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Late-stage drug development failures are usually a consequence of ineffective
targets. Thus, proper target identification is needed, which may be possible using
computational approaches. The reason being, effective targets have disease-
relevant biological functions, and omics data unveil the proteins involved in these
functions. Also, properties that favor the existence of binding between drug and
target are deducible from the protein’s amino acid sequence. In this work, we
developed OncoRTT, a deep learning (DL)-based method for predicting novel
therapeutic targets. OncoRTT is designed to reduce suboptimal target selection
by identifying novel targets based on features of known effective targets using DL
approaches. First, we created the “OncologyTT” datasets, which include genes/
proteins associated with ten prevalent cancer types. Then, we generated three
sets of features for all genes: omics features, the proteins’ amino-acid sequence
BERT embeddings, and the integrated features to train and test the DL classifiers
separately. The models achieved high prediction performances in terms of area
under the curve (AUC), i.e., AUC greater than 0.88 for all cancer types, with a
maximumof 0.95 for leukemia. Also, OncoRTT outperformed the state-of-the-art
method using their data in five out of seven cancer types commonly assessed by
both methods. Furthermore, OncoRTT predicts novel therapeutic targets using
new test data related to the seven cancer types. We further corroborated these
results with other validation evidence using the Open Targets Platform and a case
study focused on the top-10 predicted therapeutic targets for lung cancer.
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1 Introduction

The development of novel anticancer drugs is associated with high costs, poor safety
profiles, and is a time-consuming process with significant failure rates (Bhavana, 2017).
Thus, several groups have proposed models developed with machine learning (ML) and deep
learning (DL) techniques to address cancer-related issues. These models integrate features of
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the biological processes to accomplish various tasks, including
identifying new gene-disease associations, pinpointing the cancer
driver genes (Althubaiti et al., 2019; Althubaiti et al., 2021),
predicting cancer-specific biomarkers (Pal et al., 2007; Tabl et al.,
2019), predicting anticancer peptides (Arif et al., 2022), and
predicting pan-cancer metastasis (Albaradei et al., 2019;
Albaradei et al., 2021a; Albaradei et al., 2021b; Albaradei et al.,
2022c) (Albaradei et al., 2022). There are also other models focused
on cancer-related drug repurposing that predict drug response in
cancer cell lines (Liu et al., 2020) and novel oncology drug-target
interactions (DTIs) (Huang et al., 2016; Dezső and Ceccarelli, 2020).
In addition, other groups have proposed more generic DTIs
prediction methods (Thafar et al., 2020b; Thafar et al., 2020;
Alshahrani et al., 2021; Alshahrani et al., 2022; Thafar et al.,
2022) with high prediction performance that provides similar
topic-specific information (Thafar et al., 2019). All these avenues
could lead to artificial intelligence (AI) tools that support clinicians
and pinpoint potential new drugs. However, the models focused on
repurposing existing drugs are only useful if an effective target is
known, as late-stage drug development failures are usually a
consequence of ineffective targets (Harrison, 2016). Thus,
identifying appropriate targets or rather disease-specific targets is
one of the most crucial steps in the drug development pipeline.

In this regard, Nidhi and colleagues (Nidhi et al., 2006) were
among the first groups that tried to computationally correlate
experimental target fishing technologies to predict potential
targets for compounds based on chemical structures alone. They
trained a multiple-category Laplacian-modified naïve Bayesian
model on extended-connectivity fingerprints of compounds from
964 target classes in the WOMBAT (World of Molecular
BioAcTivity) chemogenomic database. As a result, they reported
that the model predicted the top three most likely protein targets for
all MDDR (MDL Drug Database Report) database compounds, 77%
of the time (for compounds from 10 MDDR activity classes with
known targets). Furthermore, the model systematically
deconvolutes MDDR compounds annotated with only generic
activities such as “antineoplastic” or “kinase inhibitor” to specific
targets associated with the therapeutic effect, which suggests that the
model can predict new targets for orphan compounds. However,
since target proteins were shown to have a high degree and
betweenness centrality in the human protein-protein interaction
(PPI) network (Yao and Rzhetsky, 2008), Li and colleagues (Li et al.,
2015) tried to address this problem in a generic manner. They
constructed a PPI network and then calculated the topological
feature values of proteins based on graph theory to generate
feature vectors. They used the minimum redundancy - maximum
relevance (mRMR) feature selection approach to select the features
with discriminative information and then random forest (RF) to
construct the prediction model. This study showed network-based
features to be significant in scoring potential therapeutic targets (Li
et al., 2015).

To the best of our knowledge, only two very recent ML
methods identify novel therapeutic targets for oncology
(Bazaga et al., 2020; Dezső and Ceccarelli, 2020). In the first
approach, Dezso and Ceccarelli (Dezső and Ceccarelli, 2020)
leveraged the growing number of large-scale human genomics
and proteomics data to make in silico target identification. They
developed an ML approach that prioritizes proteins based on

similarity to targets of an approved drug. This was done by
computing an extensive collection of protein features that the
learning method scores based on the features’ ability to
discriminate the approved target proteins from others. The
model achieved high prediction performance (Area Under the
Curve (AUC) of 0.89) based on an independent set of clinical
trial targets. In the second approach, Bazaga and colleagues
(Bazaga et al., 2020) developed a method to identify novel
therapeutic targets for different cancer types. This method
utilized PPI and generated latent feature vectors integrated
with genomic features (gene essentiality, gene mutation, and
gene expression) and tools to investigate gene-cancer
associations for nine cancer types. They applied feature
importance analysis and feature selection and then utilized
ML classifiers to predict novel therapeutic targets for cancers.
They obtained high performance for some cancers and good for
others in terms of AUC (Bazaga et al., 2020).

Here, we contribute to this line of research by developing the
target protein prediction method, OncoRTT, that better exploits
efficient features of the known targets using more advanced
approaches and integrating features from several resources to
improve target protein prediction in a topic-specific manner
(more importantly, specific cancer types). Thus, our method,
OncoRTT, is the first attempt to use DL-based models whose
primary goal is to systematically predict potential cancer-specific
therapeutic targets (Thafar, 2022). The main contributions of this
work can be summarized as follow.

1. We developed the first DL-based method for predicting novel
cancer-type-specific therapeutic targets.

2. The DL-based method, OncoRTT, provides predictions of novel
therapeutic targets per cancer type that can serve as experimental
starting points for cancer-related research.

3. As a future direction, the novel therapeutic targets identified by
OncoRTT will be used to establish novel oncology-related DTI
predictions.

4. The side product of this work is an OncologyTT dataset, a
collection of drugs and target genes associated with several
cancer types, which can facilitate the development and
evaluation of additional in silico oncology drug-target research.

2 Materials

This work focuses on ten globally prevalent cancer types based
on the cancer burden (GLOBOCAN estimates of incidence and
mortality) in 2020 (Sung et al., 2021). The cancer types included are
breast, lung, colon, liver, rectum, thyroid, bladder, non-Hodgkin
lymphoma, leukemia, and kidney cancers.

