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Background: One of the features of tumor immunity is the immunosuppressive
tumor microenvironment (TME). In this study, TME gene signatures were used to
define the characteristics of Cervical squamous cell carcinoma (CESC) immune
subtypes and construct a new prognostic model.

Methods: Single sample gene set enrichment analysis (ssGSEA) was used to
quantify pathway activity. RNA-seq of 291 CESC were obtained from the
Cancer Genome Atlas (TCGA) database as a training set. Microarray-based data
of 400 cases of CESCwere obtained from theGene Expression Compilation (GEO)
database as an independent validation set. 29 TME related gene signatures were
consulted from previous study. Consensus Cluster Plus was employed to identify
molecular subtype. Univariate cox regression analysis and random survival forest
(RSF) were used to establish the immune-related gene risk model based on the
TCGA data set of CESC, and the accuracy of prognosis prediction was verified by
GEO data set. ESTIMATE algorithm was used to perform immune and matrix
scores on the data set.

Results: three molecular subtypes (C1, C2, C3) were screened in TCGA-CESC
on account of 29 TME gene signatures. Among, C3 with better survival
outcome had higher immune related gene signatures, while C1 with worse
prognosis time had enhanced matrix related features. Increased immune
infiltration, inhibition of tumor related pathways, widespread genomic
mutations and prone immunotherapy were observed in C3. Furthermore, a
five immune genes signature was constructed and predicted overall survival for
CESC, which successfully validated in GSE44001 dataset. A positive
phenomenon was observed between five hub genes expressions and
methylation. Similarly, high group enriched in matrix related features, while
immune related gene signatures were enriched in low group. Immune cell,
immune checkpoints genes expression levels were negatively, while most TME
gene signatures were positively correlated with Risk Score. In addition, high
group was more sensitive to drug resistance.

Conclusion: This work identified three distinct immune subtypes and a five genes
signature for predicting prognosis in CESC patients, which provided a promising
treatment strategy for CESC.
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1 Introduction

Globally, there are more than 500,000 new cases of cervical
cancer every year, and about 300,000 deaths from cervical cancer,
and its incidence and mortality rank the fourth place in female
malignant tumors (Bray et al., 2018). Large-scale promotion of HPV
vaccination and early screening and diagnosis of cervical cancer has
reduced the disease burden of patients to some extent. The
traditional treatment, mainly surgery and supplemented by
chemoradiotherapy, has a good effect on the treatment of early
cervical cancer, but the 5-year survival rate of advanced, metastatic,
and recurrent cervical cancer is less than 20% (Pfaendler and Tewari,
2016; Tewari et al., 2017).

Tumor microenvironment (TME) is the cellular environment in
which tumor cells reside, which is composed of immune cells,
mesenchymal cells, endothelial cells, inflammatory mediators, and
extracellular matrix (ECM) (Hanahan and Weinberg, 2011;
Hanahan and Coussens, 2012). The cells and molecules in TME
are in a dynamic process that reflects the evolutionary nature of
cancer and work together to promote immune escape, growth, and
metastasis of tumors (Jiang et al., 2019; Ren et al., 2020). Immune
cells and stromal cells are two major types of non-tumor
components, which are considered to have important value in
the diagnosis and prognosis of tumors (Zhu et al., 2021). In
recent years, immunotherapy is a new means of tumor treatment.
Its mechanism is to significantly improve the survival time by
reactivating the anti-tumor immune system to strongly and
continuously kill tumor cells. Currently, the most comprehensive
immunotherapy is immune checkpoint inhibitor, whose
representative drug is programmed death protein 1(PD-1)
inhibitor (Pembrolizumab), which has been proved effective in a
variety of cancers, but the overall objective effective rate is only 20%–
30% (Iwai et al., 2017). Currently, the molecular targets used to guide
immunotherapy are mainly limited to the expression level of
programmed death protein ligand 1(PD-L1), high microsatellite
instability (MSI-H) (Le et al., 2015), mismatch fixes system
defects (dMMR) (Le et al., 2017), Tumor mutation burden
(TMB) (Goodman et al., 2017; Yarchoan et al., 2017). TMB to
predict the inaccurate treatment response of immunosuppressive
agents in some cancer patients. Therefore, it is particularly
important to screen more reasonable molecular markers to guide
immunotherapy through comprehensive analysis of tumor
microenvironment.

