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Introduction: Hereditary orotic aciduria is an extremely rare, autosomal recessive
disease caused by deficiency of uridinemonophosphate synthase. Untreated, affected
individuals may develop refractory megaloblastic anemia, neurodevelopmental
disabilities, and crystalluria. Newborn screening has the potential to identify and
enable treatment of affected individuals before they become significantly ill.

Methods: Measuring orotic acid as part of expanded newborn screening using
flow injection analysis tandem mass spectrometry.

Results: Since the addition of orotic acid measurement to the Israeli routine
newborn screening program, 1,492,439 neonates have been screened. The
screen has identified ten Muslim Arab newborns that remain asymptomatic so
far, with DBS orotic acid elevated up to 10 times the upper reference limit. Urine
organic acid testing confirmed the presence of orotic aciduria along with
homozygous variations in the UMPS gene.

Conclusion:Newborn screeningmeasuring of orotic acid, now integrated into the
routine tandem mass spectrometry panel, is capable of identifying neonates with
hereditary orotic aciduria.
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1 Introduction

Hereditary orotic aciduria is an autosomal recessive disease caused
by deficiency of the uridine monophosphate synthase (UMPS) enzyme
which catalyzes the last step in pyrimidine biosynthesis in mammals
(McClard et al., 1980) (EC 4.1.1.23). This bifunctional homodimeric
enzyme is encoded by theUMPS gene (Suchi et al., 1997) (MIM613891)
and harbors two functions: an orotate phosphoribosyltransferase
function (OPRT, EC 2.4.2.10) located in the 214 N-terminal amino
acids, and an orotidylic decarboxylase (ODC, EC 4.1.1.23) function
located in the 258 C-terminal amino acids (Suttle et al., 1988).
Biochemically, the OPRT activity ribosylates orotate to become
orotidine monophosphate, while the ODC activity decarboxylates
orotidine monophosphate to become uridine monophosphate.
Therefore, defects in the UMPS enzyme can lead to a build-up of
orotate and/or orotidine monophosphate (OMP) in cells (Bailey, 2009).

Hereditary orotic aciduria was first described in 1959 in an infant
presenting with refractory megaloblastic anemia and excretion of orotic
acid (Huguley et al., 1959). The disease typically presents in early
infancy with megaloblastic anemia, and may be treated with a
pyrimidine analog (Uridine triacetate). Later symptoms such as
growth retardation, developmental delay and intellectual disability
may develop if left untreated (Wortmann et al., 2017). Hematologic
malfunction, such as leukopenia, neutropenia, and defective cell-
mediated immune deficiency, has also been reported (Girot et al.,
1983; Wortmann et al., 2017). In additional, orotic aciduria with
subsequent orotate crystalluria has occasionally resulted in urinary
obstruction in affected individuals later in life (Bailey, 2009). The
most recent case reported was a 17-year-old Emirati girl born to a
consanguineous couple reported to have a complicated medical history
since early infancy. She presented with unexplained megaloblastic bone
marrow, immunodeficiency in form of recurrent infections, epilepsy,
developmental delay and crystalluria. The patient showed clinical,
hematologic, and biochemical improvement after being treated with
uridine triacetate (Al Absi et al., 2021).

Three subtypes of hereditary orotic aciduria have been reported in
the literature, all caused by deficiencies in UMPS. Subtype I involves a
defect of both OPRT and ODC functions, and subtype II involves a
defect in ODC only (Fox et al., 1973). These two biochemical subtypes
are clinically indistinguishable, both presenting with megaloblastic
anemia, orotic aciduria, and growth and developmental abnormalities
(Fox et al., 1973). In contrast, subtype III, resulting also from a
biochemical defect in ODC, has been reported in only 2 cases, which
presented with orotic aciduria but without megaloblastic anemia
(OAWA). Since the report of these cases was prior to the
molecular era, these two cases may be simply carriers for the
disease (Tubergen et al., 1969; Bailey, 2009; Wortmann et al.,
2017). In addition, heterozygosity for UMPS variants was recently
found to be associated with mild asymptomatic orotic aciduria
[OMIM#258900] (Robinson et al., 1984; Wortmann et al., 2017).