2.1 The data samples (OncologyTT dataset)

To create our data, the Oncology Therapeutic Targets
(OncologyTT) dataset, several steps were applied using multiple
data sources, as shown in Figure 1. OncologyTT includes drug-target
information linked to ten human cancers, consisting of target and
non-target samples for each cancer type (Thafar, 2022).

Frontiers in Genetics frontiersin.org02

Thafar et al. 10.3389/fgene.2023.1139626

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1139626


As a first step, we collected all anticancer drugs approved by
the food and drug administration (FDA) from the national cancer
institute (NCI) for each of the ten cancer types https://www.
cancer.gov/about-cancer/treatment/drugs/cancer-type by July
2021. Second, for each anticancer drug, we obtained all
synonyms and drug bank IDs from the DrugBank database
(Wishart et al., 2008). Third, the approved targets for each
drug and its synonyms (i.e., all genes with “approved” status
for DTIs) were retrieved from DrugBank and the Therapeutic
Target Database (TTD) (Wang et al., 2020). Since the number of
target genes is limited for each cancer type and we need more data
to train ML/DL models, we increased the number of targets as a
fourth step. We applied this step by adding biomarker genes that
are significantly overexpressed (Bao et al., 2019; Morani et al.,
2021) from the complete gene expression (GE) in the Catalogue
Of Somatic Mutations in Cancer (COSMIC) database https://
cancer.sanger.ac.uk/cosmic/download. COSMIC is the world’s
largest and most comprehensive resource for exploring the
impact of somatic mutations in the human cancer (Bamford
et al., 2004). It also provides all gene expression level 3 data from
The Cancer Genome Atlas (TCGA) database (Weinstein et al.,
2013; Ganini et al., 2021) portal for the current release (we
downloaded it in August 2021). Our reasoning is that
biomarker genes (also called tumor markers) can provide
indications about cancer, which means they form part of the
key cancer-related modules, making them candidate targets
(Henry and Hayes, 2012; Kamel and Al-Amodi, 2017). The
details of how we collected the biomarker genes that are
significantly overexpressed are provided in Supplementary
Material Section 1. Finally, using the UniProt web server
(UniProt, 2021), we refined all the target genes by removing
all the genes with no SwissProt records (i.e., records that are
manually annotated and reviewed with information extracted
from literature or curator-evaluated computational analysis). At
the end of this process, we obtained all the positive genes for our
dataset with SwissProt records in the UniProt database.

We additionally generated a negative dataset (i.e., non-target
genes) for our classification model. First, we obtained a pool of
human genes by retrieving the gene name and protein name for
every gene entry in HumanMine www.humanmine.org, a segment
of the InterMine project (Smith et al., 2012), that serves as an
integrated warehouse of Homo sapiens genomic data. Then, we
removed all the positive gene set entries from the pool of human
genes. As a result, we have a negative dataset of more than
17,000 human protein-coding genes. Finally, we randomly
retrieved the negative samples (non-target genes) from this pool
for each cancer type (without any overlap of the protein-coding
genes between the cancer types), equal to the number of positive
samples. That is, even if the negative set is chosen randomly, there
may be some biases in the dataset, therefore we created random
negative datasets per cancer type to ensure the potential biases do
not affect all the tests. It is worth mentioning that we have generated
the same number of negative samples as the positive samples to
obtain a balanced dataset, which is important in the ML
classification problem to give equal priority to each class and
avoid poor predictive performance for the minority class or
biased classification.

All the steps mentioned above allowed us to obtain the final
dataset, “OncologyTT”, which includes the positive gene dataset
(i.e., target) and the negative gene dataset (i.e., non-target)
summarized in Figure 1.

For all positive and negative samples (i.e., target and non-target
genes) in our datasets, the amino-acid sequences were downloaded
in August 2021 from the Uniprot database (UniProt, 2021) using the
primary gene name. Also, we obtained all the UniProt IDs and the
protein names. Table 1 summarizes this dataset categorized based on
the ten cancer types. The total number of all data samples (Genes)
with no duplicates is 3,117. Briefly, for each cancer type, we provide
the number of anticancer drugs with at least one approved
interaction (in column 2), the number of targets that interacted
with drugs (in column 3), the number of unique targets that
interacted with approved anticancer drugs with no duplicate (as

FIGURE 1
The steps implemented to create the OncologyTT dataset.
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multiple drugs can interact with the same target protein) (in column
4). The fifth column indicates the number of over-regulated cancer
driver genes we consider positive samples. The sixth column is a sum
of the fourth and fifth columns indicating the total number of
positive genes, while the next column is the total number of negative
genes.

2.2 The Cancer-Target dataset used by the
baseline method

We downloaded the Cancer-Target datasets on 20 September 2021,
from the GitHub link: https://github.com/storm-therapeutics/
CancerTargetPrediction/tree/master/analyses_data/training_sets_genes.
This dataset consists of target and non-target genes for nine common
cancers. However, we excluded two cancer types not included in our
study. Table 2 provides the statistics of this dataset (Bazaga et al., 2020).
In our work, we utilized this dataset for two purposes. First, we used it to
perform a fair comparison with the baseline method by using their
dataset and following their experimental settings for training and testing,
explained later in Section 4.2. Second, we used it as unseen independent
test data (new genes not part of the training stage). We considered all
random negative samples initially generated from the pool of human
genes as unlabeled data samples and then predicted the novel

therapeutic targets. We applied our methods’ pipeline for feature
extraction to this dataset, including omics features and BERT
embedding features.

It is worth mentioning, we considered all random negative
samples initially generated from the pool of human genes as
unlabeled data samples and then predicted the novel therapeutic
targets. This justification is based on a study (Bekker and Davis,
2020) that shows unlabeled data, which may include both positive
and negative samples, can be used as the learning process can be
done through positive samples, called positive learning or PU
learning. The difference between PU learning and regular binary
classification is that during the training, only some of the positive
samples in the training data are labeled, but none of the negative
samples are. PU has attracted increasing interest within the ML
methods as this type of data naturally appears in several application
areas, including target identification.

3 Methods

3.1 Problem formulation

This study describes the goal of identifying the therapeutic
targets as a binary classification problem. As mentioned in the

TABLE 1 OncologyTT dataset statistics for the ten cancer types. Each cancer type includes the number of anticancer drugs, targets that interacted with drugs, the
unique targets with no duplicates, over-regulated cancer driver genes, and the total number of positive and negative genes.

Cancer type # Of the approved
drugs

# Of
DTIs

# Of approved
targets

Cancer
genes

Total positive
genes

Negative
genes

All
genes

1- Bladder 13 28 24 91 115 115 230

2- Breast 40 106 71 92 163 163 326

3- Colon 16 53 39 89 128 130 258

4- Kidney 19 72 43 100 143 143 286

5- Leukemia 54 188 134 81 215 215 430

6- Liver 10 59 34 100 134 134 268

7- Lung 39 110 68 90 158 158 316

8- non-Hodgkin’s
lymphoma

47 116 92 81 173 173 346

9- Rectal 16 53 39 81 120 120 240

10- Thyroid 10 58 33 100 133 133 266

TABLE 2 Statistics of the Cancer-Target baselinemethods’ datasets. It includes the number of targets, the number of cancer genes, and the total number of positive
and negative genes for each of the seven cancer types.