In view of this, this study obtained CESC expression profile data
through The Cancer Genome Atlas (TCGA) database, and analyzed
the relationship between immune pathway score and survival
prognosis of patients with CESC by ssGSEA algorithm.
Combined with the data set from the Gene Expression Omnibus
(GEO) database (GSE44001), differentially expressed genes, (DEGs)
analysis, functional enrichment and survival analysis were
performed to screen out hub genes to construct prognostic
models, and to explore the relevance of prognostic models in
predicting the prognosis of patients with CESC and

immunotherapy, so as to provide references for the research of
biomarkers related to CESC immunity and immunotherapy.

2 Materials and methods

2.1 Data acquisition and preprocessing

Using “CESC”, “transcriptome profiling (transcripts per million
(TPM))”, and “Gene Expression Quantification” as search terms, the
results can be obtained from the TCGA database to download a
sequence dataset containing 291 CESC tissues and corresponding
clinical information. Using “cervical cancer” as a keyword in the
GEO database. The gene-chip dataset GSE44001 contains 300 CESC
tissues was downloaded.

For TCGA-CESC, the sample with clinical information, survival
time greater than 0 and Status (alive and death) is retained and
Ensembel is converted into Gene symbol, and the expression with
multiple Gene Symbol is the median value. For the
GSE44001 dataset, probes are mapped to genes based on
annotation information, and probes that match one probe to
multiple genes are removed. When multiple probes matched a
gene, the mean value was taken as the expression value of the gene.

2.2 ssGSEA analysis

Twenty nine TME related gene signatures, covering known
cellular and functional TME properties, were extracted from
previously study (Bagaev et al., 2021). A total 257 genes were
found in 29 gene signatures and ssGSEA using GSVA package
(Yi et al., 2020) was employed to quantitate TME score.

2.3 Sample cluster analysis

ConsensusClusterPlus (Wilkerson and Hayes, 2010) was
employed to construct consistency matrix for TCGA-CESC
samples clustering on account on 29 TME gene signatures scores.
80% samples were carried out 500 bootstraps using km algorithm
and distance of 1-pearson correlation. Number of Clusters was set as
2–10 and optimal cluster number was determined in terms of
consistency matrix and cumulative distribution function.
Principal component analysis (PCA) was also performed to test
rationality of molecular subtype distribution.

2.4 Evaluation of immune infiltration

CIBERSORT algorithm (https://cibersort. stanford.edu/) was
used to quantify the relative abundance of 22 types of immune
cells in CESC. At the same time, the ESTIMATE (Yoshihara et al.,
2013) software was used to calculate the proportion of immune cells.
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FIGURE 1
The association between 29 TME gene signatures and clinical characteristics in TCGA-CESC patients. (A): Top20 TME related genes mutations in
TCGA-CESC dataset. (B): Univariate cox regression analysis of 29 TME gene signatures. (C): The differences of 29 TME gene signatures among clinical
feature grouping. (D): Correlation between 29 TME gene signatures with each other as well as stage, grade, and age. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001; ns: no significance.
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2.5 Gene set enrichment analysis (GSEA)

All candidate gene sets in the KEGG database were used for
GSEA (Subramanian et al., 2005) pathway analysis to identify
unique biological process pathways in molecular subtypes, with
FDR <0.05 considered to be significantly enriched. At the same
time, the R software package GSVA was used for single sample
GSEA analysis (ssGSEA), and the score of each sample on
26 biological pathways was calculated to obtain the ssGSEA score
of each sample corresponding to each function. kruskal.test
examines the differences between molecular subtypes.

2.6 Immunotherapy and chemotherapy

T-cell-inflamed gene expression profile (GEP) score of 18 genes
(Ayers et al., 2017), Th1/IFNγ gene signature score (Danilova et al.,
2019), combined genes from the published Th1 signature and genes
from IFNγ signaling pathway from Reactome database, and cytolytic
activity score (Gao et al., 2020) were calculated by ssGSEA to
predicted clinical response to immune checkpoint blockade.

The expression levels of immune checkpoint genes, including
immune activation genes and immune inhibition genes, were
determined in molecular subtypes with kruskal. test (FDR< 0.05).

