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Colon adenocarcinoma is the most common type of colorectal cancer. The
prognosis of advanced colorectal cancer patients who received treatment is
still very poor. Therefore, identifying new biomarkers for prognosis prediction
has important significance for improving treatment strategies. However, the
power of biomarker analyses was limited by the used sample size of individual
database. In this study, we combined Genotype-Tissue Expression (GTEx) and The
Cancer Genome Atlas (TCGA) databases to expand the number of healthy tissue
samples. We screened differentially expressed genes between the GTEx healthy
samples and TCGA tumor samples. Subsequently, we applied least absolute
shrinkage and selection operator (LASSO) regression and multivariate Cox
analysis to identify nine prognosis-related immune genes: ANGPTL4, IDO1,
NOX1, CXCL3, LTB4R, IL1RL2, CD72, NOS2, and NUDT6. We computed the risk
scores of samples based on the expression levels of these genes and divided
patients into high- and low-risk groups according to this risk score. Survival
analysis results showed a significant difference in survival rate between the two
risk groups. The high-risk group had a significantly lower overall survival rate and
poorer prognosis. We found the receiver operating characteristic based on the risk
score was showed to accurately predict patients’ prognosis. These prognosis-
related immune genes may be potential biomarkers for colorectal cancer
diagnosis and treatment. Our open-source code is freely available from GitHub
at https://github.com/gutmicrobes/Prognosis-model.git.
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1 Introduction

According to global cancer statistics 2020 data, colorectal cancer ranked third by cancer
incidence and second by cancer mortality rate (Sung et al., 2021). According to predictions,
the number of new colorectal cancers will reach 2.2 million and deaths will reach 1.1 million
in 2030 (Arnold et al., 2017). Colorectal cancer usually occurs in the inner walls of the colon
or rectum (Lao and Grady, 2011). Whenmalignant cells are formed in the colon or rectum, it
will lead to the occurrence of colorectal cancer (Wang et al., 2021). Based on histological
classification, colon adenocarcinoma is the main type of colorectal cancer (Wei et al., 2018).
The main causes of transformation of normal colonic epithelium to colon adenocarcinoma
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are genetic and epigenetic changes (Coppede, 2014). At present, the
main method for treating colon adenocarcinoma is surgery
combined with postoperative chemotherapy (Hashiguchi et al.,
2020; Tarazona et al., 2020). Even with standard treatment, the
outcomes of advanced colon adenocarcinoma patients are still very
poor and varies widely (Andre et al., 2004; Nishihara et al., 2013;
Sadanandam et al., 2013). Therefore, using simple conventional
factors, such as clinicopathology stage, is insufficient for accurate
prognostic prediction of colon adenocarcinoma patients, which calls
for the discovery of new biomarkers to predict the prognosis of
patients and improve treatment outcomes.

Biomarkers improve patients’ prognosis by treating patients
who may benefit from a given treatment (Blangero et al., 2020).
In recent years, the rapid development of bioinformatics tools has
enabled researchers to rapidly identify colorectal cancer biomarkers
based on differentially expressed genes (DEGs). For examples,
Dalerba et al. found that CDX2 is a prognostic biomarker and
that CDX2 deletion is associated with poor prognosis in stage II or
III colorectal cancer patients (Dalerba et al., 2016). Li et al. found
that the immune gene ULBP2 is a prognostic biomarker and that
TMEM37 and GRPmay also be potential prognostic genes for colon
cancer (Li et al., 2018). Wang et al. found thatMXRA5 is aberrantly
expressed in colorectal cancer tissues and is a biomarker for the early
detection of colorectal cancer (Wang et al., 2013). Den Uil et al.
found that KCNQ1 is a prognostic biomarker for predicting
recurrence in stage II and III colon cancer patients (den Uil
et al., 2016). Woischke et al. found that CYB5R1 is intimately
associated with poor prognosis in colorectal cancer (Woischke
et al., 2016). Kandimalla et al. found that methylated AXIN2 and
DKK1 are useful biomarkers for recurrence in stage II colon cancer
patients (Kandimalla et al., 2017).

