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Background: Relationship between periodontitis (PD) and type 1 diabetes (T1D)
has been reported, but the detailed pathogenesis requires further elucidation. This
study aimed to reveal the genetic linkage between PD and T1D through
bioinformatics analysis, thereby providing novel insights into scientific research
and clinical treatment of the two diseases.

Methods: PD-related datasets (GSE10334, GSE16134, GSE23586) and T1D-related
datasets(GSE162689)were downloaded from NCBI Gene Expression Omnibus
(GEO). Following batch correction and merging of PD-related datasets as one
cohort, differential expression analysis was performed (adjusted
p-value <0.05 and |log2 fold change| > 0.5), and common differentially
expressed genes (DEGs) between PD and T1D were extracted. Functional
enrichment analysis was conducted via Metascape website. The protein-
protein interaction (PPI) network of common DEGs was generated in The
Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database.
Hub genes were selected by Cytoscape software and validated by receiver
operating characteristic (ROC) curve analysis.

Results: 59 common DEGs of PD and T1D were identified. Among these DEGs,
23 genes were commonly upregulated, and 36 genes were commonly
downregulated in both PD- and T1D-related cohorts. Functional enrichment
analysis indicated that common DEGs were mainly enriched in tube
morphogenesis, supramolecular fiber organization, 9 + 0 non-motile cilium,
plasma membrane bounded cell projection assembly, glomerulus
development, enzyme-linked receptor protein signaling pathway,
endochondral bone morphogenesis, positive regulation of kinase activity, cell
projection membrane and regulation of lipid metabolic process. After PPI
construction and modules selection, 6 hub genes (CD34, EGR1, BBS7, FMOD,
IGF2, TXN) were screened out and expected to be critical in linking PD and T1D.
ROC analysis showed that the AUC values of hub genes were all greater than 70%
in PD-related cohort and greater than 60% in T1D-related datasets.
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Conclusion: Shared molecular mechanisms between PD and T1D were revealed in
this study, and 6 hub genes were identified as potential targets in treating PD
and T1D.
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1 Background

Diabetes mellitus (DM) is a metabolic disorder featured by
hyperglycemia as a result of deficiency in insulin secretion and/or
insulin action (Rayburn, 1997/9). The incidence of DM is estimated
to rise to 629 million by 2045, leading to high public health burden
(Simeni Njonnou et al., 2020). DM is associated with a number of
devastating complications, which are the leading cause of morbidity
and mortality in diabetic individuals. Among all diabetic
complications, PD has recently ignited great interest due to its
close relation with systemic health. As the sixth complication of
DM, PD referrers to a chronic inflammatory disease of periodontal
tissues featured by progressive destruction of tooth-supporting
structures (Papapanou et al., 2018). PD has influenced at least
40% of adults in America and is the major cause of tooth
loosening in adults, exerting negative impact on quality of life
(Eke et al., 2000).

PD and hyperglycemia are closely connected. On the one hand,
hyperglycemia can significantly increase the susceptibility and
severity of PD (Mealey and Ocampo, 2000). On the other hand,
PD can impede glycemic control and increase susceptibility to other
DM-related complications (Graziani et al., 2018; Taylor et al., 2013;
Emrich et al., 1991). In addition, clinical evidence has indicated that
effective treatments of PD or desirable glycemic control could
alleviate clinical symptoms of the other disease (Madianos and
Koromantzos, 2018; Engebretson and Kocher, 2013; Sundar et al.,
2018/12; Tsai et al., 2002; Preshaw et al., 2012).