FIGURE 2
Identification of three molecular subtypes. (A): KM curve of overall survival (OS) prognosis among three TME subtypes in the TCGA-CESC cohort. (B): KM
curveof progression-free survival (PFS) prognosis among threeTMEsubtypes in theTCGA-CESCcohort. (C): Principal component analysis of threeTME subtypes.
(D): Statistical chart of the differences of 29 TME gene signatures among three TME subtypes. (E): heatmap of differences of 29 TME gene signatures as well as
clinical characteristics among three TME subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.
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FIGURE 3
Immune infiltration analysis among three TME subtypes. (A)CIBERSORT analysis of 22 immune cells distribution among three TME subtypes. (B) The
difference of StromalScore among three TME subtypes. (C) The difference of ImmuneScore among three TME subtypes. (D) The difference of
ESTIMATEScore among three TME subtypes. (E) The difference of TumorPurity among three TME subtypes. (F) The difference of TMB among three TME
subtypes. (G) The difference of Intra-tumor genetic heterogeneity among three TME subtypes. (H) The difference of HRD score among three TME
subtypes. (I) Somatic cell mutation among three TME subtypes. ***p < 0.001; ****p < 0.0001.
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TIDE (Xiao et al., 2018; Fu et al., 2020) software was used to
evaluate the potential clinical effects of immunotherapy included
dysfunction of tumor infiltration cytotoxic T lymphocytes (CTL)
(Dysfunction) and exclusion of CTL (Exclusion), M2 subtype of

tumor-associated fibroblasts (CAF), tumor-associated macrophages
(TAM), myeloid-derived suppressor cells (MDSCs), a higher TIDE
predictive score indicates a greater likelihood of immune escape,
suggesting that patients are less likely to benefit from immunotherapy.

FIGURE 4
Enrichment of pathways. (A) GSEA analysis of five pathways were activated in C1. (B) GSEA analysis of five pathways were inhibited in C2. (C) GSEA
analysis of five pathways were inhibited in C3. (D,E): ssGSEA analysis of 26 pathways score distribution among three TME subtypes.
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pRRophetic (Geeleher et al., 2014) was used to predict the
sensitivity of traditional medicines to half maximal inhibitory
concentration (IC50).

2.7 Construction and validation of prognosis
model

Among molecular subtypes, limma analysis (Ritchie et al., 2015)
and univariate cox regression analysis were implemented to screen
genes affecting CESC prognosis (p < 0.05). Random Forest SRC
package was introduced to construct a random forest model and the
most highly predictive variables were screened when variable
importance (VIMP) value> 0.4. Finally, the optimal genes were
used to constructed Risk score using stepAIC method in MASS
package.

Risk score � ∑ coefi*Expi

Expi is the expression level of genes, and coefi is the regression
correlation coefficient.

Survminer package was conducted to determine optimal cutoff
to divided CESC samples into high group and low group. KM
survival and ROC analysis using timeROC package were used to
predict performance of Risk score. TCGA-CSEC was a training
dataset and GSE44001 dataset was acted as independently validate
dataset.

2.8 Statistical analysis

R (4.0.2) software was used for statistical analysis. WebGestaltR
package (Yu et al., 2012) was used to carry out functional
enrichment analysis. Genetic mutations were determined by
maftools. Wilcoxon non-parametric rank sum test was used to
analyze the differences. p < 0.05 was considered to be statistically
significant. Sangerbox was used for analysis (Shen et al., 2022).

3 Results

3.1 29 TME gene signatures was association
with clinical characteristics for TCGA-CESC
samples

As we know, somatic mutations could lead to carcinogenesis.
199 of 257 genes (from 29 TME gene signature) were mutated and
Top20 genes mutation rate were showed, among, MKI67 had
highest mutation rate (7%) (Figure 1A). Univariate cox
regression analysis of 29 TME gene signatures found 13 TME
gene signatures affecting prognosis of CESC samples (Figure 1B).
The differences of TME gene signatures scores in clinical features
indicated that Tumor proliferation rate, Angiogenesis scores were
increased in T3 + T4 stage, Protumor cytokines, Macrophage and
DC traffic, Effector cell traffic, Immune Suppression by Myeloid
Cells, Effector cells scores were enhanced in G3 + G4 stage
(Figure 1C). TME gene characteristics were positively correlated
with each other and with Grade (Figure 1D).