Items Bladder Breast Colon Kidney Leukemia Liver Lung

Target genes 26 58 32 31 99 26 11

Cancer genes 13 36 61 1 203 1 63

Total number of positive genes (target + cancer genes), excluding genes with no data
available

39 87 83 32 228 27 67

The number of negative genes used for each set 39 87 83 32 228 27 67
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previous section, we generated all data samples (i.e., human genes)
in our datasets that can be represented as vector X = {x1, x2, . . ., xn}
where n is the number of all data samples. Since our problem is
supervised learning, we also provided all data samples with their
class labels Y = {y1, y2, . . ., yn} by specifying if the cancer gene is a
target (i.e., positive samples) or if it is non-target (i.e., negative
samples) such as:

yi � 0, xi is non − target: 1, xi is target gene{ } (1)
We followed the samemethodology for all cancer types. For each

data sample (gene), we extracted different features from multiple
resources, as explained later. The classification model aims to find
the hidden patterns and associations between genes and their labels
based on the feature vector (FV) and then predict the class labels
(i.e., target or non-target).

3.2 OncoRTT model workflow

Figure 2 provides the workflow used to develop the
OncoRTT model, which comprises six main steps applied to
each cancer type separately. These steps are summarized as
follows.

1. Generating data samples (consisting of target genes and non-
target genes),

2. Extracting and integrating features from amino-acid sequences
by applying BERT-based embeddings and from omics features,

3. Building several classifiers for target prediction,
4. Retraining the best-performing DL model using the whole

dataset,
5. Utilizing new independent test data to predict novel therapeutic

targets,
6. Validating the novel therapeutic target using multiple sources.

We provide a detailed explanation of each step below.

3.3 Feature extraction

The amino acid sequences are the fundamental building blocks
of proteins, and the amino acids’ chemical and chemo-physical
properties define the protein’s biological activity, specifically, the
drugs that bind to it. Thus, a major Bioinformatics objective is to
analyze amino-acid sequences of proteins and infer different
structural and functional information (UniProt, 2021). Therefore,
amino acid sequences have been used as the main source for features
to develop several methods to predict if a protein is a target (Bakheet
and Doig, 2009; Wang et al., 2014; Bull and Doig, 2015; Kumari
et al., 2015; Kim et al., 2017), to predict the proteins’ binding sites
(Yan et al., 2006; Andrews and Hu, 2015), or to predict proteins
functionality (Kulmanov et al., 2018; Kulmanov and Hoehndorf,
2021; Sara et al., 2021). This indicates the importance of amino-acid
sequences. Another advantage of the amino acid sequences is that
they are known and available for all proteins (i.e., genes) in contrast
to other types of information that are not available for all proteins,
such as proteins’ interactions with other proteins or drugs.

Additionally, single and multi-omics data have been widely used
to predict potential target proteins (Ferrero et al., 2017; Ding et al.,
2018; Liang et al., 2019; Bazaga et al., 2020; Nicora et al., 2020).
Omics technologies enable screening biological samples to search for
novel targets (Paananen and Fortino, 2020). Genome-wide
association studies are crucial for new drug targets’ prediction or
validation. This type of study can provide a systematic strategy to
evaluate the drug targets’ therapeutic efficacy and related side effects
and understand their action mechanisms (Matthews et al., 2016).
Thus, we extracted our essential features from amino-acid sequences
as the primary source to differentiate between the target and non-
target proteins. We also extracted omics data as a secondary source
of features that can potentially complement or enhance the

FIGURE 2
The workflow used to build the OncoRTT model consists of six main steps.
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prediction of target and non-target proteins (we provide the
prediction performance using the embedding method with and
without the omics data in the Results and Discussion section).
The subsequent subsection describes the feature extraction
process in more detail.

3.3.1 Sequence embedding-based features
Bidirectional Encoder Representations from Transformer

(BERT) is a well-known DL-based embedding method that has
many benefits over conventional sequential models such as Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). It
has promising achievements in several natural language processing
(NLP) tasks by extracting data patterns using unsupervised learning
frommassive unlabeled data. BERT-based models have been used in
the biomedical domain (Zhang et al., 2019; Sun et al., 2021).
Furthermore, the BERT technique has been applied to protein’s
amino acid sequences to generate crucial feature representations
used in different downstream tasks (Ali Shah et al., 2021; Ali Shah
and Ou, 2021; Charoenkwan et al., 2021). Thus, we applied a BERT-
based embedding model (Vaswani et al., 2017; Devlin et al., 2018)
called ProtTrans (Elnaggar et al., 2022) to automatically extract
crucial features from the amino-acid sequences that capture the
most significant properties for each gene in our dataset. The
ProtTrans models are state-of-the-art pre-trained models for
proteins (Dallago et al., 2021), trained on thousands of GPUs
from Summit and hundreds of Google TPUs using various
Transformers Models.

In this work, we used one of the ProtTrans models called
ProtBert-BFD (Elnaggar et al., 2022). ProtBert-BFD was trained
on the BFD-100 dataset (Steinegger and Söding, 2018; Steinegger
et al., 2019) containing up to 2,122 million protein sequences for the
protein language model (LM). It was trained for 800 k steps for
sequences with a max length of 512 and an additional 200 k steps for
sequences with a max length of 2000, enabling the model to first
extract crucial features from shorter sequences and then perform the
training on the longer sequences more efficiently.

The ProtBert-BFD model that we used consists of several layers:
30, hidden layers size: 1,024, hidden layers intermediate size: 4096,
number of neurons: 128, masking probability: 15%, optimizer: lamb
(You et al., 2019), learning rate: 0.002, weight decay: 0.01, and the
number of all tuned parameters: 420M. Please refer to the main
ProtTrans paper (Elnaggar et al., 2022) for more details.

We directly used the pre-trained ProtBert-BFD model in a
transfer-learning fashion that can be used for different

downstream ML tasks, predicting targets/non-targets in our case.
We applied the ProtBert-BFD model on our dataset genes’ amino-
acid sequences per cancer type to embed vector representations per
sequence. Therefore, we automatically extracted the information
learned by the protein LMs through embeddings (i.e., biological
sequence representations from the last hidden state of the protein
LM) with a size equal to n*1,024, where n is the number of genes in
each cancer type, and 1,024 is the dimension of the embeddings. We
used these embeddings integrated with other features as input to the
DL classifiers.