Type 1 diabetes (T1D) is a subtype of insulin-dependent DM
caused by destruction of the pancreatic islets. The incidence of
T1D has been increasing by 2%–5% globally in the past decades,
imposing increasingly heavy burden to healthcare providers
(Maahs et al., 2010; Kakleas et al., 2015). Due to a lack of
diagnostic biomarkers, the long-term survival rate of T1D is
quite low (Pujar et al., 2022). T1D shares several similar
clinical symptoms with type 2 diabetes (T2D), such as
hyperglycemia and hyperglycemia-related complications like
PD. Extensive studies have shown that periodontal parameters
were positively correlated with T1D, including gingival index,
bleeding on probing, the amount of dental plaque and probing
pocket depth (Dakovic and Pavlovic, 2008; Orbak et al., 2008;
Popławska-Kita et al., 2014; Ismail et al., 2015; Jindal et al., 2015;
Roy et al., 2019; Dicembrini et al., 2020). Radiographic
examination also showed that T1D patients presented
exacerbated alveolar bone loss compared with non-diabetic
individuals (Plessas et al., 2018). In addition, T1D patients
were reported to have lower rate of salivary flow and reduced
salivary pH, which could promote the formation of dental plaque
and further deteriorate the periodontal health (Aren et al., 2003;
Hodge et al., 2012). A recent meta-analysis also indicated a strong
link between PD and T1D (Rapone et al., 2020a).

Given to the different pathogenic mechanisms, the two types of
DM are considered as distinct diseases clinically. Unlike T2D, which
primarily affects adults, T1D usually starts early in life and increases
the risk of periodontal destruction since childhood and adolescence
(Lalla et al., 2007). Although both T1D and T2D have a close
association with PD, but clinical studies showed the glycemic control
after periodontal treatment is different between T1D and T2D
patients, indicating that the underlying genetic linkage between
PD and the two types of DM is not exactly the same (Rapone
et al., 2020a; Janket et al., 2005/12; Reddy and Gopalkrishna, 2022;
Shinjo et al., 2019; Pranckeviciene et al., 2017; Novotna et al., 2015;
Rapone et al., 2020b; Corbella et al., 2013). Currently, extensive
studies have explored the association between T2D and PD, while
there is a paucity of reports regarding deep research on crosstalk
between T1D and PD.

Considering the relationship between PD and T1D,
investigating genetic linkage between them and uncovering the
critical genes are of urgent need and can provide important
insights into scientific researches and clinical treatments of the
two diseases. Previous studies have indicated that several
potential molecules and signaling pathways were pertinent to
interplay between PD and T1D (Popławska-Kita et al., 2014;
Rapone et al., 2020a). However, genetic crosstalk between T1D
and PD is far more complicated, making it difficult to
comprehensively elucidate the complex mechanisms only by
clinical and experimental studies alone.

Nowadays, bioinformatics analysis is a critical tool in mining
novel biomarkers and genetic linkages of diseases. Crosstalk genes
and molecular processes can be uncovered and comprehensively
described through integrating and analyzing the transcriptomic
data. Especially in the era of precise medicine, uncovering the
critical disease biomarkers serves as a robust tool to improve
disease diagnosis, develop targeted therapies, and predict disease
prognosis. In this study, gene expression profiling data of chronic
PD and T1D were obtained from four publicly available datasets.
After a series of bioinformatic analysis processes, potential
molecular mechanisms linking T1D and PD and common
dysregulated genes between the two diseases were identified.
Finally, critical crosstalk genes were further screened out,
potentially providing novel insights into targeted therapeutic
strategies for PD and T1D.

2 Methods

2.1 Datasets acquisition and preparation

Expression data of chronic PD and T1D were downloaded from
GEO database (https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al.,
2013/1). GSE10344 (Demmer et al., 2008), GSE16134 (Kebschull
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et al., 2014) and GSE23586 (Abe et al., 2011) were for PD, and
GSE162689 was for T1D (Seiron et al., 2021) respectively. The
detailed information of these datasets was listed in Table 1.

For three PD datasets, batch correction was performed using
“SVA” package in R language software (R 4.1.0). In this way, the
three PD datasets were combined as one cohort with 136 control
samples and 427 PD samples. Principal component analysis (PCA)
on expression values of samples was conducted before and after
batch correction via “library (vegan)” package and the PCA results
were visualized by “ggplot2” package. The probe ID was converted
into genetic symbol according to annotation files. When multiple
probes matched one single gene, the gene expression value was
calculated by the average level of the probes. Additionally, probes
that did not match the genetic symbols were removed.

The workflow of this study was presented in Figure 1.

2.2 Identification of DEGs

To identify the DEGs between disease and normal samples,
the “limma” package and “DESeq2” package in R language
software were used for PD- and T1D-related datasets
respectively. Adjusted p-value <0.05 and |log2 fold
change| >0.5 was set as the cut-off criteria of DEGs, and log2
fold change >0.5 was for upregulated genes and log2 fold
change <0.5 was for downregulated genes. Subsequently,
common upregulated and downregulated DEGs of PD and
T1D were obtained by overlapping the two cohorts of DEGs.

