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Gene regulatory networks are graph models representing cellular transcription
events. Networks are far from complete due to time and resource consumption
for experimental validation and curation of the interactions. Previous assessments
have shown the modest performance of the available network inference methods
based on gene expression data. Here, we study several caveats on the inference of
regulatory networks and methods assessment through the quality of the input
data and gold standard, and the assessment approach with a focus on the global
structure of the network. We used synthetic and biological data for the predictions
and experimentally-validated biological networks as the gold standard (ground
truth). Standard performance metrics and graph structural properties suggest that
methods inferring co-expression networks should no longer be assessed equally
with those inferring regulatory interactions. While methods inferring regulatory
interactions perform better in global regulatory network inference than co-
expression-based methods, the latter is better suited to infer function-specific
regulons and co-regulation networks. When merging expression data, the size
increase should outweigh the noise inclusion and graph structure should be
considered when integrating the inferences. We conclude with guidelines to
take advantage of inference methods and their assessment based on the
applications and available expression datasets.
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Introduction

A gene regulatory network (GRN) is responsible for sensing environmental cues and
responding accordingly. It represents directed regulatory interactions between genes coding
transcription factors (TFs) and their target genes (TGs). Successful developments in
synthetic biology require that the designed circuit properly integrates into the global and
local regulatory circuits (Freyre-Gonzalez et al., 2022). This is a current challenge as there is
not a single complete experimentally-validated GRN (Escorcia-Rodriguez et al., 2020), only a
handful (< 4) of bacterial organisms has a known GRN having completeness > 70%, and its
experimental reconstruction is a time- and resource-consuming task. Consequently,
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computational network inference is frequently used. Whereas
previous works have evaluated network inference tools using
synthetic and experimental data for several organisms (Marbach
et al., 2010; Marbach et al., 2012; Chen and March 2018), they did
not assess several essential criteria for the inference of GRNs such as
data noise variation, and the global structure of the predictions and
the gold standard (GS). Riet De Smet and Kathleen Marchal
reviewed the advantages and limitations of several inference
methods through the biological interpretation of the network
structure but did not use the structure itself to assess the
predictions (De Smet and Marchal, 2010).

Employing artificial data with varying amounts of noise, Deniz
Seçilmiş et al. recently evaluated various tools and discovered that
using the perturbation design matrix outperformed methods
without it. (Secilmis et al., 2022). Synthetic data are the first
alternative for benchmarking inference methods (Van den Bulcke
et al., 2006). However, the generation of synthetic data relies on
simulation parameters (e.g., dimension and noise of the dataset),
whichmay not reflect the variability in biological data. Regarding the
transcriptomic technique, most of the tools developed for GRN
inference from microarray data have been indiscriminately coupled
with RNA-seq (Iancu et al., 2012; Salleh et al., 2018; Zhang et al.,
2019) despite tools for bulk RNA-seq data have been already
developed (Proost et al., 2017; Imbert et al., 2018).

The authors of the DREAM5 network inference challenge
evaluated a plethora of genome-scale transcriptional regulatory
network predictions from gene expression data. Their results
provided insights into the difficulty of GRN inference using
correlation and mutual information between gene pairs and
found that contrary to synthetic data, the dependencies between
genes interacting in the cell barely exceeded the dependencies
between non-interacting gene pairs in biological data.
Interestingly, with synthetic and Escherichia coli data, the
correlations between genes regulated by identical sets of TFs
exceeded those between genes in the actual regulatory network
(Supplementary Note S5 in Marbach et al. (2012)), but most of
those interactions between co-regulated genes would be false
positives (e.g., structural genes shaping a transcription unit).
Recently, Simon Larsen et al. performed an in-deep analysis on
this matter, their results show that the correlation of pairs of random
genes is indistinguishable from those involved in known regulatory
interactions in E. coli (Larsen et al., 2019). Doglas Parise et al.
confirmed the results on Corynebacterium glutamicum (Parise et al.,
2021).

According to the DREAM5 team, integrating predictions from
different inference techniques through the Borda count method
(“community network”) is the best strategy because method
performance is not consistent across species. (Marbach et al.,
2012). Since then, the community approach has been broadly
applied (Akesson et al., 2021; Zorro-Aranda et al., 2022).
ComHub is a pipeline for integrating predictions from various
methods to rank regulators according to their average out-degree
using gene expression. (Akesson et al., 2021). Recently we inferred a
GRN for Streptomyces coelicolor and identified the global regulators
applying the NDA (natural decomposition approach) (Freyre-
Gonzalez et al., 2008; Freyre-Gonzalez et al., 2012) on the across-
methods community network preserving only TF-TG interactions
(Zorro-Aranda et al., 2022). However, some methods are better

suited to particular global topological structures (Stolovitzky et al.,
2009). Thus, the hubs may differ across methods and have different
biological interpretations in each global network due to the
inherently different structure.

The inferences are commonly assessed using standard
performance metrics such as the area under the recall vs.
precision (AUPR) and true negative rate vs. recall curves. These
metrics rely heavily on the ranking of the interactions (Marbach
et al., 2010). Based on the ranking scheme and the cutoff value, the
global network will also have a different structure. For example,
using the Pearson correlation coefficient with no post-processing
step as the ranking score, co-regulated genes from the same
transcription unit (TU) will be at the top of the prediction and
the global network will be shaped by interactions between co-
expressed genes. This would be a good co-regulation network,
but it will be highly penalized if it is assessed against a GRN.
The edges represent different biological associations (De Smet
and Marchal, 2010); therefore, the networks have a different
global structure and are better suited for different purposes
(Michoel et al., 2009). However, the assessment and integration
of inference methods designed for co-expression are still being
directly used and compared with those inferring regulation
(Marbach et al., 2012; Bellot et al., 2015; Pratapa et al., 2020;
Secilmis et al., 2022).