3.3.2 OMICS-based features
For the omics data, we used TCGAbiolinks (Colaprico et al.,

2016; Mounir et al., 2019), a R/Bioconductor package that provided
an application programming interface (API) to access, download,
and prepare data from the GDC platform and TCGA data for
analysis. We used the TCGAbiolinks package to access ten TCGA
projects for ten cancers we work with to obtain data for primary
tumors but using different tissue/disease types. Also, we used this
package to preprocess the legacy (hg19) or harmonized (hg38)
TCGA datasets. We accessed and downloaded the required data
in October 2021. Supplementary Table S1 provides the details of
each cancer, including the project name, the name of the study, and
the tissue type. First, we defined a list of ten samples for each cancer
by providing the relative TCGA barcodes for the query. Then we
defined a list of genes that appears in these samples to collect the
omics features, i.e., the expression levels and mutations associated
with every gene. However, the number of samples decreases when
we remove some samples with no gene expression or mutation data
available, as is the case for Rectal cancer. To obtain gene expression
data, we specified the platform as “Illumina HiSeq” in the gene
expression category GDC-query function. For gene mutation, we
used “add.gistic2. mut” in the GDC-prepare function that indicates
if a list of genes is given, columns with gistic2 results from GDAC
firehose (hg19), and a column indicating if there is a mutation in that
gene or not by giving values of TRUE or FALSE. These values are
saved in MAF (mutation annotation formats) files to get each gene
and its mutation information.

After we obtained the expression and mutation data for all the
genes, we extracted features for each gene across several patient
samples for matching cancer types. Since our data samples are the
genes, not the patients, we aggregated gene expression values for
each gene by finding the maximum, average, median, and minimum
expression values over all patient samples for corresponding cancer.
Therefore, each gene is represented by four features representative of
gene expression level across several patient samples, which also
capture whether or not the gene is always highly expressed or not.
Furthermore, we calculated the gene mutation feature by counting
howmany times each gene is mutated across all patient samples used
per cancer type. Finally, all features are combined and then
normalized using min-max normalization.

3.4 Classification model for prediction

After completing the feature extraction process and obtaining a
feature vector (FV) for all genes per cancer, we fed the three sets of
FV into the classifiers, which include two ensemble ML classifiers,

TABLE 3 The optimized parameters with multiple tested values. Bold font
indicates the selected value for each parameter.

Parameters Tested values

Node size in the hidden layers [8, 12, 16, 32, 64]

Activation function [ ‘tanh’, ‘relu’, ‘sigmoid’]

Optimizers [’SGD, ‘Adam, ‘Nadam’]

Batch size [4, 8, 16, 32]

Number of epochs [10, 15, 20, 30,50,100]

Learning rate [0.1, 0.01, 0.001]
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one classical ML classifier, and one DL classifier, to predict target/
non-target genes, as illustrated in Figure 2. We implemented RF,
eXtreme Gradient Boosting (XGBoost), and support vector machine
(SVM) classifiers using Scikit-learn (Pedregosa et al., 2011) or
XGBoost (Chen et al., 2019) libraries, respectively, for target
identification. The DL model we utilized is a deep neural
network (DNN). DNN performed better than the ML classifiers
in all experiments when using the Integrated-based FV and
Embedding-based FV for all cancer types but performed the
worst when using only Omics-based FV, with only five features.
This result may be a consequence of DL models working better with
larger feature numbers. We report the DNN results and provide the
prediction performances for RF, XGBoost, and the SVM classifiers
in Supplementary Material Section 2. To improve the results, we
optimized multiple parameters for the DNN while keeping some
default values for other parameters during the training stage using
only training data to evaluate several configurations and then
selected the model with the best configurations. We applied the
same classifier’s configuration to all cancer types. After that, the
evaluation was performed using the test data. We implemented the
DNN using Python Keras (Chollet and others, 2018) with the
TensorFlow backend. Table 3 provides the most critical
parameters tuned for the DNN classifier with selected values, and
Table 4 provides the architecture of the proposed DNN model.

3.5 Evaluation protocols

This section introduces the evaluation metrics we used to
measure the accuracy of our prediction method and the
experimental settings. Table 1 provides the number of positive
and negative samples per cancer type, which reflects that our
dataset is balanced. Thus, to evaluate our model’s prediction
performance, the area under the receiver operating characteristic
(ROC) curve (AUC) (Davis and Goadrich, 2006) is calculated. To
obtain the AUC, we first calculated the false positive rate (FPR) and
true positive rate (TPR) (also called recall or sensitivity) (Powers,
2011), based on true positive (TP), false positive (FP), true negative
(TN) and false-negative (FN) values, as shown in Eqs 2, 3,
respectively. Then, the ROC curve is constructed using different

TPR and FPR values of different thresholds to calculate the AUC.
The closer the value of AUC is to one, the better the performance is.
We have selected the AUC metric to better assess our model
performance and show its robustness. When AUC is high, it
illustrates that the FP is low, and with no high false-positive
prediction problem.

FPR � FP/ TN + FP( ) (2)
TPR � TP/ TP + FN( ) (3)

For the experimental setting we implemented to evaluate the
OncoRTT methods’ prediction performance and robustness, we
independently applied stratified 10-fold cross-validation (CV) on
each cancer dataset. Therefore, the data were randomly split into ten
subsets in a stratified way where each subset must include the same
percentage of the target and non-target genes (i.e., negative and
positive samples). Then, we held one subset for testing and used the
remaining nine subsets to train the model. This process was repeated
ten times to have each subset of the data in the test data. Finally, we
averaged the AUC that is calculated for each fold for all ten folds.

Furthermore, another evaluation setting used by (Bazaga et al.,
2020), was also implemented to compare our results with this
baseline method using their dataset and their procedure to
perform a fair comparison, which is explained in more detail in
the comparison section. Finally, we retrained our models using all
positive and negative data samples in our datasets and then applied
these models on new unseen test data to predict the labels of this new
data (i.e., predict the novel therapeutic targets as positive data).

We ran all experiments on a Linux Ubuntu 18.04.5 LTS Intel
Xeon Platinum 8176 workstation, 64-bit OS, with 112 processors
and two GPUs: Quadro and Titan, with CUDA version 11.0. For
implementation, we mainly used Python version 3.8, and we used R
version 4.1.1 for parts related to omics features preprocessing, and
gene expression and mutation features.

4 Results and Discussion

We systematically evaluated the OncoRTT method’s
performance using the datasets we created. Next, we compared

TABLE 4 The proposed DNN model’s architecture with each layer’s parameters.

DNN architecture component Parameters

The input layers
(3 different sets of features)

1029-dimension FV: Integrated-based features: (1,024 embeddings +5 OMICS features)

1024-dimension FV: Embeddings-based features

5-dimension FV: OMICS-based features

The hidden layer1 - Dense layer neurons = 64, activation = ‘tanh’, kernel_initializer = ‘normal’

kernel_regularizer = ‘l2’, bias_regularizer = ‘l2′

The hidden layer2 - Dense layer neurons = 32, activation = ‘tanh’

kernel_regularizer = ‘l2’, bias_regularizer = ‘l2′

The output layer neurons = 1, activation = ‘sigmoid’

The Compiler loss = ’binary_crossentropy’, optimizer = ’nadam’, metrics = ’accuracy’
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the performance of our method with the state-of-the-art method.
Finally, we predicted the novel target genes using unseen
independent test data.