Since 2014, and as part of the expanded newborn screening (NBS)
program in Israel, orotic acid, and citrulline have been measured in
dried blood spots (DBS) for the detection of ornithine
transcarbamylase deficiency (OTCD) as a core condition (Staretz-

Chacham et al., 2021). Inadvertently, orotic acid as a newborn
screening disease biomarker has also led to the identification of
hereditary orotic aciduria. During this period, ten neonates have
been identified with elevated orotic acid and later found to carry
homozygous variants in the UMPS gene.

In this study, we report the first cohort of patients identified
through newborn screening with hereditary orotic aciduria and
presenting with isolated asymptomatic orotic aciduria.

2 Materials and methods

TheNewborn Screening Program in Israel is a national effort, and all
samples are transferred to, handled, and analyzed at a single laboratory.
On average, results are reported on the fourth day of life. The clinical data
were collected at real time as part of the routine newborn screening and
all parents were consented at the referral follow-up clinics.

The National Newborn Screening Program collaborates with all
metabolic clinics round the state. These clinics receive referrals of
babies with positive newborn screening. A referral of any positive NBS
for a metabolic disorder includes the option of rapid confirmatory
molecular testing (fresh blood sample in an EDTA purple-top tube).

2.1 Dried blood spots

Blood from neonates born in Israel is collected by a heel prick
blotted on a 903 filter paper manufactured by Eastern Business
Forms, United States. Recommended collection time is 36–48 h
from birth.

2.2 Subjects

1,492,439 neonates were tested as part of the Israeli routine
newborn screening panel.

2.3 Cutoff setting

Cutoff setting was as previously described by Staretz-Chacham et al.
(2021), with the normal range for orotic acid set as <10 μmol/L and
citrulline 10–50 μmol/L. Relevant here is the immediate referral of
newborns with orotic acid equal to or above 10 μmol/L. Newborns with
orotic acid equal to or above 10 μmol/L and citrulline within normal
limits were referred as suggestive for hereditary orotic aciduria. Recall
samples were requested only for initial results of orotic acid elevated
above 4 μmol/L in combination with citrulline below 10 μmol/L.

2.4 Reagents

Stable-isotope labeled amino acids (NSK-A1), acyl-carnitines
(NSK-B and NSK-B-G1), succinylacetone (CLM-6755) and orotic

Frontiers in Genetics frontiersin.org02

Staretz-Chacham et al. 10.3389/fgene.2023.1135267

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1135267


acid:H2O (1,3-15N2; NLM-1048) were from Cambridge Isotopes
(Tewksbury, MA). HPLC-MS grade acetonitrile, methanol, and
formic acid were from J.T. Baker, Fisher Scientific (Pittsburg,
PA). Hydrazine hydrate was from Sigma-Aldrich (St. Louis, MO).

Quality control materials enriched with amino acids,
acylcarnitines, and succinylacetone were from the CDC (Atlanta
GA) and ClinChek RECIPE chemicals and instruments GmbH
(Munich, Germany). Orotic acid (02750 Sigma Aldrich Israel,
Rohovot, Israel) controls were prepared by serial dilution.

2.5 Sample extraction and analysis

Each DBS punch (3 mm) was placed in a well of a
polypropylene U96-well plate (NUNC, Roskilde, Denmark)
containing 100 μL of extraction medium (V/V: 80% acetonitrile,
20% DDW, 0.05% oxalic acid and 15 mM hydrazine), the plate was
sealed with adhesive aluminum foil (Thermo Fisher Scientific,
Rochester, NY) and extracted for 45 min at 45°C with shaking
in a NCS incubator (Wallac, Turku, Finland). After extraction,
50 μL contents of each well were transferred to a new 96-well plate
(350 µL Acquity collection plate, Waters Corporation Company,
UK) containing 125 µL daily working solution (V/V: 80%
acetonitrile, 20% DDW, 0.05% oxalic acid, and internal
standards) and sealed by Cap-mat (7 mm round plug silicone/
PTFE treated pre slit, Waters Corporation Company,
United States). Orotic acid internal standard concentration per
well was 7 µM. For analyses, samples were handled by Acquity
H-class UPLC and the measurements by Xevo TQ-S micro (Waters
Corporation Company) using flow-injection analysis by
electrospray ionization tandem mass spectrometry. Mobile
phase was 80% acetonitrile, 20% DDW and 0.02% formic acid.
Tandem mass spectrometry analyses used multiple reaction
monitoring (MRM) transitions. For orotic acid and orotic acid
internal standard, MRM negative mode was used (parent 154.8,
156.8; daughter 111, 113; dwell 0.050, 0.10; collision V = 7; cone
V = 25). Data processing and concentration determination were
performed using MassLynx and NeoLynx (Waters Corporation
Company). Results were interpreted by Specimen Gate software
(Perkin Elmer, Turku, Finland).