We previously explored structural properties and systems-level
components to analyze curated and inferred GRNs for Streptomyces
coelicolor (Zorro-Aranda et al., 2022). Here, we focused on the
factors influencing the inference of GRNs and their assessment.
Mainly, the structural characteristics of the GS and the inferred
networks, the quality of the input data and the GS, and the
assessment strategy. Besides synthetic data with varying noise
and completeness levels, we use biological data for Escherichia
coli, Bacillus subtilis, and Pseudomonas aeruginosa along with
their experimentally-validated GRNs (Escorcia-Rodriguez et al.,
2020) as the GS. Because the networks used as GS are not
complete, unknown actual interactions identified in the
prediction will be misclassified as a false positive. To check
whether our results will hold when the GS networks are
complete, we used historical snapshots with different
completeness levels and evidence (Escorcia-Rodriguez et al.,
2020). Figure 1 summarizes the complete workflow.

Results and discussion

We reviewed the literature to construct a collection of network
inference tools. After the application of filter criteria (see Materials
and methods), 15 tools were selected to be assessed along with
“Community” reconstructions integrating interactions from several
tools. Then, we arranged the inference tools according to the output
network type into three groups (Table 1; Figure 1): 1) The COEX
tools infer interactions between genes with correlated expression
profiles. 2) The CAUS tools use a TFs list to infer regulatory
interactions between the TFs and their TGs (i.e., GRNs) (Hecker
et al., 2009). 3) The HYBR (hybrid) group contemplates ANOVA
(Kuffner et al., 2012) and Friedman (Zorro-Aranda et al., 2022)
which are based on analysis of variance and therefore do not infer
causality. However, we used a list of TFs to keep only TF-TG
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interactions. The classification of Community relies on the type of
interactions that it includes. It is considered HYBR when it
integrates interactions from different network types, but it will be
considered CAUS if it only integrates interactions from CAUS tools.
Similarly, Community will be considered COEX if it only contains
interactions from COEX tools. See Table 1 and the ∑ Introduction
section in the Supplementary Information for a detailed description
of the tools.

Tools for inferring co-expression networks
should be assessed apart from those for
inferring causality

We used synthetic and biological datasets to assess the tools
inferring networks from microarray data (Figure 2A). We assessed
the inferred networks using 30 synthetic gene expression datasets
with varying noise levels and sample sizes against the biological
regulatory network used to generate the synthetic data. There was an
overall improvement with larger datasets with less noise (Figure 2B
and Supplementary Figure S2). GENIE3 and Inferelator performed
the best, even better than Community, contrasting with the results of
the DREAM5 challenge where Community outperformed all the
single-tool predictions on the assessment with synthetic data
(Marbach et al., 2012). On the other hand, ANOVA and

WGCNA showed poor performance despite the data variations.
There was no clear difference among the tools at the group level.

We collected gene expression data for E. coli, B. subtilis, and P.
aeruginosa from GEO and generated three datasets for each
organism, each with different preprocessing levels: raw data,
Robust Multiarray Averaging (RMA) normalization, and RMA
normalization plus batch correction (R-B). For the GS, we
retrieved experimentally-supported GRNs from Abasy Atlas for
the three organisms. As a group, CAUS performed the best
followed by HYBR. On the other hand, COEXP showed poor
results. Among the CAUS tools, GENIE3, Inferelator, and
TIGRESS performed the best across the three organisms.
GENIE3 was the best method in E. coli and P. aeruginosa, but
TIGRESS and Inferelator outperformed it in B. subtilis, the organism
with the smallest dataset (Supplementary Figure S3). This could be
due to the lower prediction stability of GENIE3 to data size
variations in contrast with TIGRESS and Inferelator. Among the
HYBR tools, Friedman and Community improved their
performance with R-B data, while ANOVA showed inconsistent
results. Most of the tools performed better with fully preprocessed
R-B (Figure 2C).

For each inference tool, we averaged its prediction score with the
highest-quality data: R-B for each organism and the complete
synthetic dataset with the lower noise level (5%).
GENIE3 obtained the highest overall score, followed by

FIGURE 1
Workflow of this work. We generated synthetic data using GeneNetWeaver for E. coli and collected several biological microarray datasets fromGEO
for E. coli, B. subtilis, and P. aeruginosa, as well as RNA-seq data fromGEOand PRECISE for E. coli (left column). The synthetic and biological datasets were
used as input for the inference methods (middle row). The inference methods were classified according to their final network type. COEX tools generate
undirected networks. CAUS tools generate directed networks using a list of regulators to compute the predictions as part of their algorithm. HYBR
includes Friedman and ANOVA implementations (Zorro-Aranda et al., 2022) that generate co-expression networks that are trimmed to only include
regulations mediated by a known transcription factor. The Community networks are classified according to the type of tools they include. We used
biological networks as the gold standard to perform the assessment and analyses (right column). From the directed gold standard (“CAUS” GS) we
generated a co-regulation gold standard (GS CO-REG). We performed the standard statistical and a structure-based assessment. SS: steady-state data,
TS: time-series data, GS: gold standard, TF: transcription factor, TG: target gene. See Supplementary Figure S1 for further details.
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Inferelator and TIGRESS (Figure 2D). Community ranked fourth in
the overall score despite it includes interactions from the COEX
predictions. In concordance with the DREAM5 challenge (Marbach
et al., 2012), this suggests that despite low-scored predictions
integration, Community still has reliable performance. A
community integration seems to be a safer choice because the
rank of individual tools differs among organisms, but CAUS
tools outperformed COEX tools with biological data every time
(Figure 2D).

Unlike the COEX tools, the CAUS and the HYBR tools require a
list of the genes coding for TFs (Table 1) to keep only TF-TG
interactions and avoid TG–TG edges that are not expected in a GRN,
such as the networks used as GS. On the other hand, only a few of the
interactions inferred by the COEX tools include a TF, i.e., most edges
are TG-TG interactions (Supplementary Figure S4). As an effort to
perform a fair assessment of COEX tools, we modified the E. coli GS
to resemble a co-regulation network where each regulon, set of co-
regulated genes, is a clique (every node is interconnected). This way,
COEXP outperformed the rest of the tools (Figure 2E).