4.1 OncoRTT prediction performance

We aim to integrate the omics features extracted from the
expression and mutations associated with each gene with the
BERT embedding features automatically generated from the
amino-acid sequences and use them for training, testing, and
evaluating our method. However, to show the effectiveness of the
feature integration process, we also obtained results using the omics
features as stand-alone and the BERT embedding feature as stand-
alone. Thus, we separately trained and tested our proposed DNN
using three distinct sets of FVs: OMICS FV, BERT-Embeddings FV,
and Integrated FV for each cancer type separately. In addition, we
quantitatively evaluated three versions of OncoRTTmodels in terms
of AUC calculated as the average performance of models on the test
set during the 10-fold CV. Figure 3 shows all obtained results using
the three distinct sets of FV for ten cancer types in terms of AUC.
The results exhibit consistency with regard to achieving superior
performance when using the integrated FVs, the second-best
performance when using the BERT-Embeddings FVs, and the
worst performance when only using OMICS FVs across all
cancer types.

Using the different features for several cancer types highlighted a
few key aspects worth mentioning.

• The best results were obtained when we used the leukemia data
(AUC = 0.95) for the integration model, and the results
obtained for the other two models (Embeddings-based FV
and OMICS-based FV) were also among the highest (88% and
77%) compared to the other cancers for each model. The
reason may be the leukemia dataset is larger than the other
datasets collected, and DL models generally perform better
with more extensive data.

• Using the OMICS FVs alone achieved the worst performances
for all the cancer types, which is expected as only a small
number of features (only five features) were included.
However, combining the OMICS FV with the BERT-
Embeddings FVs across all cancer types significantly
improved the OncoRTT prediction performances. That is,
the result shows the contribution of the BERT-Embeddings
FVs translates into a range of gain of about 13% (which is a
substantial increase in the case for liver cancer) up to 29%
(rectal) and 30% (colon) in the different cancer types. This
result shows that the BERT-Embeddings FVs contributed
substantially to the overall prediction achieved using the
Integrated FVs.

• On the other hand, using the BERT-Embeddings FVs alone
achieved much higher performances for all the cancer types, but
the performances were still lower than the prediction
performances achieved when using the Integrated FVs. Thus,
despite this low (AUC <0.70) or acceptable (AUC >0.75)
performance in some cases, when we only used the OMICS
FVs, when we combined the BERT-Embeddings FVs with the

FIGURE 3
Prediction performances of the DL-based OncoRTTmodel using three different sets of FV for 10 cancer types in terms of AUC. The dashed line is the
null model (AUC = 0.50).
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OMICS FVs across all cancer types, the result shows the
contribution of the OMICS FV that translates into a range of
gain of about 1% (which is a very slight increase as is the case for
bladder cancer) up to 7% (colon, leukemia) and 8% (lung
cancer) for the different cancer types. The OMICS FVs
enhanced the prediction performance because therapeutic
targets are often the mutated or overexpressed genes
underlying the cancers’ progression (Gibbs, 2000). Overall,
these results show that both the BERT-Embeddings FVs and
OMICS FVs contribute substantially to the high prediction
performances achieved with the Integrated FVs.

• Even though the Integrated FV produced the best-performing
models, the OncoRTTmethod achieved promising results for all
cancer types when we fed only the BERT-Embeddings FVs to
the DNN classifier (0.92 > AUC >=0.82). These results
demonstrate the effectiveness of DL in two aspects: 1) The
feature extracted by the ProtBert-BFDDL-based model revealed
that the LM-feature representation (i.e., embeddings) from
unlabeled and complex biomedical data represented in the
protein sequences captured critical biophysical and biological
features of the protein. 2) The prediction, where the DL method
can identify the hidden pattern from the embeddings and better
distinguish the target genes from non-target genes by giving the
features different weights based on their importance and using
them in the prediction process. However, it is not an easy task to
interpret these auto-generated features (Ching et al., 2018).

Finally, to show the robustness of our DL models and verify that
the high performance of our method in all cancer types was not
random, we implemented the Y-Randomization test (also called
Y-Permutation) (Rücker et al., 2007). The Y-randomization test is a
non-parametric statistical approach to validate the quantitative
structure-activity relationship (QSAR) models. To perform this
test, we compare the DL model performance trained using the
original dataset versus several versions of our DL model trained
using the shuffled datasets. Therefore, for each cancer type

separately, we first trained the DL model using the original data
(i.e., FVs and labels) and obtained the results using the test data.
After that, for 100 iterations, we fixed the FVs but scrambled the
labels, trained the model over the new features-labels pairs, and
acquired the new performances. The evaluations have been done
using test data in terms of the R-squared (R2) evaluation metric,
which is commonly used to measure the goodness of fit (Rücker
et al., 2007). Consequently, we proved that OncoRTT prediction
performance is statistically significant with the probability values
(p-values) < 0.05 for each cancer type as shown in Table 5 compared
to 100 randomized DL model results that were not statistically
significant with p-values >= 0.05. Moreover, OncoRTT DL models
obtained good R2 results for all cancer types compared to the 100 DL
models trained using the shuffled datasets, obtaining low (<=0.50)
or negative R2 results. Negative R2 implies that the model does not
observe the data trend leading to a worse fit than the horizontal line
(i.e., picked by chance), which means poor prediction performance
as expected for models trained using shuffled data. Getting very low
p-values provides evidence of a dependency between the features
and the labels, and our DL model unveiled these correlations and
patterns.

4.2 Comparison with the baseline method

To illustrate the OncoRTT method’s effectiveness, we compared
it with the previous work (Bazaga et al., 2020), which is, as far as we
know, the only work focused on predicting therapeutic targets for
specific cancer types making it the state-of-the-art method.
Therefore, to provide a decent comparison of prediction
performances, we used the same datasets (Bazaga et al., 2020)
created by this method, followed the same experimental setting,
utilized the same evaluation metrics, and used the optimal
parameters results provided by them.

Using this dataset (Bazaga et al., 2020), we repeated our feature
extraction steps for each cancer that belongs to the seven shared
cancer types. Thus, we first generated BERT embeddings for all gene
sequences using the ProtBert-BFD model in each cancer type.
Second, we obtained omics features for each gene using gene
expression and gene mutation data. After that, we implemented
the same experiment by utilizing a procedure similar to stratified 10-
fold CV. The datasets used include ten disjoint sets of negative
samples (i.e., non-target genes) and one set of positive samples
(i.e., target genes) for each cancer type. Thus, we have in total 390
(bladder), 870 (breast), 830 (colon), 320 (kidney), 2280 (leukemia),
270 (liver), 670 (lung) non-target genes per cancer type. For
example, when we have 39 target genes for bladder cancer, we
used 390 non-target genes (divided into 10 sets of 39), which means
we have ten times more non-target genes than target genes for each
cancer type. Each of the ten negative sample (non-target gene) sets
was separately combined with the same positive sample, shuffled,
and then randomly split into training and test sets (70% for training
and 30% for testing) in a stratified fashion to preserve each class label
distribution. We report results in terms of AUC in the test set. We
repeated this process ten times and averaged the results across all test
sets. Finally, we compared the prediction performance (in terms of
AUC) of the best OncoRTT model with the best model for the
previous work (Bazaga et al., 2020) in seven cancer types, common

TABLE 5 The p-values and R2 evaluation metrics for all cancer types that
demonstrate the DL models prediction performance is statistical significance.