Compared with a single biomarker, combining multiple
biomarkers in a model can predict patients’ prognosis more
accurately (Qu et al., 2018). For example, Lin et al. proposed a
new prognosis risk score characteristic based on nine long non-
coding RNAs (lncRNAs) associated with colon cancer prognosis
(Lin et al., 2020). This characteristic has important clinical
significance in improving the prediction results of colon cancer
patients, and these lncRNAs as a whole may be biomarkers that
affect prognosis. Zuo et al. carried out univariate and multivariate
Cox analysis to identify six DEGs associated with colorectal cancer
patients prognosis, including EPHA6, TIMPI, IRX6, ART5,
HIST3H2BB, and FOXD1 (Zuo et al., 2019). Their combined is
an independent biomarker for predicting the survival rate.

Currently, immunotherapy has demonstrated huge potential in
improving tumor prognosis, and studies have increasingly shown
that expression of immune-related genes may be related to cancer
patients’ prognosis (Galon et al., 2013; Bedognetti et al., 2015). For
example, Miao et al. identified 12 immune genes (SLC10A2, CXCL3,
NOX4, FABP4, ADIPOQ, IGKV1-33, IGLV6-57, INHBA, UCN, VIP,
NGFR, and TRDC) associated with the prognosis of colon
adenocarcinoma patients (Miao et al., 2020). The associated risk
score proved an independent prognostic factor. Therefore, the
identification of colon adenocarcinoma-related immune genes is
particularly useful to promote the development of tools to carry out
colon adenocarcinoma immunotherapy.

However, the aforementioned studies only used healthy samples
and tumor samples from The Cancer Genome Atlas (TCGA)

database to identify DEGs between healthy samples and tumor
samples. The differences in the number of samples in the TCGA
database are very large. For example, several hundred tumor samples
are available, but only a few dozen healthy samples (Mounir et al.,
2019). This big difference will lead to inaccuracy in the identification
of DEGs.

Therefore, in this study, we collected healthy tissue samples from
the Genotype-Tissue Expression (GTEx) database and tumor tissue
samples from the TCGA database when screening for DEGs. Large
sample size enabled us to sensitively identify biomarkers based on
DEGs. We employed least absolute shrinkage and selection operator
(LASSO) regression andmultivariate Cox analysis to construct a risk
model based on multiple immune genes. This model can accurately
predict patients’ prognosis (AUC of training dataset >0.8), which
has important clinical significance. The immune genes identified in
the model could be used as potential biomarkers.

2 Materials and methods

2.1 Data sources

Healthy colon tissue RNA-seq data of 308 samples in the GTEx
database were downloaded from the UCSC website (https://
xenabrowser.net/, accessed on 25 March 2022), as fragments per
kilobase of exon model per million mapped fragments (FPKM)
values. Gene expression data were extracted from 308 healthy
samples. We removed low-expressing genes that the mean
expression level is less than 0.2. After removing low-expressing
genes, the expression levels of 22,116 genes were retained.

The RNA-seq FPKM data of 391 colon adenocarcinoma samples
were downloaded from the TCGA website (https://portal.gdc.
cancer.gov/, accessed on 21 March 2022). Genes (mean
expression level <0.2 in samples) were removed to obtain the
expression levels of 14,791 genes. The clinical data of 391 colon
adenocarcinoma patients were also downloaded from the TCGA
website. The analysis flow chart is shown in Figure 1.