The performance of every tool declined with the biological
datasets in contrast to the synthetic ones. It is expected because
the synthetic datasets were generated with the network used as GS.
Besides, training and evaluating the tools with biological data is rare
due to data accessibility (Marbach et al., 2010). There is a clear
difference between the performance of CAUS and COEX tools with
the biological datasets and a GRN as the GS (Figures 2C,F). On the
other hand, the COEX tools succeeded with a simulated co-
regulation network as the GS (Figure 2E). C3NET obtained the
highest overall score, followed by CLR, ARACNE, and WGCNA.

These results suggest that even though we should use CAUS tools for
the inference or GRNs, tools inferring co-expression networks
should be assessed apart from those inferring causality. Ignoring
the direction of the GS interactions to make a fairer comparison
(Chen and March 2018) is not enough. Because of the nature of the
network, the interactions inferred by COEX tools will be closer to
representing co-expression and co-regulation rather than
regulation. Moving to regulation is not trivial, but some
approaches are already trying to infer causality from co-
regulation and co-expression networks (Aibar et al., 2017; Chen
and Liu, 2022).

Inference methods based on Bayesian approaches take
advantage of time-series data to infer causal relationships (Lo
et al., 2012). We assessed two tools based on a Bayesian
approach: scanBMA (Young et al., 2014) and iterativeBMA
(Annest et al., 2009), along with a Community reconstruction
integrating both predictions. The performance with synthetic
data improved with larger datasets and less-noise levels.
iterativeBMA obtained the best scores, slightly better than
Community (Supplementary Figure S5). Then, we assessed the
tools with biological data, one time-series experiment for E. coli
and one for P. aeruginosa. We used only raw (non-normalized) and
RMA pre-processing steps as batch correction is not necessary for
the one-source samples. Overall, scanBMA performed better than
iterativeBMA (Figure 2G). Both tools with Bayesian approaches
performed poorly despite their advantage over other methods to
infer causal relationships, perhaps because of the few samples
available. Future data availability along with experimental
annotation might improve the performance of Bayesian approaches.

TABLE 1 GRNs inference tools used in this work. For a detailed description of each tool, please see the Supplementary Information. COEX tools infer undirected
networks, CAUS tools infer directed networks, HYBR tools infer undirected networks and the direction TF-TG is assigned with the list of known regulators to keep
only the TF-mediated interactions (Zorro-Aranda et al., 2022). Community is not listed here because rather than a stand-alone tool, this method integrates the
interactions from several single-tool predictions.

Method Network type Directed network Main References

ARACNE COEX FALSE Margolin et al. (2006)

C3NET COEX FALSE Altay and Emmert-Streib (2010)

CLR COEX FALSE Faith et al. (2007)

MRNET COEX FALSE Meyer et al. (2007)

LSTrAP COEX FALSE Proost et al. (2017)

RNA-seqNet COEX FALSE Proost et al. (2017)

WGCNA COEX FALSE Zhang and Horvath (2005)

GENIE3 CAUS TRUE Huynh-Thu et al. (2010)

INFERELATOR CAUS TRUE Bonneau et al. (2006)

TIGRESS CAUS TRUE Haury et al. (2012)

StatModel CAUS TRUE Zorro-Aranda et al. (2022)

iBMA CAUS TRUE Annest et al. (2009)

ScanBMA CAUS TRUE Young et al. (2014)

ANOVA HYBR TRUE Zorro-Aranda et al. (2022)

FRIEDMAN HYBR TRUE Zorro-Aranda et al. (2022)
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FIGURE 2
Assessment of network inference tools for microarray data. 100% of the synthetic dataset contains a total of 788 conditions. The Community
Network is the integration of the single-tool predictions using the Borda count method (Marbach et al., 2012). (A) Network classification. Network
inference tools for microarray data were classified according to the type of network they infer. (B) GENIE3 is the best tool for synthetic data. Synthetic
gene expression datasets with different levels of noise and completeness were generated from the biological network of E. coli (511145_v2017_
sRDB16_eStrong). The same networkwas used as the GS for the assessment. (C) Batch correction and knowledge of the transcription factors improve the
inference of transcriptional GRNs. Causal and Hybrid tools outperformed Co-expression tools in the assessment of GRNs using biological data for E. coli,
B. subtilis, and P. aeruginosa with different levels of data normalization: raw data, Robust Multiarray Averaging (RMA), and RMA plus batch correction.
Inferences were assessed with experimentally-validated GRNs. (D) GENIE3 is the best tool for the inference of GRNs. (E) Assessment for the inference of
co-regulation network. The COEX tools outperformed CAUS and HYBR tools. C3NET performed the best. (F) Boxplot representation of data in panel C to
highlight the differences across tool groups. (G) scanBMA outperformed iterativeBMA with biological data. The Community network for this panel only
integrates interactions from scanBMA and iterativeBMA.

FIGURE 3
Effect of normalization and batch correction on the GRN inference with biological data. (A) RMA normalization with batch correction (R–B) presents
a slight improvement over only RMA normalization. The values represent the log2 ratio of the AUPR with normalized data concerning the AUPR with raw
data. Higher (warmer) values mean more significant improvement with normalization. (B) Platforms vary in the number of samples and experiments. (C)
Methods were assessed using different Affymetrix platforms of E. coli and. AUPR increases with larger datasets as input data.
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RMAwith batch correction on large datasets
improves the predictions

To provide deeper insights into the effects of data normalization
on network inference, we contrasted the results using none (raw),
RMA, and R-B preprocessing levels. The removal of batch-effect
over RMA (R-B) normalization seems to slightly improve the
predictions (Figure 3A and Supplementary Figure S6). RMA
normalization without batch correction worsens the performance
of the tools. This is because some tools might be leveraging data
heterogeneity or information lost in the normalization process
(Sirbu et al., 2010). Besides, the assumptions considered by
normalization pipelines could be violated, resulting in spurious
predictions (Evans et al., 2018). Therefore, either raw data or
normalized and batch-effect-corrected data should be used for
network inference with highly heterogeneous datasets.