2.6 Molecular diagnosis

The molecular whole exome sequencing were performed by
CeGaT GmbH, Tübingen, Germany. No incidental findings were
found, that according to the ACMG gene list and guidelines (Green
et al., 2013).

2.6.1 Prediction algorithms for pathogenicity
analyses

The PolyPhen-2 and SIFT score predicts the possible impact of
an amino acid substitution on the structure and function of a human
protein. This score represents the probability that a substitution is
damaging.

CADD, the third prediction program used, is a tool for scoring
the deleteriousness of single nucleotide variants as well as insertion/
deletions variants in the human genome (Rentzsch et al., 2019).

The human orotidine 5′-monophospahate decarboxylase 3D
protein structure, NCBI, structure summary PDB ID: 3MW7,
MMDB ID: 89666 was also used as prediction tool.

2.7 Metabolic confirmatory tests

Follow-up confirmatory tests included complete blood count,
blood gas analysis, serum glucose and electrolytes, plasma lactate
and ammonia, plasma amino acids and qualitative urinary organic
acids.

3 Results

The routine Israeli newborn screening incorporates since 2014 the
simultaneous measurement of both orotic acid and citrulline levels.
Routine newborn screening of 1,492,439 neonates, including
328,337 Muslim Arabs, identified ten Muslim Arab newborns with
elevated DBS orotic acid up to 10 times the upper reference limit, and
with normal or borderline citrulline levels (Table 1). Newborns with
orotic acid equal to or above 10 μmol/L and citrulline within normal
limits were referred as suspected hereditary orotic aciduria. Four (three
males) out of the 10 patients in our cohort had citrulline below 10 μmol/
L and therefore were initially referred as suggestive for X-linked OTCD.

Confirmatory urine organic acids analysis demonstrated
elevated urine orotate in all patients. All ten neonates (eight
males and two females), harbor variants in the UMPS gene
(Table 1). All patients have been followed up, except for one
child with whom contact was lost, with the oldest child having
now been followed for 6 years. None has developed megaloblastic
anemia or neurologic sequelae, and all children have reached
milestones appropriate for their age.

Among the 10 newborns diagnosed with hereditary orotic
aciduria, six (patients 1-6 in Table 1) were Muslim Arabs
belonging to a Bedouin community from the Negev region
(southern Israel). Two of them (patients 5 + 6) were siblings,
and all six were identified as double homozygotes for the
c.24 G > C p.L8F and c.342 T > G p.N114K substitutions. The
other four newborns (patients 7–10) were two pairs ofMuslim Arabs
siblings (not known whether they were of Bedouin descent or not),
each pair of siblings originating from a different extended family in
East Jerusalem. One pair (patients 7 + 8) shared the same double
homozygous genotype found among the Negev Bedouins, while the
other pair (patients 9 + 10) was homozygous for a c.1132 G > C
p.A378P substitution.

Both the p.L8F and the p.N114K amino acid substitutions are
located in the N-terminal 214 amino acids region, harboring the OPRT
activity. The p.A378P amino acid substitution is located in the
C-terminal part harboring the ODC activity. The conservation of
the two regions across species is described in Figure 1. Algorithms
developed to predict the effect of missense changes on protein structure
and function predicted the p.L8F variant to be disease-causing (SIFT:
deleterious, PolyPhen-2: probably damaging, CADD score: 22.8) and all
suggest that p.N114K variant is likely to be tolerated (Polyphen: benign,
SIFT: tolerated, CADD score: 7.9) (Table 2). Both p.L8F and p.A378P
variants are present twice in population databases (GnomAD allele
frequency: 0.000007954, two heterozygous). Both parents of an affected
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child were found in segregation study to be heterozygous for their
offspring’s p.L8F&p.N114K substitutions.

The p.L8F and the p.N114K amino acid substitutions are in cis.
The 3D protein structure (Supplementary Figure S2) indicates that
the two amino acids do no interact with each other and therefore
probably not causing the activity tolerance presences as
asymptomatic patients.