2.2 Screening of differentially expressed
genes

The list of human immune genes was downloaded from the
Immunology Database and Analysis Portal (IMMPORT) database
(https://www.immport.org/home, accessed on 30 March 2022).
Total 1793 immune genes were included. The GTEx dataset and
TCGA dataset were combined to obtain 14,306 intersection genes.
We used R package “limma” to screen DEGs between healthy
samples and tumor samples through Wilcoxon test (Ritchie et al.,
2015). False discovery rate (fdr) was computed to correct multiple
testing. The screening criteria were fdr< 0.05 and
|log2(fold change)|> 1. After obtaining the list of DEGs, the
intersection with immune genes was obtained as differentially
expressed immune genes.

log2 fold change( ) � log2
mean value ofgene in tumor group

mean value of gene in healthy group

(1)
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2.3 Regularized survival analysis

Univariate Cox analysis is typically used to screen for prognosis-
related genes in patients, and then amultivariatemodel is constructed to
further confirm whether the association between gene and survival is
independent. However, this method does not consider the multiple
collinear effects between genes, and contradiction in hazard ratios (HR)
obtained from univariate Cox regression and multivariate Cox
regression occurs, causing model distortion. However, the
multivariate analysis also suffers from the curse of dimensionality
when the number of genes is greater than the sample size.

The modernized regularized survival analysis approach, such as
LASSO, avoids the high-dimensionality issue by soft-selecting
significant features. We thus employed LASSO Cox regression for
gene screening before multivariate Cox regression model was used
to establish prognostic characteristics. LASSO regularization, which was
proposed by Tibshirani (Tibshirani, 1997), uses L1 norm for the
shrinkage penalty in which the coefficients of not-so-important
genes are compressed to 0, while the coefficients of important genes
are retained at more than 0. This decreases the number of covariates in
the Cox regression (i.e., genes). Genes with a coefficient >0 in LASSO-
Cox regression were selected for further calculation of the risk score
(Kidd et al., 2018). The formula of LASSO is as follows (Emmert-Streib
and Dehmer, 2019):

β̂ � arg min
1
2n

∑n

i�1 yi −∑
j
βjxij( )2

+ λ β
���� ����1{ }

� arg min
1
2n

y −Xβ
���� ����22 + λ β

���� ����1{ } (2)

The survival data of TCGA patients and the expression data of
differentially expressed immune genes were combined. The
391 patient samples were randomized into a training dataset and
a validation dataset. The training dataset accounted for 70%
(273 samples) of the dataset, and the testing dataset accounted
for 30% (118 samples) of the dataset. Data in the training dataset
were used for LASSO regression. We used R package “glmnet” to
conduct LASSO regression analysis. The objective was to minimize
overfitting, i.e., removal of genes that will cause overfitting, and
select differentially expressed immune genes significantly associated
with survival.

2.4 Multivariate Cox analysis

The multivariate Cox regression model, also known as the
proportional hazards model, is a semi-parametric regression
model (Kleinbaum and Klein, 2012). In this model, survival
outcome and survival time were used as dependent variables. The
model can simultaneously analyze the effects of multiple variables
(e.g., genes) on survival. Candidate immune genes related to
prognosis were obtained through LASSO analysis, and then a risk
model was constructed through multivariate Cox analysis.
Multivariate Cox analysis will screen candidate immune genes by
stepwise regression method. Multivariate Cox analysis was
conducted using the R package “survival”.

A multivariate Cox regression model was used to construct a
prognostic characteristic of immune genes and calculate the risk
score of each patient sample. The calculation formula is as follows:

Risk score � ∑n

i�1exp i pcoefi (3)

where n is the number of characteristic genes included in the model,
exp i represents the expression level of gene i, and coefi represents
the coefficient of gene i in the multivariate Cox regression analysis.
We determined the optimal cut-off value of risk score according to
the maximally selected log-rank statistics (Wright et al., 2017).
Patients were divided into two groups based on the optimal cut-
off value. Patients with risk scores greater than the cut-off value were
included in the high-risk group, and patients whose risk scores did
not exceed the cut-off value were included in the low-risk group.