In addition to data preprocessing, the dataset size should be
considered a relevant factor in the prediction outcome. The dataset
for E. coli was collected from three GEO platforms with a different
number of samples (see Materials and methods): GPL73 (12 GSM),
GPL199 (759 GSM), and GPL3154 (1379 GSM) (Figure 3B and
Supplementary Figure S7). We assessed the predictions using
individual GEO platforms with the three preprocessing levels as
input (Figure 3C and Supplementary Figure S8). In general, there is
an improvement in the prediction scores for larger datasets. The

scores with GPL199 and GPL3154 are considerably higher than the
score for the smallest platform (GPL73). However, there is not a
remarkable difference between GPL199 and GPL3154 with RMA
and R-B normalization. In the case of raw data, it seems to be an
improvement as the data size increases. From these results, we can
conclude that the larger the dataset the better the predictions.
However, previous studies have shown that not only the dataset
size but also the variability of conditions are relevant factors for
network inference (Sastry et al., 2019). This is evident with the
smallest platform which seems to have less heterogeneity among the
platforms. In contrast, the other two platforms have better results
alone than together which suggests that both have redundant
information. Otherwise, normalized datasets with a size of two
orders of magnitude would be good enough for network
inference. These results are consistent across the three tool groups.

A network-type-driven selective community
is the best choice when a GS is not available

A previous DREAM challenge suggested that integrating
multiple single-tool predictions into a community network is a
safe choice, especially when there is no partial network to use as GS
(Marbach et al., 2012). Even though the AUPR and AUROC tend to
be constrained to higher values as more single-tool predictions are

FIGURE 4
Effects of results integration, GS incompleteness, and Regulon-level assessment. (A) Probability of a tool to outperform Community by its
integration with others (# tools) into a selective community. CAUS tools are affected rather than improved by others. (B) Assessment of GRN inference
methods with the historical reconstruction of the E. coliGRN. The incompleteness of the GRN used as GS does not affect the AUPR score. (C) AUPR ratio
between a “strong” GS and a “weak” one. In most cases, the tools performed better when a “weak” GS was used. The “weak” GS is a superset of the
“strong” GS including interactions supported by non-directed experiments. (D) Regulon prediction assessment with Matthew’s correlation coefficient
(MCC). Each dot represents a regulon inference for an E. coli TF, higher is better. Out-degree connectivity (Kout) for the TF controlling the regulon is
normalized by the maximum connectivity (Kmax) of the E. coli network.
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integrated (Supplementary Figure S9), the probability of CAUS tools
outperforming Community decreases when their predictions are
merged with other single-tool predictions (Figure 4A and
Supplementary Figure S10). This is due to the poor predictive
power of some tools, which perform better only when integrated
with several other predictions (e.g., ANOVA). The beginning of the
prediction list is critical for the performance of the tools (Marbach
et al., 2010). While COEX tools tend to have their true positive
interactions scattered throughout the entire prediction, CAUS tools
include most of their true positive interactions from the beginning
(Supplementary Figure S11).

COEX tools capture function-specific
regulons and non-direct interactions

We assessed the predictions with snapshots of the historical
reconstruction of the E. coli GS, each of these networks with two
versions; one with all the interactions discovered at a specific
timepoint (“all”) and the other one with only validated protein-
DNA interactions (“strong”). The assessment methodology showed

robustness to the incompleteness of the GS (Figure 4B), suggesting
that CAUS tools outperform COEX tools with every snapshot of the
GS, disregarding its completeness level. Moreover, even though all
the tools improved the performance with the “all” GS, the difference
is bigger for COEXP tools (Figure 4C). While the “strong” GS only
contains direct TF-DNA interactions, the “all”GSmay contain non-
direct interactions (i.e., an interaction mediated by a third biological
entity) (Escorcia-Rodriguez et al., 2020). Gene expression data
capture both direct and non-direct regulatory events. Therefore,
inference tools based solely on gene expression data tend to also
infer non-direct interactions, especially COEX tools (Figure 4C).
Perhaps, this consideration may shed light on the search for
consistency between GRNs and gene expression data (Larsen
et al., 2019; Parise et al., 2021). On the other hand, every tool
performs better with the “strong” GS on AUROC (Supplementary
Figure S12), but this is because of the highly unbalanced positives/
negatives ratio (Saito and Rehmsmeier, 2015).

We assessed the predictions at the regulon level using the
F1 score. The CAUS tools performed better on large regulons
(i.e., those of global regulators) (Supplementary Figure S13). On
the other hand, the COEX tools are the best alternative for local

FIGURE 5
Assessment of the structural properties. Clustering of the global structural properties suggests there is a clear structural difference between causal
(CAUS) and non-causal (COEX) networks. In contrast to the inferences with biological data (A–C), most networks inferred from synthetic data (D) are
more similar to each other.
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regulators, which are associated with function-specific regulons
(Freyre-Gonzalez et al., 2022). To discard potential bias induced
by the F1 metric (Chicco and Jurman, 2020), we also usedMatthew’s
correlation coefficient (MCC), obtaining consistent but less
meaningful patterns (Figure 4D). The explanation for this is that
COEX tools distribute the interactions among all the genes sub-
estimating the number of TGs for global regulators, while CAUS and
HYBR tools distribute the interactions only among the TFs list
provided over-estimating the number of TGs for each TFs, especially
for local TFs (Supplementary Figure S14).

Unsupervised learning with global structural
properties segregates COEX inferences from
the rest of the networks

Beyond assessing the tools solely based on the standard
statistical metrics, we analyzed global structural differences
among the networks. We computed the following structural
properties for the regulatory networks: density, number of
regulators, maximum out-connectivity, feedforward and complex
feedforward circuits (Alon, 2007; Freyre-Gonzalez and Tauch,
2017), 3-feedback loops, size of the giant component, average
clustering coefficient, diameter, average shortest path length, and
the coefficient of determination for the degree P(k) and clustering
coefficient distribution C(k) (Albert, 2005). See Supplementary
Table S2 for the definition of the structural properties. Then, we
clustered the networks based on their normalized global structural
properties (Materials and methods).