TABLE 1 Description of included datasets.

Datasets Disease Type of tissue Sample Platform

Control disease

GSE10334 PD Gingival tissue 64 183 Affymetrix human genome U133 plus 2.0 array

GSE16134 PD Gingival tissue 69 241 Affymetrix human genome U133 plus 2.0 array

GSE23586 PD Gingival tissue 3 3 Affymetrix human genome U133 plus 2.0 array

GSE162689 T1D Islets 32 27 Ion torrent S5 XL

FIGURE 1
The workflow of this study.
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The “venn” package in R language software was employed to plot
Venn diagrams.

2.3 Functional enrichment analysis

The functional enrichment analysis of common DEGs was
conducted using the webtool “Metascape” (http://metascape.org/)

(Zhou et al., 2019). Metascape is up-to-date and contains a broad set
of gene list annotation and analysis resource. In this study, the
following databases were adopted for pathway and processes
enrichment: Gene Ontology (GO) Molecular Functions, GO
Biological Processes, GO Cellular Components, Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway,
Reactome Gene Sets, WikiPathways, Canonical Pathways and
PANTHER Pathways. Min overlap: 3, p-value: 0.05 and Min

FIGURE 2
PCA results of PD-related datasets before and after batch correction. (A) PCA results before batch correction; (B) PCA results after batch correction.
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enrichment: 1.5 were set as cutoff criteria. The significance was
ranked by -log10 (p-value).

2.4 PPI network construction and hub genes
selection

PPI network was constructed via STRING database
(Szklarczyk et al., 2019). Further, the PPI network was
imported into Cytoscape software for visualization and hub
gene selection. The plugin “Cytohubba” in Cytoscape was
employed to select key gene modules (Chin et al., 2014). Top
10 highly connected genes of three topological algorithms
(Degree, MCC and Stress) were obtained and overlapping
genes of the three sets of genes were considered as hub genes.
Boxplots of expression value of hub genes was drawn via R’s
“ggplot2” and “ggpubr” package.

2.5 ROC curve analysis

To evaluate the diagnostic performance of hub genes in each
disease, “pROC” package in R language software was used to
perform ROC curve analysis. Area under the curve (AUC) reflect
the prediction effect of the hub genes.

3 Results

3.1 Identification of common DEGs in PD
and T1D

PCAof the expression values indicated a successful batch correction
(Figure 2). For PD, 1110DEGs were identified, of which 683 genes were
upregulated and 427 genes were downregulated. 2201 DEGs were
identified in T1D datasets, of which 702 genes were upregulated and
1499 genes were downregulated (Figures 3A, B). Through taking the
intersection of upregulated and downregulated DEGs respectively,
23 upregulated and 36 downregulated common DEGs were screened
out, namely, 59 common DEGs were obtained (Figures 3C, D).

3.2 Functional enrichment analysis

Functional enrichment analysis was conducted to explore the
function of the 59 common DEGs. As the result showed, the
common DEGs were enriched in GO Biological Processes and
GO Cellular Components (Figure 4). The top 10 terms are tube
morphogenesis, supramolecular fiber organization, 9 + 0 non-motile
cilium, plasma membrane bounded cell projection assembly,
glomerulus development, enzyme-linked receptor protein
signaling pathway, endochondral bone morphogenesis, positive

FIGURE 3
Common DEGs in PD and T1D. (A) Volcano plots of DEGs identified in PD datasets. (B) Volcano plots of DEGs identified in T1D datasets. (C) Venn
diagram of upregulated common DEGs. (D) Venn diagram of downregulated common DEGs.
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regulation of kinase activity, cell projection membrane and
regulation of lipid metabolic process.

3.3 PPI network construction and hub genes
selection

PPI network of common DEGs was shown in Figure 5A. Based on
three topological algorithms (MCC, Degree and Stress), three groups of
top 10 highly connected genes were obtained (Figures 5B–D), common
genes of which were selected as hub genes. 6 hub genes were identified
in this study: CD34, EGR1, BBS7, FMOD, IGF2, TXN. The expression
value of hub genes in each disease cohort showed that CD34, EGR1,
FMOD, IGF2 were upregulated in PD and T1D, while BBS7 and TXN
were downregulated in the two diseases (Figure 6).