3.2 Identification of three molecular
subtypes

Based on 29 TME gene signature, TCGA-CESC samples were
divided into three molecular subtypes when k = 3 on account of CDF
and CDF delta area (Supplementary Figure S1A–C). KM survival
curve showed that the overall survival and progression-free survival
(PFS) in C3 had longest time, followed by C2 and C1 (Figures 2A, B).
PCA suggested that the three molecular subtypes have distinct
regional divisions (Figure 2C). The distribution of TME gene
signatures among three molecular subtypes indicated that
immune related gene signatures, such as Treg and Th2 traffic,
Antitumor cytokines, were enriched in C3, while Matrix related
gene signatures, such as Angiogenesis, Endothelium, Cancer-
associated fibroblasts, Matrix, Matrix remodeling, were enriched
in C1 (Figure 2D). TNM stage also had distribution differences
among three molecular subtypes (Figure 2E).

3.3 Differences of infiltration of immune
cells and somatic cell mutation among three
molecular subtypes

In TCGA-CESC dataset, CIBERSORT analysis on 22 immune
cells showed 17 of which had statistical significance among three
molecular subtypes, such as T_cells_CD8, T_cells_CD4_memory_
activated were involved in C3, while C1 enriched in T_cells_CD4_
memory_resting, Macrophages_M0, Dendritic_cells_activated
(Figure 3A). ESTIMATE analysis demonstrated that C3 had
enhanced StromalScore, ImmuneScore, ESTIMATEScore, while
TumprPurity was lowest (Figures 3B–E). Changes in genome
among three molecular subtypes were explored, and we found
that C3 harbored a significantly higher TMB (Figure 3F). No
statistical significance of Mutant-allele tumor heterogeneity and
HRD score among subtypes were observed (Figures 3G, H). In
addition, MUC4, EP300, MUC17 genes had a wide range of somatic
mutations in CESC (Figure 3I).

3.4 Functional characterization of three
molecular subtypes

GSEA analysis indicated that axon guidance, focal adhesion,
pathways in cancer, regulation of actin cytoskeleton, WNT signaling
pathway were activated in C1 (Figure 4A), Cytokine-cytokine
receptor interaction, MAPK signaling pathway, Neuroactive
ligand receptor interaction, pathway in cancer were inhibited in
C2 (Figure 4B), Axon guidance, ECM receptor interaction, pathway
in cancer and WNT signaling pathway were inhibited in C3
(Figure 4C). ssGSEA analysis of 26 pathways scores had
difference among three molecular subtypes. EMT-related
pathways such as HALLMARK_WNT_BETA_CATENIN_
SIGNALING were enriched in C1, in addition, the C3 subtype is
significantly enriched in some immune-related pathways such as
HALLMARK_INTERFERON_ALPHA_RESPONSE and
HALLMARK_INTERFERON_GAMMA_RESPONSE (Figures 4D,
E). Those data suggested that C3 presented immunoinfiltration
state, and Cell growth-related pathways were activated in C1.
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3.5 Analysis of immunotherapy and
chemotherapy among three molecular
subtypes

As showed in Figures 5A, B, Figure 3 factors (T cell inflamed
GEP score, Th1/IFNγ gene signature score, and Cytolytic activity
score) that predict immunotherapy effect were all elevated in
subtype C3 (Figures 5A–C). Given that immune checkpoint
blockade (ICB) is a key factor for cancer immunotherapy, we
evaluated a few representative genes. Most immune inhibition
genes and activation genes were upregulated in C3 (Figure 5D).
Moreover, 23 immune checkpoint genes had highest expressions in
C3 (Figure 5E). Exclusion score and TIDE score were significantly

highest in C1, while Dysfunction score was highest in C3
(Figure 5F). Sensitivity analysis of molecular subtypes to
traditional chemotherapy drugs showed C3 was more sensitive to
Paclitaxel, Mitomycin C, and C1 maybe benefit from Gemcitabine
(Figure 5G).

3.6 Construction and validation of risk
model

Firstly, DEGs were screened among three molecular subtypes,
which 165 upregulated genes and 96 downregulated genes in C1
(Supplementary Figure S2A), 216 increased genes and 106 decreased

FIGURE 5
Immunotherapy analysis. (A) The difference of T cell inflamed GEP score among three TME subtypes. (B) The difference of Th1/IFNγ score among
three TME subtypes. (C) The difference of Cytolytic activity score among three TME subtypes. (D) Heatmap of immune checkpoints genes among three
TME subtypes. (E) the expressions of immune checkpoints genes among three TME subtypes. (F) TIDE analysis among three TME subtypes. (G) The box
plots of the estimated IC50 for Paclitaxel, Gemcitabine, Cisplatin, Gefitinib, Mitomycin C, and Sunitinib among three TME subtypes.
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genes in C3 (Supplementary Figure S2B). Finally, 429 DEGs were
found among three molecular subtypes (Supplementary Figure
S2C). 186 genes affecting prognosis of CESC samples were
screened from 429 genes (Figure 6A). 186 genes were reduced to
16 genes using a random forest model (Figure 6B). Finally, five hub
gene were determined from 16 genes by stepAIC method
(Figure 6C). RiskScore = −0.297*LAG3 +
0.334*ITGA5+0.19*ESM1-0.214*DES + 0.115*CXCL2. The five

hub genes expressions were positively correlated with
methylation levels (Supplementary Figure S3).