For the E. coli networks, COEX tools were clustered into one
group (Figure 5A). On the other hand, CAUS and HYBR tools were
clustered into a second group, excluding ANOVA. Even though the
GS was not clustered with any of the two major groups, it was closer
to the latter one (Figure 5A). We obtained similar results with the
networks for B. subtilis (Figure 5B) and P. aeruginosa (Figure 5C),
although the GS for B. subtilis got much closer to the CAUS and
HYBR group (Figure 5B).

The clusters were not conserved with synthetic data inferences,
suggesting that inferences with synthetic data were structurally
similar disregarding their type of interactions (Figure 5D).
Contrary to biological data, GeneNetWeaver generates the
synthetic data following the topology of the network provided
(Schaffter et al., 2011), making it easier for the tools to recover
such topology. Several structural properties are constrained by the
graph complexity and characterize the GRNs with causal
interactions, despite different network completeness levels
(Campos and Freyre-Gonzalez, 2019; Escorcia-Rodriguez et al.,
2021). Therefore, we expect such properties to remain similar in
the final GS, and the overall topological assessment of the predicted
networks will be like the one performed with the current GS.

We then used an in-house Python implementation of the
previously reported D-value (Schieber et al., 2017), which assesses
network similarity based on topological evidence taking centrality
into account. For the biological datasets, CAUS tools were always
clustered with Community and Friedman but never with the GS
(Supplementary Figure S15). Noteworthy, the GS was not clustered
with the COEX tools either. Instead, it was isolated, as well as the
ANOVA network. Overall, the results remain consistent across

organisms, clustering CAUS networks apart from the COEX
ones. Further topological analysis with all historical GS for E. coli
showed that, despite GS completeness, the same conclusions are
expected (Supplementary Figure S16).

Noteworthy, two networks might have identical global
structures with no intersection between their regulations (shuffled
node labels). This explains why ANOVA was repeatedly clustered
with the GS, despite its poor performance with standard assessment
metrics. However, between the two strategies to assess the structure
of the networks, the one based on the normalized structural
properties in GRNs (Figure 5) is more consistent with the
standard metrics. We suggest using this approach as a
complementary assessment always a GS is available. When no GS
exists for the organism of interest, the structural assessment can be
used along with other biological networks and random models to
prove the prediction is structurally more similar to a biological
network than random. We recently used this approach to assess
network inferences for Rhizobium etli (Taboada-Castro et al., 2022).

Analyzing the structural properties individually (Supplementary
Table S2 and Supplementary Figure S17), COEX tools have higher
density and fraction of regulators. Given that the predictions have
the same number of interactions, having a higher fraction of
regulators results in lower max out-connectivity. On the other
hand, synthetic predictions tend to have higher max out-
connectivity values than their biological counterparts.
Noteworthy, the max out-connectivity for the P. aeruginosa GS
might be underestimated due to low genomic coverage (Escorcia-
Rodriguez et al., 2020). Regarding normalized path-related
properties, the COEX tools have the largest normalized diameter
and average path length due to their small fraction of nodes in their
giant component (Supplementary Table S2). Contrary to COEX
tools that reach more than 200 components, CAUS and HYBR tools
predict networks with a few components (Supplementary Figure
S18) because their maximum is constrained to the number of TF-
coding genes; and every interaction connecting regulons decreases
the number of components. A high P(k) coefficient of determination
(R2) value was found across all biological predictions and all GSs.
The C(k) R2 was good only for COEX and HYBR biological
predictions suggesting their modularity, like the one found in the
GS. Regarding network motifs, the COEX inferences were the most
similar to the GS. This agrees with the motifs search in
DREAM5 where feed-forward loops were recovered most reliably
by mutual-information and correlation-based methods (Marbach
et al., 2012) (i.e., COEX tools).

GENIE3 outperformed tools developed for
bulk RNA-seq

We interrogated the performance dependence of GRNs
inference related to transcriptomic technique, comparing two
COEX inference tools developed exclusively for bulk RNA-seq
data (RNAseqNet (Imbert et al., 2018) and LSTrAP (Proost et al.,
2017)) and the best CAUS microarray-based approach (GENIE3).
We retrieved RNA-seq datasets for E. coli and performed a cross-
evaluation between the tools, exchanging the input data. First, we
used a subset (see Materials and methods) of our raw and RMA
microarray datasets of E. coli to reduce the impact of data size
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variation and observed that GENIE3 outperformed RNASeqNet and
LSTrAP significantly (Supplementary Figure S19). Next, we used the
RNA-seq datasets (raw counts, normalized with DESeq2, and
PRECISE (Sastry et al., 2019)) as input. The COEX RNA-seq-
based tools performed better with the homogenous largest RNA-
seq dataset, PRECISE (Supplementary Figure S19). Despite the
improvement of RNASeqNet and LSTrAP with the RNA-seq
data, GENIE3 still performed better (Supplementary Figure S19).
These results agree with a previous synthetic gold standard-based
benchmarking of network inference methods for scRNA-seq data
where GENIE3 is still placed within the top-performing tools
methods (Pratapa et al., 2020), making GENIE3 a top-performing
tool regardless of the transcriptomic technique.

Furthermore, we assess the predictions based on their global
structure (Supplementary Figure S20). We only considered the
inferences datasets with the best MCC scores (Supplementary
Figure S19), PRECISE for RNA-seq, and raw for microarray data.
Both datasets and metrics showed consistent results clustering the
GS with GENIE3, RNAseqNet, and Community, leaving LSTrAP
out (Supplementary Figure S20). This suggests that RNAseqNet
infers networks with structural properties more similar to the GS
than LSTrAP does. However, non-ranked interactions might be a
shortcoming for RNAseqNet.