Cancer type Original DL models

p-value R2

Bladder 3.9e-07 0.85

Breast 0.0012 0.96

Colon 7.7e-05 0.92

Kidney 2.9e-06 0.93

Liver 5.5e-05 0.62

Leukemia 0.0004 0.66

Lung 2.1e-06 0.96

Non-Hodgkin Lymph 0.0061 0.85

Rectal 7.3e-07 0.95

Thyroid 0.0052 0.71
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to our work and the previous work (See Figure 4). OncoRTT
outperformed the baseline method by 11%, 11%, 11%, 20%, and
2% in the bladder, breast, colon, leukemia, and liver cancers,
respectively. On the other hand, OncoRTT achieved an AUC
lower by 7% and 3% in kidney and lung cancers, respectively.
However, OncoRTT obtained an average AUC better than the
baseline method by 6.5% across all seven cancers. Despite using
the other methods’ leukemia dataset, OncoRTT again achieved the
best performance for the leukemia dataset.

We believe that this result is a consequence of the leukemia
dataset once again having a larger number of positive and negative
samples and DL being more effective when dealing with more
extensive data. Moreover, the result suggests that the main
advantages/features that make OncoRTT more efficient and
powerful are.

• In our study, we utilized the state-of-the-art method that
generates protein sequence embeddings called ProtTrans
BERT-based embedding, but in the baseline method, they
utilized PPI embeddings. ProtTrans trained two
autoregressive models (Transformer-X and XLNet) and
four auto-encoder models (BERT, Albert, Electra, and T5)
using more than two thousand million protein sequences,
making it the state-of-the-art method to encode the protein
sequence with the highest quality embeddings. ProtTrans-
BERT captures different biophysical properties of the amino
acids, structure classes of proteins, domains of life and viruses,
and protein functions in conserved motifs.

• Using features from the amino-acid sequences strengthens our
method because amino-acid sequences are available for any
protein, while the protein interaction profile is unavailable for
many proteins.

• Similar to the baseline method, the second source of our
features is omics data. However, instead of using the
average of gene expression values over the patients, we
aggregate the GE values using four different functions,
giving a better and broader representation of the GE
features and thus enhancing the prediction performance.

• We used a DNN classifier for prediction, which can learn
arbitrary boundaries and thus handle the binary classification
better than decision trees (i.e., RF, the baseline classifier). Since
we have a high number of features, the DNNworks better than
ML classifiers.

Beyond that, we also provide the comprehensive datasets,
OncologyTT, which is richer than the baseline datasets. That is,
we increased the number of targets by collecting from two reliable
sources (DrugBank and the TTD database).

It is important to mention that in our datasets, OncologyTT,
the negative samples in each fold of the 10-fold CV were the same
negative genes, while in the baseline datasets, the negative
samples are different in each fold with no overlap. Our
method, OncoRTT, utilized supervised learning classifiers
(i.e., took the features and their labels as input) and
performed well by achieving high AUC using OncologyTT and
the baseline datasets. This result demonstrated the capability of
our method and the crucial distinct features that we extracted for
each gene that helps the classifier differentiate between negative
and positive samples (i.e., target and non-target genes).
Moreover, when we evaluated the prediction performance, we
calculated the AUC for each fold and then averaged the results
over the 10-fold CV for both experiments, which mitigates
possible bias and minimizes the variance in the classification
performance.

FIGURE 4
Performance comparison of the OncoRTT method vs. the baseline method in terms of AUC and average AUC for seven cancer types.
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4.3 Novel therapeutic cancer targets
prediction and validation

To further demonstrate OncoRTT’s use, we conducted
several new experiments to predict new therapeutic targets
for each cancer type separately. To perform these
experiments, we utilized two datasets. The first is the

OncologyTT dataset used to build and train our model, and
the second is the Cancer-Target baseline dataset used as
independent unseen test data. Firstly, we considered all the
negative genes in this test data as unlabeled genes collected
from a pool of human protein-coding genes. Thus, we focused on
these unlabeled genes to predict the potential novel target genes.
We implemented the following procedure per cancer type: first,

TABLE 6 Top 10-ranked novel predicted therapeutic targets based on the prediction score for colon cancer with the number and type of evidence linking the targets
and disease.

Gene UniProt ID Prediction
score

Protein name # Of
evidence

Validation evidence type

EEF1A1 P68104 0.9969 Eukaryotic Translation Elongation Factor
1 Alpha

8 Text mining

HP P00738 0.9892 Haptoglobin 6 Text mining, RNA expression

CHL1 O00533 0.9886 Cell Adhesion Molecule L1 Like 6 Text mining, RNA expression

ADIPOQ Q15848 0.9866 Adiponectin, C1Q And Collagen Domain
Containing

74 Text mining, RNA expression

MYLK4 Q86YV6 0.9857 Myosin Light Chain Kinase Family Member 4 0 Linked to one cancer

IGFBP5 P24593 0.9801 Insulin Like Growth Factor Binding Protein 5 5 Text mining, RNA expression

ILK Q13418 0.9785 Integrin Linked Kinase 13 Text mining, Pathways

TFF1 P04155 0.9756 Trefoil Factor 1 5 Text mining, RNA expression, Genetic
association

EPHB2 P29323 0.9727 EPH Receptor B2 42 Text mining, RNA expression, Somatic
mutations, Drugs

EPHA7 Q15375 0.9722 EPH Receptor A7 18 Text mining, RNA expression, Somatic
mutations, Drugs

TABLE 7 Top 10-ranked novel predicted therapeutic targets based on the prediction score for kidney cancer with the number and type of evidence linking the targets
and disease.

Gene UniProt ID Prediction
score

Protein name # Of evidence Association type

LY96 Q9Y6Y9 0.9778 Lymphocyte Antigen 96 1 RNA Expression

WNK2 Q9Y3S1 0.9778 WNK Lysine Deficient Protein Kinase 2 30 Text mining, Somatic mutation

FMO3 P31513 0.9777 Flavin Containing Dimethylaniline
Monoxygenase 3

1 Renal cell carcinoma

RNA Expression

PRKCB P05771 0.9777 Protein Kinase C Beta 6 Somatic mutations, RNA expression, and
Drugs

CDCA8 Q53HL2 0.9774 Cell Division Cycle Associated 8 6 Text mining, RNA expression

Renal cell carcinoma

HSPB6 O14558 0.9773 Heat Shock Protein Family B (Small) Member 6 0 Linked to acute kidney disease

FOSL1 P15407 0.9772 FOS Like 1, AP-1 Transcription Factor Subunit 4 Renal cell carcinoma

Text Mining

TRIM55 Q9BYV6 0.9771 Tripartite Motif Containing 55 0 Linked to colorectal cancer

FBLN7 Q53RD9 0.9769 Fibulin 7 0 Linked to other kidney diseases

RARB P10826 0.9760 Retinoic Acid Receptor Beta 13 Text mining, Drugs

Frontiers in Genetics frontiersin.org11

Thafar et al. 10.3389/fgene.2023.1139626

https://identifiers.org/uniprot:P24593
https://identifiers.org/uniprot:P04155
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1139626


we retrained the best model (i.e., the DNN classifier with
integrated FVs) using the whole OncologyTT dataset. Second,
we used this model for prediction using the unseen test data.
Third, to utilize the prediction results, we increased the number
of epochs to 100 since the data samples are much higher. In this
manner, all the negative genes in the test data predicted to be
positive (i.e., target genes) are collected and ranked based on
their prediction probability scores. We further analyzed the
results of the top-10 ranked targets related to three cancer
types: colon, kidney, and lung cancers, listed in Tables 6;
Tables 7; Tables 8, respectively. Supplementary Tables S3–S6
provide the top-10 ranked targets for the other cancers (bladder,
breast, liver, and leukemia).