3.4 Identification of diagnostic performance
of hub genes

To assess the diagnostic effects of hub genes, ROC analysis was
performed using the abovementioned disease cohorts. The larger the
area under the curve, the higher the diagnostic values. In PD-related
cohort, AUC values of all the hub genes were greater than 70%, and
from highest to lowest are FMOD (0.874), CD34 (0.841), TXN (0.798),

BBS7 (0.77), EGR1 (0.726) and IGF2 (0.723). For T1D-related datasets,
the hub genes presented less satisfactory prediction effects, andAUC for
hub genes were greater than 60% overall. BBS7 (0.699) showed the
highest AUC values in T1D-related datasets, followed by EGR1 (0.674),
CD34 (0.67), FMOD (0.627), IGF2 (0.620) and TXN (0.613) (Figure 7).

4 Discussion

PD and T1D are two chronic diseases with high prevalence, and
the links between the two diseases have been reported for years
(Karjalainen et al., 1994; Popławska-Kita et al., 2014; Rapone et al.,
2020a; Reddy and Gopalkrishna, 2022). These previous studies
indicated that there may be at least one critical gene that
promote the development of both PD and T1D. Nevertheless, the
detailed genetic linkage is still unclear. In the era of precision
medicine, discovering novel biomarkers and genetic linkage is of
critical importance to treatment of the two diseases.

To make the results reliable and less biased, tissue of PD datasets
and T1D datasets were from gingiva and islets separately. In this study,
common DEGs of chronic PD and T1D were screened out by
bioinformatics analysis. Functional enrichment analysis showed that
the overlapping DEGs were mainly enriched in GO Biological Process
and GO Cellular Component, including tube morphogenesis,
supramolecular fiber organization, 9 + 0 non-motile cilium, plasma

FIGURE 4
Functional enrichment analysis. (A) Bar graph of enriched terms. (B)Network of enriched terms colored by cluster ID. (C)Network of enriched terms
colored by p-value.
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membrane bounded cell projection assembly, glomerulus development,
enzyme-linked receptor protein signaling pathway, endochondral bone
morphogenesis, positive regulation of kinase activity, cell projection
membrane and regulation of lipid metabolic process. These terms are
mostly about cell structure construction and cell communication. After
PPI network construction and module selection, we identified 6 hub
genes that are supposed to play critical roles in linking PD and T1D.
Among the 6 hub genes, CD34, EGR1, FMOD and IGF2 were
upregulated while BBS7 and TXNwere downregulated in PD and T1D.

Among those upregulated genes, CD34 is a glycosylated
transmembrane protein and widely expressed in human
hematopoietic stem/progenitor cells and circulating endothelial
progenitor cells (EPCs) (Zola et al., 2007; FadiniPaolo et al., 2010).
Both PD and diabetes are closely related with endothelial dysfunction,
and circulating EPCs is one of the endothelial dysfunction biomarkers
(Gurav, 2014; Jönsson et al., 2014). It is reported that PD patients had
higher count of CD34+ EPCs, which could be reduced by treatment of
PD (Aimetti et al., 2008; Li et al., 2009; Li et al., 2011; Jönsson et al.,
2014). Compared with systemically-healthy individuals with PD,
gingival tissue of patients with diabetes-related PD presented more
CD34+ cells (Penmetsa et al., 2014/11). Moreover, periodontist patient
with T1D had more CD34+ endothelia cell counts than periodontist
patients with T2D (Aspriello et al., 2009). However, a recent study
showed that CD34+ EPCs was downregulated in PD patients. The
inconsistency can be attributed to lack of specificity of CD34 as the

marker of different subtypes of EPCs (Zhou et al., 2022). Different
subtypes of CD34+ EPCs have different lifespan and physiological
functions. Therefore, it may be less appropriate to use CD34 as an
independent diagnostic marker and therapeutic target. CD34 is also
widely used to mark the endothelial cells of blood vessels and evaluate
vascular proliferation (Mirbod et al., 2001). Compared with healthy
individuals, chronic PD patients with or without diabetes had more
CD34 positive blood vessels in gingival tissues (Penmetsa et al., 2015).
Although CD34 showed ideal diagnostic performance in this present
bioinformatics study, given to the widespread presence of CD34,
detailed role of CD34 in genetic linkage between PD and T1D
needs more in-depth investigation.