Overall, compared to how well the tools performed with
microarray data, RNA-seq data did not significantly improve
their performance. It agrees with a previous assessment in A.
Thaliana, where networks derived from simple correlations and
microarray data obtained higher scores than inferences with RNA-
seq data (Giorgi et al., 2013). Although RNA-seq has progressively
replaced microarrays (Lowe et al., 2017), the gene coverage referred
to as an advantage of RNA-seq, is less of a problem for microarrays
in model prokaryotes where new microarrays have overcome the
coverage issue (Swarbreck et al., 2008). Despite the amount of
available RNA-seq data, most organisms do not have an
appropriate annotation (Salzberg, 2019), while large microarray-
based transcriptomic data have continuously grown into public
databases (Barrett et al., 2013; Athar et al., 2019).

Conclusions and guidelines

All the CAUS tools (GENIE3, TIGRESS, Inferelator, and
Statmodel) outperformed the COEX tools when assessed with a
GRN as the GS (TF–TG interactions) with biological and synthetic
data and, taking advantage of a TFs list. Even though we filtered TF-
TG interactions from the co-expression inferences approaches
(HYBR), the performance of CAUS tools was still better.
GENIE3 and Inferelator performed the best for synthetic and
biological data. GENIE3 also outperformed inference tools
developed for bulk RNA-seq data. COEX tools performed better
when assessed with a GS resembling a co-regulation network
(interactions among co-regulated genes). Regarding time-series
tools, scanBMA performed the best, although it is highly affected
by dataset size.

Larger datasets result in better predictions but require a
selective inferences-integration process and batch correction to
mitigate technical variability; applying only RMA worsened the
predictions. The probability of CAUS tools outperforming

Community decreases as more tools are integrated into a
community network, suggesting the use of a selective
community based on the desired output network type (co-
regulation or GRN). Although CAUS tools are the best
alternative to infer global GRNs, COEX tools are better at
inferring regulons for function-specific (i.e., local) TFs. An
assessment against a GS including potential indirect interactions
suggests that COEX tools might be the best alternative to identify
indirect regulations. This is useful when the goal is to identify all
the regulators affecting the expression of a gene, and not only
DNA-binding TFs (Zorro-Aranda et al., 2022).

Based on global structural properties, COEX tools segregate
fromCAUS tools when using biological predictions, highlighting the
differences among their output network type. Individual structural
properties support the similarity between CAUS inferences and the
GRNs used as GS. However, no clear clusters were found with
synthetic data, suggesting that biological data is required for the
structural assessment because synthetic data generation is based on
the topology of the input network (Schaffter et al., 2011). Historical
snapshots of the GS suggest the statistical and structural assessment
to be robust to GS incompleteness.

The overall modest performance of the tools is evident and the
potential inherent pitfalls to the conjecture that statistical
relationships between expression profiles correspond to
regulatory interactions have been previously noted (Pratapa et al.,
2020; Freyre-Gonzalez et al., 2022). Recent works leveraging prior
networks, structural constraints, and sequence motifs to improve
transcriptomic-based GRN inference have shown promising results
(Castro et al., 2019; Lim et al., 2022; Zorro-Aranda et al., 2022).
Following we provide guidelines for the inference and assessment:

Inference

• Identify the best kind of tool for your purposes.
• CAUS or Community for whole GRNs or regulons of
global TFs.

• COEX for regulons of local TFs (few targets), co-expression,
or co-regulation networks.

• Using a list of TFs to filter inferences based on co-
expression (e.g., ANOVA and Friedman) to get a causal
network is not enough to infer a global GRN. Integrate the
TFs into the inference pipeline.

• A selective community based on the type of network required
is better than an all-inclusive community.

• If you want to use one COEX tool, use C3NET but keep in
mind you will obtain a co-expression network, not a GRN.

• If you want to use one CAUS tool, use GENIE3 disregarding
the type of gene expression data used.

• Merge datasets only when the final size of the data outweighs
the noise of merging different sources.

• In prokaryotes, dataset size and preprocessing are more
important than the transcriptomic technique used to
generate the data.

• Normalize your data using Batch correction if it is necessary.
Using only RMA is not recommended.

• If it is feasible, take advantage of biological information such as
a list of TFs.
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Assessment

• Using synthetic data to assess the predictions might provide
insights about the performance of the tools but expect it to
worsen when assessed with biological data and the inferred
networks to have a different global structure.

• Take advantage of several experimentally-validated bacterial
GRNs to be used as GS (e.g., https://abasy.ccg.unam.mx/for
bacteria).

• Whenever possible, use historical snapshots or network
sampling to prove the results hold despite GRN
incompleteness.

• Use MCC to perform a regulon-level assessment of the
predictions.

• Compare network structural properties to assess the global
topology of the networks inferred from biological data.

• A structural assessment of the predictions applies to biological
data only. Because of the mechanisms to generate the data
following the topology of an input network, predictions with
synthetic data have a similar structure despite inherent
differences.

Materials and methods

Selection of GRN prediction methods to be
assessed

We thoroughly reviewed the literature and selectedmethods that
were able to infer a GRN from an expression data matrix. We also
considered usability, which takes into account 1) open-source
availability, 2) enough documentation, and 3) the ability to be
run by a command line.

Synthetic data

The synthetic datasets, all with 788 conditions (rows) and
197 genes (columns), were generated using GeneNetWeaver
software (Schaffter et al., 2011) applying the standard procedure
reported by the DREAM5 consortium, with the E. coli network
(511145_v2017_sRDB16_eStrong) from Abasy Atlas (Escorcia-
Rodriguez et al., 2020) being used as the seed. To explore the
effects of noise levels in GRN inference, we generated datasets
with 20%-step values for the noise parameter, as well as the 5%
noise level selected for the DREAM5 challenge. To study the effect of
sample size in GRN inference, we sampled each of the previous
datasets at 10, 25, 50, 75, and 100% of experimental conditions,
preserving an equal representation of each experimental condition.
The same procedure was followed for time-series 4,207 conditions
and 197 genes data generation.