4 Discussion

The purpose of newborn screening (NBS) is to identify
newborns affected with diseases in which early diagnosis and
prompt treatment will significantly change disease outcome
(Jones and Bennett, 2002). Methionine and tyrosine as primary
targets for core disorders in routine NBS have led to identification of

TABLE 1 Biochemical findings and UMPS genotype in hereditary orotic aciduria subjects identified by routine newborn screening.

No. Citrulline normal
10–50 µM

Orotic normal <4.0 µM 1st ammonia µg/dL Male/
Female

UMPS variantsa NM_000373.4

1 18.5 31.8 120 M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

2 19.6 15.9 not done F c.24 G>C; p.L8F and c.342 T>G;
p.N114K

3 27.0 17.5 not done M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

4 9.9 13.6 Normal M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

5 10.2 20.0 Normal M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

6 9.5 25.0 110 M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

7 13.5 45.1 Normal M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

8 9.5 17.1 not done M c.24 G>C; p.L8F and c.342 T>G;
p.N114K

9 12.8 10.0 Normal M c.1132 G>C; p.A378P

10 8.5 9.8 Normal F c.1132 G>C; p.A378P

Newborns 1-6 are Bedouin Muslim Arabs from southern Israel, newborns 7–10 are Muslim Arabs from east Jerusalem. Newborns 5 + 6 and 7 + 8, and 9 + 10 are siblings.
aAll patients are homozygous for the listed change.

FIGURE 1
Standard Protein BLAST and alignment of uridine 5′-monophosphate synthase [Homo sapiens, Rattus rattus,Musmusculus,Drosophila albomicans]
andOrotidine 5′-phosphate decarboxylase [Caenorhabditis elegans, Saccharomyces cerevisiae]. (A) Amino acid range 1–40 including 8 L. (B) Amino acid
range 94–132 including 114 N (C) Amino acid range 359–401 including 378 A.
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secondary diagnoses such as hypermethioninemia (Couce et al.,
2013) and transient tyrosinemia of the newborn (Adnan and
Puranik, 2022). The addition of orotic acid analysis to our NBS
Program in 2014 has been successful in the identification of a
number of patients affected with urea cycle disorders (UCD)
(Staretz-Chacham et al., 2021), as well as in identification of ten
newborns with hereditary orotic aciduria. The introduction of
expanded newborn screening has led to the identification of
previously unrecognized, non-disease-causing variants of
devastating disorders such as isovaleric acidemia (Ensenauer
et al., 2004) and MCAD deficiency (Andresen et al., 2001).
Herein, we report an analysis done in a cohort of patients
identified by the NBS program with hereditary orotic aciduria
based on increased orotic acid levels in DBS followed by
confirmatory testing including urinary organic acids and
molecular testing. To this day, no treatment has been
administered to these patients, and all patients remain
asymptomatic.

Hereditary orotic aciduria is an extremely rare condition with
fewer than 30 cases reported in the literature. If left untreated, it may
result in refractory megaloblastic anemia, neurodevelopmental
disabilities, and crystalluria.

To the best of our knowledge, all individuals with hereditary
orotic aciduria were reported to carry at least one missense variant
allele, while no reports are available presenting affected individuals
harboring bi-allelic null variants which are predicted to cause
complete loss of UMPS protein function (Rogers et al., 1975;
Wortmann et al., 2017). On the other hand, carrier individuals of
null or missense variant may have persistent mild increase of urinary
orotic acid secretion, lower than expected in OTC. Wortmann et al.
reported 11 unrelated index cases referred for various signs and
symptoms and 18 family members with mild and isolated orotic
aciduria caused by heterozygous null or missense variants. The
observed hypotonia and developmental delay in some of these
individuals were thought to be due to ascertainment bias
(Wortmann et al., 2017). Others reported heterozygote carriers of
UMPSmutations with neurologic disabilities (Carpenter et al., 1997;

Imaeda et al., 1998). The homodimeric structure of the UMPS
protein might provide an explanation for the symptoms observed
in heterozygote individuals, since the presence of a mutated allele
may have a dominant negative effect on the wild-type allele, thereby
reducing the functional homodimers to 25%. Here we report on
10 asymptomatic individuals harboring homozygous UMPS
missense variants. Our newborn screening cutoff setting was as
previously described by Staretz-Chacham et al. (2021), these sets of
cutoffs will most likely result in avoiding the detection of
heterozygous hereditary orotic aciduria carriers.