2.5 Survival analysis and ROC curve
computing

The Kaplan-Meier curve is also known as the survival curve and is a
commonly used method in survival analysis. The Kaplan-Meier curve
mainly analyzes the effect of a single factor on survival, and it is used to
estimate the survival rate of patients. Survival time is the x-axis, survival
rate is the y-axis, and a continuous stepped curve is computed to
describe the relationship between survival time and survival rate. The
log-rank test was used to evaluate survival differences between the two
groups. We used the R package “survival” to conduct survival analysis.
Receiver operating characteristic (ROC) curves were computed, and the
area under the ROC curve (AUC) was calculated to assess the accuracy
of the prognosticmodel.We used the R package “time ROC” package to
calculate the AUC at different cutoff times.

2.6 Independence and model validation

Multivariate analysis was carried out for patient samples with
clinical characteristics, and the prognostic value of the risk score was
assessed. Based on multivariate analysis, the characteristics of p< 0.05
can be used as an independent prognostic factor. The entire TCGA
dataset (391 samples) and testing dataset (118 samples) were used for
model validation. The risk score of each sample was calculated based on
the same formula [see Formula (4)], and samples were grouped into
high- and low-risk groups based on the optimal cut-off value. Survival
analysis was performed for these two groups to evaluate the survival
differences between the two groups. A ROC curve was computed, and
the AUC was calculated to assess model accuracy. Data analysis and
visualization were performed using R software (version 4.1.3, https://
www.rstudio.com/, accessed on 18 March 2022).

3 Results

3.1 Screening candidate immune biomarker

The Wilcoxon test was used to screen DEGs between GTEx
healthy samples and TCGA tumor samples, and the screening
criteria were fdr< 0.05 and |log2(fold change)|> 1. By
comparing with the healthy tissue group, 7670 DEGs were
obtained. Among these, 6381 genes were downregulated, and
1289 genes were upregulated. A listing of 1793 immune genes
was downloaded from the IMMPORT database, and the
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FIGURE 1
Flow chart of this study. It is mainly divided into four parts: downloading data, screening immune candidate biomarkers, building risk model, and
model validation. The detailed steps are shown in the figure.

TABLE 1 Summary of the clinical data of The Cancer Genome Atlas (TCGA) colon adenocarcinoma patients.

Clinical parameter Variable n (total = 341) Percentage (%)

Age (years) ≤60 97 28.4

>60 244 71.6

Gender Female 155 45.5

Male 186 54.5

Stage Stage Ⅰ 59 17.3

Stage Ⅱ 138 40.4

Stage Ⅲ 93 27.3

Stage Ⅳ 51 15.0

Tumor T1 8 2.4

T2 57 16.7

T3 236 69.2

T4 40 11.7

Metastasis M0 290 85.0

M1 51 15.0

Lymph Node N0 203 59.5

N1 81 23.8

N2 57 16.7

Survival status Alive 282 82.7

Dead 59 17.3
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intersection with DEGs, which contained 528 differentially
expressed immune genes, was retained. Among these, 383 genes
were downregulated, and 145 genes were upregulated.

Clinical data of 391 colon adenocarcinoma patients were
downloaded from the TCGA database. The clinical information
of 341 samples was retained by deleting some samples with
unknown clinical characteristics. Table 1 shows the detailed
clinical information. We divide the sample into two groups
according to age, one group is no more than 60 years old, and
the other group is over 60 years old (Lin et al., 2019).

TNM staging system is the most commonly used tumor staging
system in the world. T is the first letter of “Tumor”, referring to the
tumor size and local invasion range. T1 refers to the smaller primary
part. T2 refers to the larger primary part. T3 refers to the larger
primary part and/or the infiltration exceeds the edge of the primary
organ. T4 refers to the very large primary part and/or the infiltration
to adjacent organs. N is the first letter of “Node” in the lynch node,
which refers to the involvement of regional lymph nodes. N0 refers
to no lymph node metastasis. N1 refers to local lymph node
metastasis. N2 refers to extensive lymph node metastasis. M is
the first letter of “metastasis”, which refers to remote metastasis.
M0 means no distal metastasis, and the tumor does not spread to
other parts of the body. M1 refers to distal metastasis, and the tumor
spreads to other parts of the body. Stage group determined from
clinical information on the tumor (T), regional node (N) and
metastases (M) and by grouping cases with similar prognosis for
cancer. Stage includes stage Ⅰ, stage Ⅱ, stage Ⅲ and stage Ⅳ. Stage Ⅰ
tumors are usually relatively early tumors with relatively good
prognosis. The higher the stage, the higher the degree of tumor
progression.