Microarray data extraction and processing

The microarray data for Escherichia coli K-12 MG1655,
Bacillus subtilis 168, and the pathogen Pseudomonas
aeruginosa PAO1 were retrieved from the (GEO) database

using four main inclusion criteria: A) records were associated
with public Affymetrix platforms and had an available CEL file
useful to perform Robust Multi-chip Averaging (RMA)
normalization by Oligo R package (array annotation package);
B) an available GEO Series Matrix, an expression matrix
annotated as non-normalized data, referred here as raw data,
and C) more than one available sample. In addition, we excluded
GEO samples related to more than one organism. For E. coli, a
total of 2,154 GEO samples (GSM) from 182 GEO Series (GSE)
were retrieved from the GEO platforms GPL73 (1 GSE, 12 GSM),
GPL199 (33 GSE, 759 GSM), and GPL3154 (153 GSE, 1379 GSM).
After applying RMA, we kept with the shared genes among E. coli
GPLs belonging to the K-12 MG1655 strain, obtaining a total of
4,003 genes, which comprise 87.7% of the genome. For B. subtilis
we used the platform GPL343 and retrieved 7 GSE with a total of
64 GSM, obtaining a total of 4,010 genes, which comprises 88.5%
of the genome. Finally, for P. aeruginosa we used the
GPL84 platform with 125 GSE and a total of 1133 GSM,
obtaining a total of 5,548 genes, which comprise de 97.4% of
the genome. Microarray raw data (CEL files) were normalized
through the RMA implementation in the R package oligo
(Carvalho and Irizarry, 2010), using default parameters. Next,
we removed all the conditions in which NANs or zeros were
present due to normalization effects. Lastly, we performed a
batch-effect correction using ComBat (Johnson et al., 2007)
implementation in the sva R package with a non-parametric
adjustments approach (function from the sva R package using
the following parameters: mod = NULL, par.prior = FALSE,
mean.only = FALSE).

Time-series microarray data and condition
sampling

Since GEO does not provide a feasible way to filter TS
experiments, we used all public metadata of samples to identify
GSE records with a timeline progression and filtered them with
our inclusion criteria. From the identified TS GSE list we selected
the largest record for each organism. For E. coli we used
GSE12411 and retrieved 28 GSM with three time-points with 4,
12, and 12 replicates respectively, regarding P. aeruginosa we used
GSE52445 with 28 GSM representing 14 time points each one with
two replicates. For the assessment, we used only raw and RMA
preprocessed data, the batch correction step was not necessary for
the one-source samples.

We sampled the Abasy Atlas networks (Escorcia-Rodriguez
et al., 2020) to allow dimensionality reduction by the Bayesian
tools (Annest et al., 2009; Young et al., 2014). We sampled the
networks 511145_v2018_sRDB18_eStrong for E. coli and
208964_v2015_s11-RTB13 for P. aeruginosa. We applied
snowball sampling (Heckathorn and Cameron, 2017), also
known as link-tracing, using the network nodes with the
highest degree of centrality as seed and 198 as the cutoff value
for the sampling to get the same size of data as in the in silico time-
series assessment. The final sample sizes were 139 samples x
198 genes for E. coli and 45 samples x 198 genes for P. aeruginosa.
We used 198 genes for consistency with the time series
synthetic data.
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Data collection, and assessment for cross-
evaluation

To compare the performance dependency of the RNA-seq-based
and microarray-based inference methods, we swap their
transcriptomic input data and compare it with the original
correspondence input results. Due to the diversity of RNA-seq-
based methods, we preselected LSTrAP, RNAseqNet, and VCNet
exclusively developed for GRN inference from bulk RNA-seq.
However, we excluded VCNet from the analysis since it cannot
be applied to a large number of samples unless you optimize the
computational complexity inherent in its loop-based code. On the
other hand, RNAseqNet and LsTrAP are low-time-consuming
algorithms that aim to increase the reliability of inference from
biologically related datasets (Imbert et al., 2018).

Bulk RNA-seq data extraction and
processing

We collected two bulk RNA-seq datasets for E. coli K-12
MG1655. The small one was retrieved from GEO NCBI
(GSE73673) (Kim et al., 2016), we downloaded the 87 sample
files with the processed reads (Kim et al., 2016) for 3,923 genes.
Next, we applied the DESeq2 normalization (Love et al., 2014) a
commonly used method that has been evaluated against different
normalization methods (Dillies et al., 2013; Maza et al., 2013;
Soneson and Delorenzi, 2013; Smid et al., 2018). For the largest
one, we download the available processed (log_tpm.tsv) dataset
from PRECISE 1.0 (Sastry et al., 2019), a Precision RNA-seq
Expression Compendium for Independent Signal Exploration,
build it with 15 studies derived with a standardized protocol
from the same research group and PRECISE developer. We only
kept with the genes shared between the PRECISE dataset and our
microarray dataset resulting in 278 conditions and 3,557 genes.

Microarray data transformation

We sampled a subset of 87 samples from our collected E. coli
microarray dataset. We used only the raw and RMA version since
batch correction was not applicable. Unfortunately, the
RNAseqNet algorithm takes as input read counts or TMM
normalized counts data; thus, we avoided negative values from
sampling. To the best of our knowledge, RNAseqNet is not able
to work with microarray or RNA-set datasets without filter genes
with at least 70% of sample coverage.

Gold standards

We used strongly-supported, meta-curated GRNs from Abasy
Atlas v2.2 (Escorcia-Rodriguez et al., 2020) as GSs for E. coli
(511145_v2018_sRDB18_eStrong), B. subtilis (224308_v2008_
sDBTBS08_eStrong) and P. aeruginosa (208964_v2015_s11-
RTB13). The nodes of Abasy GRNs depict either genes,
regulatory sRNAs, or regulatory protein complexes. For this
work, we converted networks with genes and regulatory protein

complexes into gene-gene networks to use as GS since only those
interactions can be inferred. We removed the genes for which no
expression data was retrieved since the prediction of its interactions
would not be inferred by the methods assessed in this work. We
obtained a total of 4,075 interactions among 1780 genes for E. coli,
2294 interactions among 1,298 genes for B. subtilis, and
1,297 interactions among 868 genes for P. aeruginosa. For GS
incompleteness analysis, we also retrieved from Abasy various
public versions of the E. coli GRN (hereafter referred to as
historical snapshots), with different completeness levels.