In TCGA-CESC dataset, the distribution of RiskScore and five
genes expression were showed. 1-, 3-, five- year AUC was 0.81, 0.79,
and 0.78 respectively, and patients in high group had worse survival
time (Figure 6D). In GSE44001 queue, the 1-, three-, and five- year
AUC was 0.71, 0.65, and 0.59, respectively, and samples in high
group also had poor survival time (Figure 6E).

FIGURE 6
Construction and validation of prognosis model. (A) Univariate cox regression analysis of TME related genes. (B) The 16 most predictive genes
selected by random survival forest. (C)Univariate cox regression analysis of five hub genes. (D) The distribution of RiskScore, expression of five hub genes
in TCGA-CESC dataset. ROC analysis and AUC of RiskSore in TCGA-CESC dataset. KM survival curve of high group and low group in TCGA-CESC dataset.
(E) The distribution of RiskScore, expression of five hub genes in GSE44001 dataset. ROC analysis and AUC of RiskSore in GSE44001 dataset. KM
survival curve of high group and low group in GSE44001 dataset.
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FIGURE 7
The RiskScore differences on samples with clinical features. (A) the differences of RiskScore in patients with various clinical features including T
stage, N stage, M stage, stage, grade, and age. (B) the differences of RiskScore among three TME subtypes. (C) Matches of two subtypes and high- and
low-groups. (D) KM survival of patients in high group and low group with various clinical features divided by RiskScore.
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3.7 Association clinical features and
RiskScore

To know the relationship between RiskScore and clinical
features, RiskScore was determined among clinicopathological
features. The higher the clinical grade, the higher the RiskScore
(Figure 7A). The C1 subtype with good prognosis has a higher
RiskScore, while the C3molecular subtype with a poor prognosis has
the lowest RiskScore (Figure 7B), and most of the RiskScore-high
samples were C1 patients (Figure 7C). samples with clinical features
were divided into High group and low group based on RiskScore,
KM curve demonstrated that patients in low group had a better
prognosis (Figure 7D).

3.8 Characteristics of immunity of identified
CESE subtypes

In low group, StromalScore, ImmuneScore, and
ESTIMATEScore were higher and TumorPurity was lower
(Figure 8A). 14 of 22 immune cells score had significance
between high group and low group (Figure 8B). In 29 TME gene
signatures, 22 of which reach statistical difference between high
group and low group (Figures 8C, D).

In addition, we also analyzed the relationship between
RiskScore and immune infiltration and immune cells in 22. It
was found that RiskScore was negatively correlated with
StromalScore, ImmuneScore, ESTIMATEScore, T_cells_CD8,

FIGURE 8
Immune infiltration analysis between high- and low-group. (A) ESTIMATE analysis between high- and low-group in TCGA-CESC dataset. (B) The
distribution of 22 immune cells between high- and low-group in TCGA-CESC dataset. (C,D): the differences of 29 TME gene signatures scores between
high- and low-group. (E) The association analysis between RiskScore and immune features as well as 29 TME gene signatures. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns: no significance.
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T_cells_follicular_helper, and Macrophages_M1. However, there
were significant positive correlations with Angiogenesis, Matrix,
Matrix remodeling, Protumor cytokines, Myeloid cells traffic
(Figure 8E).

3.9 Immunotherapy response of identified
CESE subtypes

Firstly, we compared the TMB in high group and low group,
which it had no significance between the two groups (p = 0.28), but
there was a negatively association between RiskScore and TMB
(Figure 9A). T cell inflamed GEP score, TH1/IFNγ gene signature
score and Cytolytic activity score were all enhanced in low group,
and all them were negatively correlated with RiskScore (Figures
9B–D). Immune checkpoint genes were higher expressions in low
group and negatively correlated with RiskScore (Figures 9E, F).
MDSC, CAF, TAM.M2, and Exclusion were decreased, while

Dysfunction was increased in low group in comparison to high
group (Figure 9G).