Expression and survival data of differentially expressed
immune genes were combined to obtain the expression and
survival data of differentially expressed immune genes of
391 samples. The 391 samples were randomized into the
training dataset and testing dataset. The sample size of the
training dataset accounted for 70% (273 samples) of the total
sample size, and the sample size of the testing dataset accounted
for 30% (118 samples) of the total sample size. To determine
prognosis-related immune genes, training dataset samples were
used for LASSO regression. Among the 528 differentially

expressed immune genes between the healthy and tumor
samples, 14 candidate genes were obtained (Supplementary
Figure S1).

3.2 Predictive model construction through
Multivariate Cox analysis

Multivariate Cox analysis was used for further screening of the
14 candidate biomarker genes, and nine biomarker genes were
finally obtained (Table 2). The expression levels of these nine
immune genes and their corresponding correlation coefficients
were used to calculate risk scores. The calculation formula is as
follows:

Risk score � 0.109pexpression level ofANGPTL4( )
+ 0.005pexpression level of IDO1( )
− 0.006pexpression level ofNOX1( )
− 0.016pexpression level ofCXCL3( )
+ 0.076pexpression level of LTB4R( )
+ 0.133pexpression level of IL1RL2( )
+ 0.304pexpression level ofCD72( )
− 0.018pexpression level ofNOS2( )
− 1.689pexpression level ofNUDT6( ) (4)

The overall importance of the model was tested. The p values of
the three tests were less than 0.05, which were likelihood ratio test
(p � 1e − 10), wald test (p � 1e − 10) and score log rank test
(p< 2e − 16). The optimal cut-off value of risk score is
determined through the surv_cutpoint function of R. The
optimal cut-off value of training dataset is 2.02 (Figure 2A). The
273 colon adenocarcinoma patients in the training dataset were
divided into two groups based on the optimal cut-off value. Patients
with risk scores greater than the cut-off were included in the high-
risk group (n = 73), and patients with risk scores lower than the cut-
off were included in the low-risk group (n = 200). Supplementary
Figure S2 shows the survival distribution of the low- and high-risk
groups. As risk score increased, the number of patient deaths
increased, and the survival time decreased; that is, the number of
deaths in the high-risk group was higher, and the survival rate was
lower.

Supplementary Figure S3 shows the heatmap of nine immune
genes included in the model. The log2(expression value) of genes in
the healthy and tumor groups are also shown. ANGPTL4, LTB4R,
CD72, and NUDT6 were downregulated, as their expression levels
were higher in the healthy group and lower in the tumor
group. IDO1, NOX1, CXCL3, IL1RL2 and NOS2 were
upregulated, as their expression levels were lower in the healthy
group and higher in the tumor group.

3.3 Survival analysis and ROC
characterization of training dataset

The genes were screened by LASSO regression, and the model
was constructed by multifactor cox regression. The survival

TABLE 2 Multivariate Cox analysis results of training dataset.

Gene symbol Coef Hazard ratios (HR) 95% CI of HR

ANGPTL4 0.109 1.115 1.069–1.163

IDO1 0.005 1.005 1.001–1.009

NOX1 −0.006 0.994 0.988–1.000

CXCL3 −0.016 0.984 0.962–1.007

LTB4R 0.076 1.078 1.010–1.152

IL1RL2 0.133 1.142 0.964–1.354

CD72 0.304 1.355 1.037–1.771

NOS2 −0.018 0.982 0.960–1.005

NUDT6 −1.689 0.185 0.031–1.082
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analysis results of the training set, the test set, and the entire data
set are shown in Figures 3A,C,E. After screening the genes
through univariate Cox analysis, the survival analysis results of
the training set, test set and the entire data set are shown in
Figures 3B,D,F. Comparing Figures 3C,D, we can see that the
survival rate of high-risk group and low-risk group is significantly
different without Univariate Cox analysis. Therefore, we
choose not to add single factor cox analysis when building the
model.