Early growth response factor 1 (EGR1) is a zinc finger
transcription factor (TF) and can be induced by a series of
stimulus like shear stress and hypoxia (Silverman and Collins,
1999). EGR1 has been reported to play an important role in
regulating cell proliferation, differentiation, and apoptosis (Thiel
and Cibelli, 2002). Moreover, it is closely related with inflammatory
process, which is a critical pathogenic mechanism of both PD and
T1D (Trizzino et al., 2021/1). The relationship between EGR1 and
T1D is barely reported, and the existing literature concentrate
mostly on T2D. EGR1 can be induced by glucose and highly
expressed in T2D Zucker Fatty rats (Josefsen et al., 1999; Garnett
et al., 2005). Considering different pathogenesis of T1D and T2D,
detailed role of EGR1 on T1D needs further exploration.

FIGURE 5
PPI network construction and hub genes selection. (A) PPI network of commonDEGs. (B) Top 10 highly connected genes based onMCC algorithms.
(C) Top 10 highly connected genes based on degree algorithms. (D) Top 10 highly connected genes based on Stress algorithms.
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EGR1 is reported to be harmful for several diabetic complications,
including PD, and suppressing EGR1 was helpful to alleviate the
complications (Wang et al., 2015; Ao et al., 2019/5; Zha et al., 2019;
Cui et al., 2022; Hu et al., 2018/). EGR1 was predicted to be involved in
the regulatory network of the DEG-TFs of PD, and a bioinformatics
study indicated that EGR1may play a role in the development of PD via
forming immunosuppressive microenvironment (Li et al., 2018; He
et al., 2021). Two independent studies observed elevated expression of
EGR1 in gingival fibroblasts and gingiva bulk tissue from patients with
PD (Trabandt et al., 1992/5; Ebersole et al., 2018). Periodontal infection

could upregulate EGR1 expression in endothelial and Epithelial cells
(Maekawa et al., 2010; Umeda et al., 2012). Macrophages, essential
components of the innate immune system, have been identified to play
a pivotal role in the development PD and diabetes (Zhang et al., 2021).
Further study revealed that EGR1 was upregulated in macrophages of
gingival tissue with PD (Agrafioti et al., 2022). Downregulating
EGR1 could suppressed inflammatory responses and
M1 polarization of macrophages, which is the pro-inflammatory
phenotype of macrophages and accumulated in PD and diabetes
(Zhang et al., 2021; Zhi et al., 2022). In addition, tumor necrosis

FIGURE 6
Box plots of hub genes expression in PD (A) and T1D (B) datasets.
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factor-α (TNF-α) is a pro-inflammatory cytokine identified as a
pathogenic factor in both PD and DM (Nishimura et al., 2003).
Studies showed that EGR1 was involved in lipopolysaccharide-
induced TNF-α upregulation in macrophages (Shi et al., 2002).

Fibromodulin (FMOD) is a small leucine-rich proteoglycans
(SLRPs) that can be found in teeth and bones, and normal levels of
FMOD is essential for development of dental tissues and alveolar
bone (Ho et al., 2013; Al-QattanMohammad and Al-Qattan, 2018).

FIGURE 7
ROC curve of hub genes expression value in PD (A) and T1D (B) datasets.
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FMOD is well known for assembling the extracellular matrix and
modulating collagen fibrillogenesis (Chen and Birk, 2013). It has
been reported that SLRPs were crucial for periodontal homeostasis
through regulating matrix turnover and collagen organization
(Leong et al., 2012; Wang et al., 2014). Consistent with the
present study, FMOD expression was upregulated in inflamed
gingival tissue (Qian et al., 2004). It is reported that increased
FMOD would be desirable for management of periodontal
disease as decreased FMOD could promote osteoclastogenesis
(Al-QattanMohammad and Al-Qattan, 2018). Although
relationship between FMOD and T1D has not been reported,
abnormal FMOD levels were observed in several diabetic
complications. For instance, FMOD was identified as a potential
diagnostic marker for diabetic nephropathy, and FMOD treatment
can alleviate the albuminuria in diabetic nephropathy rats (Feng
et al., 2021; Jazi et al., 2016/3). Considering that FMOD was
implicated in inflammatory disease and cellular immune
response, the detailed role of FMOD on T1D and PD deserves
further exploration (Zeng-Brouwers et al., 2020).

