC,
respectively. The comparison of the AUC and ROC curves of
the three models is shown in Figure 3.

3.4 Comparison of the HARD, EPIVAN and RF
(10) model in cross-cell-lines

To verify the robustness of the models, we conducted a
cross-cell-line analysis by training the models on the
GM12878 cell line and testing them on the HeLa cell line.
We used 39,070 GM12878 samples as the training set for
ten-fold cross-validation, and 1,735 HeLa samples as the test
set for evaluation. Experiments were implemented for the
HARD, EPIVAN and RF (10) models, respectively. Among
the three models, HARD achieved the best performance in
terms of Sp, precision, accuracy, AUC, and AUPRC, followed
by EPIVAN, with RF (10) showing the worst performance. In
comparison to EPIVAN, the HARD model slightly improves
five metrics, only lower than EPIVAN in Sn. The HARD model
outperforms RF (10) by a significant margin (Table 4). The
comparison of the AUC and ROC curves of the three models is
shown in Figure 4. Results indicated that HARD outperformed
EPIVAN and RF (10) in predicting EPIs in cross-cell-lines.

4 Conclusion

The interaction between enhancer and promoter is a
complex process. Various genomic and epigenomic features
are related to EPI. Many machine learning models have been
developed to predict EPI based on a large number of genomic
and epigenomic features. The redundancy of features leads to
unsatisfactory experimental results and limits the application to
more cell lines. In this paper, we developed the HARD model,
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which employed a minimal number of epigenomic features to
predict cell-line-specific EPIs. It is noteworthy that the HARD
model is based on benchmark data from the BENGI database,
which defined EPI strictly by integrating ChIA-PET, genetic
interactions (cis-eQTLs), and CRISPR/Cas9 perturbations. By
comparing with two other models, we found HARD
outperformed them both in the same cell line and cross-cell-
lines. Importantly, our model only used H3K27ac, ATAC-seq,
RAD21, and Distance as input, which makes it possible to apply
to more cell lines.
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