After patients were divided into high- and low-risk groups,
Kaplan-Meier survival analysis was used to compare the survival
differences between the two groups. Survival analysis results
showed statistically significant difference in survival rate
between the high- and low-risk groups (p< 0.001; Figure 3A).
The high-risk group had lower overall survival rate and poorer
prognosis. The median survival was more than 10 years and
around 3 years in the low- and high-risk groups, respectively. The
three- and 5-year survival rates of the low-risk group were 88%

and 80%, respectively. The three- and 5-year survival rates of the
high-risk group were 50% and 25%, respectively. The ROC curve
was computed to assess the accuracy of the prognostic model.
The AUC values of the 1-, 3-, and 5-year overall survival rates
were 0.80, 0.81, and 0.82, respectively (Figure 4A), showing that
the prognostic model had good accuracy.

3.4 Independent prognostic analysis of
training dataset

Multivariate analysis was used to evaluate the independent
prediction capacity of the model and the clinical characteristics.
Clinical data of colon adenocarcinoma patients were downloaded
from the TCGA database. Samples with missing clinical data
were deleted to obtain 341 samples and their corresponding
clinical data, including age, gender, stage, T, M, N, and
risk score. Age is used as a numerical variable. Female in

FIGURE 2
The grouping results of training dataset (A), testing dataset (B), and entire TCGA dataset (C). The lower part of the figure is the optimal cut-off value
calculated according to themaximum selection rank statistics. The risk score of the blue dot is lower than the cut-off value, which is a low-risk group. The
risk score of the red dot is higher than the cut-off value, which is a high-risk group. The upper part of the figure is the data distribution histogram and
density distribution curve of risk score. Blue represents low risk group, and red represents high risk group.
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gender is represented by 0 and male by 1. Each stage in the T, M,
N and stage is represented by corresponding Arabic
numerals. Multivariate analysis showed that the p-values of

age, T, and risk score were all less than 0.05 and were
independent prognostic factors (Table 3) that predicted
patients’ prognosis.

FIGURE 3
Survival analysis results of training dataset, testing dataset, and entire TCGA dataset. The genes were screened by LASSO regression, and the model
was constructed by multifactor cox regression. The survival analysis results of the training dataset, the testing dataset, and the entire TCGA dataset are
shown in Figures 3 (A,C,E). After screening the genes through univariate Cox analysis, the survival analysis results of the training dataset, testing dataset
and the entire TCGA dataset are shown in Figures 3 (B,D,F). In the survival analysis chart, the x-coordinate represents the survival time, in years. The
y-coordinate represents the survival probability. The patients were divided into two groups according to the optimal cut-off value. They are low-risk
group and high-risk group. p-value represents the difference in survival between the two groups. At the bottom of the figure is a table. The abscissa is the
survival time in years. The ordinate is the high-risk group and low-risk group, and the value represents the number of patients remaining at each time
point.
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3.5 Predictive model validation

The testing dataset (118 samples) and the entire TCGA dataset
(391 samples) were used as validation sets for the prognostic model
to evaluate model accuracy. The testing dataset included 118 colon
adenocarcinoma patient samples. The risk score of each sample was
calculated based on the same formula (Formula (4). The optimal
cut-off value of risk score is determined through the surv_cutpoint
function of R. The optimal cut-off value of testing dataset is 1.43
(Figure 2B). The optimal cut-off value was used to divide 118 patient
samples into two groups, namely, the high- (n = 46) and low-risk
groups (n = 72). Kaplan-Meier survival analysis was used to
compare survival differences between the two groups. Survival
analysis results showed differences in survival rate between the
two groups (p< 0.05; Figure 3C). Overall survival of the high-
risk group was lower, and the prognosis was worse. Median
survival was more than 6 and 4 years in the low- and high-risk