We used the Open Targets Platform to verify each cancer’s novel
predicted therapeutic targets (Koscielny et al., 2017). This
comprehensive tool supports the systematic identification and
prioritization of potential therapeutic targets. In addition, it
provides potentially causal evidence linking targets and diseases,
which we applied to link the top predicted targets to specific cancer
types using six of the association methods offered by this platform,
which are.

1. Text mining: Evaluating the strength of the association between
the target gene and specific cancer type using their co-occurrence
in the published literature.

2. Genetic associations: Phenome-wide associated loci prioritizing
the target genes as a likely causal gene for specific cancers.

3. Somatic mutation: A catalogue of somatic mutations that
causally implicate the target genes in specific cancers.

4. Drugs: Clinical candidates and (or) approved drugs
pharmacologically targeting the target genes and indicated for
the specific cancers-the source of approved interaction in the
ChEMBL database.

5. Pathways and system biology: Multiple pathway analysis tools
providing enrichment based on genomic alterations associating
the target gene with specific cancers.

6. RNA expression: Transcriptomic analysis reports a significant
differential expression of the target gene when comparing control
samples with specific cancer samples.

Tables 6, Tables 7, and Tables 8 lists the top-10 ranked novel
target genes for colon, kidney, and lung cancer, respectively, with
their prediction probability scores, the number, and the type of
validation evidence. When we did not find any association to the
specific cancer type, we put ‘0’. However, we specify if this gene is
linked to other cancers or the organ associated with the cancer
progression.

For the top predicted genes in colon cancer, we verified 90% of
the top predicted genes by finding different types of evidence (see
Table 6). The results indicate that the most crucial gene is ADIPOQ,
linked to colon, colorectal, and metastasis colorectal cancers (Yang
et al., 2015; Deng et al., 2020). The possible reason that ADIPOQ
may play a role in cell growth, angiogenesis, and tissue remodeling is
by binding and sequestering various growth factors with distinct
binding affinities (Sakellariou et al., 2016). All genes were associated
with colon cancer based on the Open Targets Platform, except one,
MYLK4. However, MYLK4 is associated with squamous cell
carcinoma. Furthermore, based on Expression Atlas,
transcriptomic and RNA-seq analysis tools show seven of the ten
targets were significantly differentially expressed in colon cancer
(Papatheodorou et al., 2020).

For kidney cancer (see Table 7), the Open Targets Platform links
seven of the top predicted targets to kidney cancer. Specifically, four
are linked to kidney cancer, while the three other genes (CDCA8,
FOSL1, and FMO3) are linked explicitly to renal cell carcinoma, an
aggressive kidney cancer originating in the lining of the proximal

TABLE 8 Top 10-ranked novel predicted therapeutic targets based on the prediction score for lung cancer with the number and type of evidence linking the targets and
disease.

Gene UniProt
ID

Prediction
score

Protein name # Of
evidence

Type of associations

ACMSD Q8TDX5 0.9857 Aminocarboxymuconate Semialdehyde
Decarboxylase

0 Linked to other cancers

ONECUT2 O95948 0.9615 One Cut Homeobox 2 8 Text mining, RNA expression

RPL10L Q96L21 0.9568 Ribosomal Protein L10 Like 0 Linked to other cancer

HIST1H2BL
(H2BC13)

Q99880 0.9363 H2B Clustered Histone 13 5 Text mining, Genetic association, RNA
expression

ALDH8A1 Q9H2A2 0.9322 Aldehyde Dehydrogenase 8 Family
Member A1

0 Linked to other cancer

CACNA1S Q13698 0.9199 Calcium Voltage-Gated Channel Subunit
Alpha1 S

6 Text mining, RNA expression, Pathways

CAV3 P56539 0.9151 Caveolin 3 1 RNA expression

CNTN5 O94779 0.8685 Contactin 5 1 Text mining

MAATS1 Q7Z4T9 0.8396 MYCBP/AMY-1-Associated Testis-Expressed
Protein 1

1 RNA expression

EPHA5 P54756 0.8097 EPH Receptor A5 33 Text mining, Somatic mutation,
Pathways, Drugs
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convoluted tubule (a part of the tiny tubes in the kidney) that
primarily transport urine (Cohen and McGovern, 2005). WNK2
obtained the highest evidence, a critical kinase gene that has a crucial
role in regulating electrolyte homeostasis, cell signaling, survival,
and proliferation. In addition, the catalogue of somatic mutations
that causally implicate WNK2 in kidney neoplasm, and several
published studies connect this gene to different kidney cancers.
Interestingly, although we did not find any connection for TRIM55,
HSPB6, and FBLN7 to kidney cancer, all these genes are associated
with several other kidney diseases, indicating model capability to
find the hidden patterns connecting the genes to specific organs of
interest (Bleyer et al., 2017; Ullah et al., 2020).

For lung cancer (see Table 8), we found evidence linking seven
predicted targets to the disease. Even though there is no evidence
associating the first predicted gene, ACMSD, with lung cancer, this
gene is linked to colorectal, pancreatic ductal, chromophobe renal cell,
breast, and brain cancers, indicating its essential role. CAV3, CNTN5,
and MAATS1 have only one line of evidence linking them to lung
cancer, but the Open Targets Platform links them to other cancers in
the primary or metastasis stages. The 10th predicted therapeutic
target, EPHA5, has the most significant number of evidence
linking it to lung cancer. The top-10 predicted therapeutic targets
for lung cancer are further discussed in the case study below.

To summarize, Tables 6, 7, and 8 (and Supplementary Tables
S3–S6) have several lines of evidence linking the predicted
therapeutic targets to the specific cancer type. These results
increase confidence in the power of our approach for predicting
therapeutic targets, which experimental researchers can further
explore for anticancer drug development and repositioning.

4.4 Lung cancer case study: Findings that
support the predicted novel targets

A comprehensive understanding of specific cancer types and the
hallmarks of each are essential for effective cancer treatment. In
cancer treatment, physicians use drugs to target specific genes (or
proteins) related to the tumor-cell growth and survival (Chatterjee
and Bivona, 2019). Therefore, we further explored the top-10
predicted therapeutic targets for lung cancer by performing
differential expression analysis (DEA) to identify if the top-10
predicted therapeutic targets are DEGs, using the TCGAbiolinks
package implemented in R (Colaprico et al., 2016).