Homozygosity for a loss of function variant in the umps gene,
p.R405x, in buffaloes and in the Holstein-Friesian breed cattle
results in early embryonic death. Orotate level in the milk of this
breed is four to 12 times normal (Schwenger et al., 1993; Sudhakar
et al., 2021). Others reported that cows with partial deficiency of
UMPS showed orotic acidemia and aciduria during lactation
(Robinson et al., 1984; Shanks et al., 1984). In view of the above
observations, it may be that a complete absence of this enzyme in
humans is also incompatible with life, whereas variants causing a
partial enzyme deficiency result in hereditary orotic aciduria either
symptomatic or asymptomatic, as reported here.

The p.L8F & p.N114K double homozygous genotype has been
identified in all six patients of the Bedouin Muslim Arabs from the
Negev (patients 1-6 in Table 1), indicating that it is a possible
founder allele in this population. The other four individuals are also
Muslim Arabs from two extended families in East Jerusalem, one
family with a pair of siblings sharing the same variant found among
the Bedouins, and the other family harboring the p.A378P amino
acid change. Both the p.L8F and the p.N114K substitutions are
located in the N-terminal 214 amino acids portion of UMPS having
OPRT activity. These variants have not been reported in the
literature in individuals affected with UMPS-related conditions.
Algorithms developed to predict the effect of missense changes
on protein structure and function predicted the p.L8F variant to be
disease-causing and all suggest that p.N114K variant is likely to be
tolerated. This may indicate that the p.N114K variant is less
significant in terms of its effect on protein function. One other

TABLE 2 In-silico variant impact prediction analyses.

c.24 G>C; p.L8F c.342 T>G; p.N114K c.1132 G>C; p.A378P
aPolyPhen-2 possibly damaging Benign possibly damaging

Score 0.857 0.001 0.648

sensitivity 0.83 0.99 0.87

specificity 0.93 0.15 0.91

bSIFT affects protein function Tolerated affects protein function

score 0.02 0.77 0.02

cCADD Deleterious Benign Deleterious

score 22.8 7.9 26.4

aPolyPhen-2 score ranges from 0.0 (tolerated) to 1.0 (deleterious). Variants with scores of 0.0 are predicted to be benign. Values closer to 1.0 are more confidently predicted to be deleterious. The

score can be interpreted as follows: •0.0 to 0.15—Variants with scores in this range are predicted to be benign. •0.15 to 1.0—Variants with scores in this range are possibly damaging. •0.85 to
1.0—Variants with scores in this range are more confidently predicted to be damaging. (https://ionreporter.thermofisher.com/ionreporter/help/GUID-57A60D00-0654-4F80-A8F9-

F6B6A48D0278.html).
bSIFT scores ranges from 0.0 (deleterious) to 1.0 (tolerated) (https://ionreporter.thermofisher.com/ionreporter/help/GUID-57A60D00-0654-4F80-A8F9-F6B6A48D0278.html).
cCADD is a tool for scoring the deleteriousness of single nucleotide variants as well as insertion/deletions variants in the human genome (Rentzsch et al., 2019).
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option is that the linkage between the two changes causes the activity
tolerance; however, the position of the two amino acids according to
the 3D structure of the protein does not support such an interaction.

The p.A378P substitution, located in the C-terminal part with
the ODC activity, is found in a more conserved sequence region
across species (5 out of 6) including yeast, which may indicate its
important function (Figure 1). It has not been reported in the
literature in individuals affected with UMPS-related conditions.
In silico analysis predicts this variant to be disease-causing. These
predictions highlight the importance of the reported patients being
asymptomatic, although the genetic and biochemical changes would
have been suggestive for the known clinical disease.

4.1 Strengths and limitations of the study:

Although there is consistent follow-up of the patients, due to the
patients’ ages there is limited clinical follow-up. An additional study
limitation is the limited genetic segregation analyses preformed,
although in the study, two sets of affected siblings were followed and
at least two sets of parents were found to be heterozygous. The study
also lacks functional studies and detailed analysis of 3D protein
structure.

5 Conclusion

To the best of our knowledge, this is the first report of
asymptomatic individuals harboring homozygous UMPS
mutations. This should raise consideration as to whether NBS for
hereditary orotic aciduria as a secondary target warrants reporting,
especially in populations without previously clinically identified
patients. Asymptomatic or mild variants of hereditary orotic
aciduria may be more common than previously recognized.
Further identification and longer follow-up of such individuals
will help to clarify this issue.
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