groups, respectively. The three- and 5-year survival rates of the low-
risk group were 86% and 70%, respectively, while the three- and 5-
year survival rates of the high-risk group were <65% and <40%,
respectively. The reason for the intersection of survival curves at the
endmay have resulted from the low sample size. Figure 4B shows the
ROC curve of the testing dataset. The AUC of the 3-year overall
survival rate was 0.71. As the sample size was too small, fewer
samples had overall survival rates of 1 and 5 years, so the AUC of 1-
year and 5-year were low.

The entire TCGA set included 391 colon adenocarcinoma patient
samples. The risk score of each sample was calculated based on Formula
(4). The optimal cut-off value of risk score is determined through the
surv_cutpoint function of R. The optimal cut-off value of entire TCGA
set is 2.02 (Figure 2C). The optimal cut-off value was used to divide the
391 patient samples into two groups, namely, the high- (n = 104) and
low-risk groups (n = 287). Kaplan-Meier survival analysis was used to
compare the survival differences between the two groups. The survival

FIGURE 4
Time-dependent ROC curve of training dataset (A), testing dataset (B), and entire TCGA dataset (C). X-axis represents false positive rate, y-axis
represents true positive rate. Red, green and blue represent the curves of 1 year, 3 years and 5 years respectively.
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analysis results showed differences in survival rate between the two
groups (p< 0.001; Figure 3E). Overall survival of the high-risk group
was lower, and the prognosis was worse. The median survival was more
than 10 and 3 years in the low- and high-risk groups, respectively. The
three- and 5-year survival rates of the low-risk group were 87% and
78%, respectively. The three- and 5-year survival rates of the high-risk
group were 53% and 25%, respectively. Figure 4C shows ROC curves of
the entire TCGA dataset. AUC values of the 1-, 3-, and 5-year overall
survival rates were 0.76, 0.78, and 0.77, respectively, showing that the
prognostic model had good accuracy.

4 Discussion

In this study, we found nine prognosis-related immune genes
(ANGPTL4, IDO1, NOX1, CXCL3, LTB4R, IL1RL2, CD72, NOS2,
and NUDT6), and we calculated the risk score according to their
gene expression and correlation coefficient. Previous experiments
have shed light on aberration in these immune genes can lead to
tumorigenesis and tumour progression.

Nakayama et al. studied the expression of ANGPTL4 in
colorectal cancer and showed that its expression is associated
with venous and lymphatic invasion and that it promotes distal
metastasis, i.e., ANGPTL4 is one critical factor of colorectal cancer
progression (Nakayama et al., 2011). Huang et al. showed that
ANGPTL4 expression was more frequent in colorectal cancer
tissues than in healthy tissues and that it mediates metastasis
through the cytoskeleton signalling pathway to promote
colorectal cancer invasion and metastasis (Huang et al., 2012).

Bishnupuri et al. found that IDO1 activity in epithelial cells and
kynurenine pathway metabolites activate tumour epithelial PI3K-
Akt signalling, which promotes cell proliferation and anti-apoptosis,
thus promoting colon tumorigenesis (Bishnupuri et al., 2019).
Thaker et al. found that IDO1 directly promotes tumour growth
and tumour epithelial proliferation in a cell-independent manner
through the synthesis of uric acid metabolites and activation of β-
catenin signalling, showing that IDO1 can be a potential therapeutic
target (Thaker et al., 2013).

Wang et al. found that NOX1 regulates colorectal cancer cell
proliferation and invasion through the ADAM17-EGFR-PI3K-Akt
axis to promote colorectal cancer metastasis, showing that NOX1
can also be a potential target in colorectal cancer treatment (Wang

et al., 2016). Ohata et al. studied the biological pathways of cancer
stem cell proliferation and demonstrated that NOX1 induces
mTORC1 activation through lysosomal S100A9 oxidation and
promotes colon cancer proliferation (Ohata et al., 2019).