First, we accessed “TCGA-LUAD” and “TCGA-LUSC” to collect
around 58 TCGA tumor samples for lung cancer patients
and 58 corresponding normal TCGA samples and obtained their
relevant transcriptome profiling and gene expression quantification
data. Then, we compared the normal and primary tumor samples
using pair-wise tests to obtain the differential expression genes
between these two groups. Finally, we filtered the DEGs output
by determining a cutoff threshold from the p-values <0.05. Table 9
shows that eight of the top-10 predicted therapeutic targets are
DEGs. p-values and the adjusted p-values (FDR) in Table 9 show
that eight genes are significantly expressed among the top-10
predicted genes, obtaining p-values <0.05, which provides
experimental support for our predicted therapeutic targets.

In our analysis, EPHA5 and RPL10L were not classified as DEGs
based on the normal and primary tumor samples using the cutoff

mentioned above. There is no evidence linking RPL10L to lung
cancer, although it is linked to other cancer types. However, EPHA5
is associated with lung cancer. We found clinical candidates, and an
approved drug (VANDETANIB) targeting EPHA5 has been
indicated for non-small cell lung carcinoma at different phases.
However, these studies’ status is currently only defined as either
“completed” or “active, not recruiting” (Ochoa et al., 2021). Beyond
that, the most significantly expressed gene, ONECUT2, is associated
with five lung cancer categories including lung adenocarcinoma,
non-small cell lung carcinoma, small cell lung carcinoma, lung
carcinoma, and lung carcinoid tumor. On the other hand, the
third significantly expressed gene, ACMSD, has not been linked
to lung cancer. However, ACMSD ultimately controls the metabolic
fate of tryptophan catabolism along the Kynurenine pathway. This is
interesting as Tryptophan is converted to Kynurenine, and the
Kynurenine/Tryptophan Ratio has recently been reported as a
potential blood-based biomarker in non-small cell lung cancer
(Mandarano et al., 2021). Also, the modulation of Tryptophan
metabolism has been used for diagnosis, prognosis, and therapies
in lung cancer (Li and Zhao, 2021), and the Kynurenine pathway is
being targeted for the treatment of Cisplatin-resistant lung cancer
through inhibiting or knocking down indoleamine 2,3-dioxygenase-
1 (IDO1) (Nguyen et al., 2020). However, targeting the Kynurenine
pathway via ACMSD from the same enzyme-inhibitory activity and
antitumor efficacy standpoint has not been accessed.

Beyond this, we performed a MirDB search (http://www.mirdb.
org/), an online database to predict functional microRNA targets
(Chen and Wang, 2020), in November 2021. We found ONECUT2,
MAATS1, CNTN5, and EPHA5 predicted to be controlled by the
same microRNA, hsa-miR-1267. We also found ONECUT2,
MAATS1, and EPHA5 predicted to be controlled by another
microRNA, hsa-miR-203a-3p, as well. Both hsa-miR-1267 and
hsa-miR-203a-3p are two of a 24 panel of circulating microRNA
in plasma, reported by Wozniak and colleagues (Wozniak et al.,
2015), capable of discriminating lung cancer cases from non-cancer
controls (AUC of 0.92). DEGs are vital to understanding the

TABLE 9 The top-10 predicted therapeutic targets for lung cancer identified as
DEGs and ranked based on their p-value. We also provide: FDR, an adjusted
p-value, as a correction of the expression level; LogCPM (the log count per
million), a measure of expression level; and logFC (the log fold-change), which
is the log difference between the normal and primary tumor groups.

Gene p-value LogFC LogCPM FDR

ONECUT2 2.89E-35 −3.9579868 0.152915076 7.76E-34

CAV3 8.08E-34 3.84724947 −1.054627696 1.94E-32

ACMSD 2.31E-17 −3.2579084 0.10877721 1.46E-16

HIST1H2BL 5.65E-13 −4.1565072 −1.807926281 2.44E-12

CACNA1S 2.15E-11 3.09338945 −0.197572093 8.03E-11

MAATS1 7.89E-05 0.70988044 3.15065947 0.000207677

CNTN5 0.000911647 −0.6029651 0.671936123 0.002054721

ALDH8A1 0.001792398 0.577664 −0.428207734 0.00385545

EPHA5 N/A N/A N/A N/A

RPL10L N/A N/A N/A N/A
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biological differences between healthy and diseased states, and hence
they can be useful to pinpoint candidate therapeutic targets or gene
signatures for diagnostics (Rodriguez-Esteban and Jiang, 2017).

5 Conclusion

Combining AI and ML/DL with pharmacology made the
development of several applications to solve diverse biomedical
domain problems possible. Here, we attempted to use the same
strategy to create a solution for oncology-related therapeutic target
identification, which is currently the main challenge for anticancer
drug development and repurposing. We developed OncoRTT that
exploited the power of the BERT technique and DL to identify
therapeutic targets efficiently. Specifically, we auto-generated feature
representations (i.e., embeddings) by applying BERT to the proteins’
amino-acid sequence per cancer type. We also extracted omics
features using gene expression and gene mutation data. Finally,
we combined these features and fed them to the DNN models for
prediction. We additionally created datasets, OncologyTT, to build,
train, and test our model. OncoRTT demonstrated its ability to
differentiate between cancer-specific type target genes and non-
target genes by achieving high AUC. Furthermore, OncoRTT
achieved better prediction performance than the baseline method
in most cancer types and, on average, across all the cancer types
common to both studies. The obtained results indicate that the
performance of DL classifiers exceeded the ML classifiers in most
cases despite the DL model’s capabilities being limited by the small
number of positive targets and more data needed to build and train
DL models. The last limitation to highlight is the lack of
interpretability of the BERT embeddings (i.e., feature
representation vector), preventing gaining insight into the critical
features. Thus, as a future direction, the output of DL-based models
should be made more interpretable and meaningful for
bioinformaticians and experimental scientists.

For further improvements to predict novel therapeutic targets,
we suggest.

• Applying other embedding techniques such as graph
convolutional neural network (GCN) on PPI to generate latent
feature representation of each gene.

• Integrating more omics features such as copy number variants.
• Utilizing different ML/DL classifiers.
• Making the DL models more interpretable in terms of feature

extraction and classification.

Also, we plan to extend our work in several directions, including.

• Upgrade the OncologyTT dataset by including more data
samples for the current cancers and incorporating more
cancers

• Validating the novel predicted therapeutic targets.
• Our ongoing project aims to predict oncology-related DTIs

for the newly identified targets provided by our method,
OncoRTT, and for the existing targets using our DTi2Vec
tools (Thafar et al., 2021). In addition, this process will allow us
to predict new anticancer drugs that will subsequently be tested
by predicting the drugs’ response in cancer cell lines.

To our knowledge, this is among the few studies to consolidate
data from several resources per cancer type and then identify novel
therapeutic targets per cancer using an ML/DL approach. Beyond
that, our findings pinpoint some essential proteins per cancer type
that could be possible therapeutic targets, for which we found several
lines of evidence linking them to the specific cancer types. Non-
etheless, follow-up experiments should be performed to validate
these novel therapeutic targets.
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