4 Discussion

Studies have shown that CESC interstitium has a large
number of immune cell infiltration (Dossus et al., 2013; Liu
et al., 2020), Immune cell infiltration is believed to play an
important role in the development of various malignant
tumors (Hanahan and Coussens, 2012; Yoshihara et al., 2013),
and immunotherapy has made great progress in the field of anti-
tumor. In this study, it was found that in the 29 TME gene
signatures, the higher the CESC pathological grade, the higher
the infiltration of some TME gene signatures, and the infiltration
abundance is related to the patient’s prognosis. Targeted therapy
targeting these immune cells is expected to improve the patient’s
prognosis.

FIGURE 9
Analysis of immunotherapy between high- and low-group. (A) TMB differences between high- and low-group. The association between RiskScore
and TMB. (B) T cell inflamed GEP score differences between high- and low-group. The association between RiskScore and T cell inflamed GEP score. (C)
Th1/IFNγ gene signature score differences between high- and low-group. The association between RiskScore and T cell inflamed GEP score. (D)
Cytolytic activity differences between high- and low-group. The association between RiskScore and Cytolytic activity. (E) The expression of immune
checkpoints genes between high- and low-group. (F) The association between RiskScore and immune checkpoints genes. (G) TIDE analysis between
high- and low-group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.
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In this study, based on 29 TME gene signatures, the TCGA-
CESC cohort samples were divided into three immune subtypes (C1,
C2, C3), which showed significant differences in prognosis, immune
characteristics, pathway enrichment, gene mutation, and
immunotherapy. C3 with good prognosis presented
immunoinfiltration state, and cell growth-related pathways were
activated in C1 accompanied by poor prognosis. Based on the three
immune subtypes, the risk model was constructed by univariate Cox
regression analysis and random survival forest model. We found
that patients in the low-risk group had longer survival than those in
the high-risk group, and there were significant differences in
immunoinfiltration and immunotherapy.

In recent years, immune system therapies such as immune
checkpoint inhibitors have shown remarkable effects in the field
of anti-tumor. Studies have shown that highly mutated tumor genes
can induce the production of a large number of neoantigens, which
can activate immune cells and lead to a tumor-suppressing immune
response (Büttner et al., 2019). MSI is closely related to the efficacy of
tumor immunotherapy (Baretti and Le, 2018). Multiple studies have
demonstrated that TMB, T cell inflamed GEP, TH1/IFN-γ, TIDE are
emerging biomarkers for predicting the efficacy of tumor
immunotherapy (Samstein et al., 2019). This study found that
T cell inflamed GEP and TH1/IFγ scores were negatively
correlated with RiskScore, and the low-risk group had a lower
TIDE score. We speculated that patients in the low-risk group
may benefit from immunotherapy.

Among the five key genes, ITGA5, ESMI, and CXCL2 were
risk factors for the prognosis of CESC, while LAG3, and DES
were protective factors. Multiple studies have shown that
increased ITGA5 expression predicts poor prognosis of
tumors, such as ovarian cancer (Gong et al., 2016), breast
cancer (Xiao et al., 2018), and lung cancer (Zheng et al.,
2016). CXCL2 expression level was closely related to lymph
node metastasis and prognosis of cervical cancer patients (Zhang
et al., 2018; Yang et al., 2021). Patients with high levels of LAG-3
peripheral t cells may suppress the antitumor response in a way
that PD-1 or CTLA-4 blockers cannot overcome. LAG-3 has
shown promise as a target in preclinical models, and drugs
targeting LAG-3 are already in the early stages of clinical
development, showing modest activity in unselected patient
populations (Grosso et al., 2007; Brignone et al., 2009;
Kraman et al., 2020). Two other genes including ESMI, and
DES were little studied and their involvement in CESC remains
largely unexplored, and more basic researches are needed to
reveal their biological function in CESC.

There are some limitations in this study. First, it is necessary to
verify the significance of hub genes in cancer tissues through
experiments, such as RT-qPCR, IHC, and Western blot. Second,
although our results show good predictive potential and clinical
value of the five gene prognostic signature, prospective studies are
needed to demonstrate the clinical application and prognostic value
of this model in patients.

In this study, based on 29 TME gene signatures, we not only
identified three subtypes and constructed a 5-key genes prognostic
signature of CESC, which had a potential prognostic value. Those
fundings maybe provided prognosis prediction and precision
treatment for clinicians.
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