According to Farquharson et al., insulin and adiponectin can
regulate the expression level of CXCL3 and thereby participate in
colorectal cancer tumorigenesis (Farquharson et al., 2012). Liao et al.
showed that CXCL3 can bind to CXCLR2 on myeloid-derived
suppressor cells to promote its migration to the tumour
microenvironment (Liao et al., 2019).

LTB4R is a receptor of leukotriene B4 and exists in two forms.
One is the high-affinity LTB4 receptor BLT1, which is expressed in
different leukocyte subsets and is responsible for LTB4-dependent
leukocyte migration. The other is the low-affinity LTB4 receptor
BLT2, which is expressed in epidermal keratinocytes and epithelial
cells and has wound healing and epidermal barrier functions
(Yokomizo et al., 2018). Sharma et al. showed that BLT1
expression in CD8+T cells plays an important role in tumour
metastasis (Sharma et al., 2013). Chheda et al. found that BLT1
plays a critical role in regulating the migration of cytotoxic T
lymphocytes to tumours and anti-tumour immunity (Chheda
et al., 2016).

Tomuschat et al. studied the expression of IL1RL2 in patients with
congenital Hirschsprung’s disease (Tomuschat et al., 2017). Their
results showed that IL1RL2 is an important mediator of
inflammatory responses and that a significant reduction in its
expression can increase inflammatory responses and cause changes
in mucosal healing, thereby resulting in susceptibility to Hirschsprung-
associated enterocolitis. In addition, Penha et al. showed that IL1RL2 is
expressed in intestinal T lymphocytes and can induce CD4+ lymphocyte
proliferation, relating to human intestinal diseases (Penha et al., 2016).
CD72 is expressed by various immune, inflammatory and epithelial
cells. CD100-CD72 interaction can regulate the intensity of B cell
receptor signal pathway, enhance cell activation and maintain
immune homeostasis (Wu et al., 2016).

5 Conclusion

We downloaded transcriptome data of colorectal cancer healthy
tissues from GTEx and then downloaded transcriptome data and
clinical data of colorectal adenocarcinoma patients from TCGA.
LASSO regression was carried out on DEGs between healthy
samples and tumor samples to identify prognosis-related immune
genes. Multivariate Cox regression and prognosis-related immune
genes (ANGPTL4, IDO1, NOX1, CXCL3, LTB4R, IL1RL2, CD72,
NOS2 and NUDT6) were used to construct an immune-related
prognosis risk score model for colon adenocarcinoma patients. This
score was used to divide colon adenocarcinoma patients into high- and
low-risk groups. Survival analysis found that the high-risk group had
lower overall survival rate and poorer prognosis.

To validate the prognostic value of the model, we computed
ROC curves. The model AUC values of the 1-, 3-, and 5-year overall
survival rates were 0.76, 0.78, and 0.77, respectively, showing good
prediction results for patients’ prognosis. Further multivariate
analysis demonstrated that the risk score was an independent
prognostic factor. A validation dataset was used to further
demonstrate the accuracy of this score. The model also identified

TABLE 3 Multivariate independent prognosis analysis results of training
dataset.

Variable HR 95% CI of HR p-value

Age 1.043 1.012–1.074 pp

Gender (Female vs. Male) 0.795 0.415–1.523 ns

Stage 1.062 0.370–3.047 ns

T 2.626 1.274–5.414 pp

M 2.155 0.538–8.632 ns

N 1.409 0.717–2.769 ns

Risk score 1.004 1.001–1.007 pp

ppp < 0.01; ns, no significance.
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immune genes as potential prognostic biomarkers and therapeutic
targets in colorectal cancer, however, further validation in clinical
trials is required, the mechanism by which immune genes affect
cancer progress should be further studied.
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