Insulin-like growth factor 2 (IGF2) is one of the dominantmembers
of IGFs family and is supposed to be involved in glucose metabolism
(Uchimura et al., 2017). Expression level of IGF2 in T1D is tissue-
specific. For instance, IGF2 expression is defective in tissues like thymus
and serum, while the current study indicated that IGF2 was upregulated
in islet of T1D patients (Kecha-Kamoun et al., 2001; Geenen et al., 2005;
Shapiro et al., 2020). Existing literature indicated that IGF2 was a
protective factor for T1D. IGF2 is critical for pancreatic β-cell mass and
function and could promote proliferation of β-cells (Modi et al., 2015).
Upregulating the expression of IGF2 could protect β-cells against
apoptosis and deficiency of IGF2 could cause β-cell anomaly
(Calderari et al., 2007; Cornu et al., 2009; Estil les et al., 2009). In
addition, as an anti-apoptotic endocrine protein, IGF2 could improve
survival of islet transplantation (Hughes et al., 2014). For PD, a
bioinformatics study indicated that IGF2 was intersected between
PD and Major depressive disorder (Sun et al., 2021). Another study
also predicted that IGF2 was involved in genetic crosstalk between PD
and Down Syndrome, indicating the importance of IGF2 in the
pathogenesis of PD (Chen et al., 2021). IGF2 could suppress the
proliferation and osteogenic differentiation of periodontal ligament
cells (Konermann et al., 2013). However, detailed role of IGF2 on
PD still needs further experimental validation.

Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder
characterized by a series of anomalies like obesity, hypertension and
diabetes (Zhang et al., 2012). As one of the disease-causing gene,
BBS7 is involved in encoding BBSome complex, which plays a
critical role in primary cilia function and intracellular transport
(Zhang et al., 2013). Although diabetes is one of the common
features of Bardet-Biedl syndrome, the detailed relationship
between BBS7 and diabetes remains unclear. For PD, BBS7 is
essential for periodontal ligament homeostasis through regulating
primary cilia. BBS7 was downregulated in occlusal hypofunctional
periodontal ligament, and knockdown of BBS7 could inhibit cell
migration and angiogenesis (Chang et al., 2021).

It is reported that thioredoxin (TXN) could protect cells from
oxidative stress, which is among causes of destruction of pancreatic
β-cells in T1D (Kaneto et al., 2007). Overexpression of TXN in
pancreatic β-cells could reduce the incidence of T1D (Hotta et al.,
1998). In addition, TXN polymorphism can influence the

susceptibility of T1D (Ikegami et al., 2008). However, the
relationship between TXN and PD has not been reported yet.

Through analyzing these hub genes, we found that although the
expression trends of these hub genes were the same in PD and T1D
datasets, their effects on the disease progression can be opposite.
This phenomenon further suggests the importance of precision
therapy and the “precision” is reflected not only in key
biomarkers, but also in targeted tissue.

However, several limitations did exist in this study. The
transcriptome data comes from different population, causing bias
to some extent. In addition, imbalanced sample size of PD and T1D
cohorts may lead to a shift in detected genes. Therefore, to overcome
this limitations, further experimental validation is needed.

5 Conclusion

In the present study, we uncovered several biological processes
and pathways that the DEGs were enriched in via bioinformatic
analysis. Six key genes were identified and validated that may play a
pivotal role in crosstalk between PD and T1D. Some of them have
been implicated to be involved in PD or T1D, showing great
potential to be key targets for diagnosis and treatments. Our
findings provide novel insights into crosstalk between PD and
T1D and pave the way for scientific researches and the
development of therapeutic strategies. Targeting at the common
expression genes may be a potential strategy to tackle both diseases
at the same time. In the future, in vitro and in vivo validations are
expected to further confirm our findings.
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