For the construction of the GS with interactions between co-
regulated genes, we connected each regulon of 511145_v2018_
sRDB18_eStrong so each of them forms a clique and obtained a
total of 737,913 interactions between the same number of genes,
overestimating the density of the network. Note that, in such
network representation, the TGs from a regulon formed a clique,
including the TF only if it regulates its own transcription. For the
synthetic GS, we used 511145_v2017_sRDB16_eStrong as input
for GeneNetWeaver (Schaffter et al., 2011) to generate datasets
with 5, 20, 40, 60, 80, and 100% noise variations. From such
datasets, we generated subsamples with 20, 25, 50, 75, and 100%
completeness.

Integration of individual predictions into a
community network

A confidence score provided by each tool (when available) was
used to rank predictions and missing interactions were ranked right
after the last predicted one. Therefore, longer predictions penalize
more the missing interactions. Inferred interactions sharing a
common score by a method were ranked equally. The average
rank is used as a score for the Community. For biological data,
predictions were previously trimmed to the number of interactions
that the complete organism-specific GRN would have according to
previous work (Campos and Freyre-Gonzalez, 2019; Escorcia-
Rodriguez et al., 2020). Those values correspond to 12,000 for
E. coli and B. subtilis and 16,000 for P. aeruginosa.

Assessment

Unless otherwise described in the analysis, network
predictions larger than the expected number of interactions in
the complete GRN were trimmed (Campos and Freyre-Gonzalez,
2019; Escorcia-Rodriguez et al., 2020). The first 12,000 inferred
interactions were considered for the assessment with E. coli and
B. subtilis and the first 16,000 inferred interactions for P.
aeruginosa. Interactions shaping the GS were used as the
positive set (P), while interactions absent in the GS were
labeled as the negative set (N). Inferred interactions were
considered True Positive (TP) if they were present in the GS
and False positive (FP) if otherwise. Interactions in the GS that
were not recovered by the algorithm were considered False
Negative (FN). The Area Under Receiver Operating
Characteristics (AUROC) and Area Under Precision-Recall
(AUPR) curves were used to assess the predictions. While
AUROC represents the specificity (FP/N) and the sensitivity
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(TP/P) of the prediction compared with the whole set of potential
interactions, AUPR focuses on the list of predictions and its
precision (TP/(TP + FP)) as well as the sensitivity of the
algorithm. We select PR as the main assessment measure, due
to the imbalance between positive and negative sets (Saito and
Rehmsmeier, 2015). For the overall score, we used the average
score for the complete dataset with 5% of noise for the synthetic
data and scores obtained with RMA plus batch effect correction
for biological data. For the study of the effect of GS
incompleteness, we used each historical snapshot of the E. coli
GRNs as the GS. Inferred interactions sharing the same score
were considered as equally ranked by the method and genes
present neither in the GS nor in the expression data were not
considered for this assessment. For the assessment of predictions
not providing a score for each interaction, we used the MCC
which is the best-suited coefficient for imbalanced datasets
(Boughorbel et al., 2017). Note that MCC was used only for
the comparative assessment between GENIE3 and RNAseqNet,
and the regulon-level assessment. RNAseqNet does not score the
predictions. Therefore, we considered the first
12,000 interactions to assess its prediction with MCC so the
ranking of the interactions does not impact the score. Note that
this is not ideal as the true positives–as well as novel
interactions–may be at the bottom of the prediction making it
disadvantageous for the experimental validation of such inferred
interactions. For the regulon-level assessment, we trimmed the
predictions to the expected number of interactions once the
corresponding network is completed and compared each of
the regulons against the cognate regulon in the GS using MCC
and F1 score. The scores were plotting against the normalized
out-connectivity.

For the prediction of the COEX methods, we duplicated every
interaction in the prediction list, changing the direction. This is
because the outputs provide interactions between two genes with no
direction (e.g., symmetric adjacency matrix). Given the nature of the
assessment with a directed network as the GS, we considered every
interaction to be in both directions. While this would increase the
number of predictions, consideration of the direction is required. On
the other hand, for the assessment of the predictions with a co-
regulation GS, we did not consider the direction of the interactions.
This way, the direction of the interactions predicted by a CAUS
method, was not considered.

Combinatorial

We constructed selective communities with the possible
combinations of the 12 methods used in the assessment with
biological data. We use the dataset normalized with RMA and
batch correction for the three organisms. To measure the effect
of each method on the community network, we computed the
dominance score defined as the probability of a selective
community network with a given tool outperforming the all-
inclusive community network:

dominance � freq AUCTool > AUCcomm( )
maxT

maxT � n − 1( )!
r − 1( )! n − r( )!

Where maxT is the theoretical maximum of selective
communities with each tool, n is the number of methods (12)
used for the combinatory, and r is the number of elements in the
combinatory [2–11].

Structural properties

We computed several structural properties for GRNs at a global
scale and normalized them as follows: Regulators, self-regulations,
maximum out-connectivity, and giant component size were
normalized by the network size (number of nodes). Density was
used as its product with the fraction of nodes acting as regulators.
Network diameter was normalized by the number of nodes—2 (as if
no shortcuts would exist). Network motifs were normalized by the
number of potential motifs in the network, defined as:

n!

n − r( )! ·
TFn

n
( )

TFm

Where n is the size of the network, r is the number of nodes in
the motif (r � 3), TFn is the number of TFs in the network, and TFm

is the number of TFs required for each type of motif (TFm � 2 for
feedforward and complex feedforward loops,; TFm � 3 for 3-
feedback loops). We scaled the property values across networks
between 0 and 1. We clustered networks and properties using
Ward’s method. Further, we used pairwise Pearson correlation
for the network property vectors and clustered them according to
the Euclidean distance using Ward’s method.

We used an in-house Python implementation of the
dissimilarity measure proposed by Schieber et al. (2017) to
quantify the differences in the structural topology between two
networks considering global structural properties, node-level
structural properties, and centrality. We used the parameters the
authors recommend (0.45, 0.45, 0.1) and applied used to compare
the networks pairwise. The dissimilarity matrix was clustered using
Pearson and ward’s method.
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