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Viburnum japonicum is a rare plant species and endemic to the coastal region of
Eastern Asia with extremely small populations. Within mainland China, this species
can be only found in narrow habitats of the northeast coastal islands of Zhejiang
Province. However, there are scarce conservation genetic studies on V.
japonicum, which has limited the effective conservation and management of
this rare species. Here, 51 individuals in four natural populations covering the
Chinese geographic range of the species were sampled to assess the genetic
diversity and population structure. A total of 445,060 high-quality single
nucleotide polymorphisms (SNPs) were identified using double digest
restriction-site associated sequencing (ddRAD-seq). The overall average values
of observed heterozygosity (Ho), expected heterozygosity (He), and average
nucleotide diversity (π), were 0.2207, 0.2595, and 0.2741, respectively. The
DFS-2 population exhibited the highest level of genetic diversity among all the
populations. Genetic differentiation between populations was moderate (FST =
0.1425), and there was selfing between populations (FIS = 0.1390, S = 24.52%). Of
the total genetic variation, 52.9% was found among populations through AMOVA
analysis. The Mantel test (r = 0.982, p = 0.030) combined with analyses of the
Maximum Likelihood (ML) phylogenetic tree, ADMIXTURE, and principal
component analysis (PCA), revealed that populations of V. japonicum were
genetically segregated and significantly correlated with their geographical
distribution. Our study demonstrated that V. japonicum maintained a medium
level of genetic diversity and differentiationwith a strong population structure, and
the results were mainly affected by its island distribution pattern and self-crossing
characteristics. These results provide insights into the genetic diversity and
population history of V. japonicum, critical information for conserving and
sustainably developing its genetic resources.
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1 Introduction

Genetic diversity is a critical component of biodiversity, as it serves as an indicator of a species’
adaptability and changeability for change within its habitat (Reed and Frankham, 2003). During
the long-term evolution of species, species need to maintain a high degree of genetic diversity,
which facilitates the species’ potential for adaptive evolution (Wernberg, et al., 2018). Conducting
genetic research on rare and endangered plant species (REPs) can aid in the conservation of these
threatened resources. Such research could involve revealing the genetic diversity and distribution,
genetic structure and differentiation of populations, as well as exploring the mechanisms that
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underpin the formation and maintenance of genetic diversity. By
offering a scientific foundation for understanding the distribution and
evolution of biodiversity, this research can provide vital data essential for
the protection of REPs (Xu and Zang, 2023).

Viburnum japonicum (Thunb.) Sprengel, commonly known as
Japanese viburnum, is an evergreen broad-leaved shrub in the family
Adoxaceae. It can be easily distinguished from other recorded species of
Viburnum by having characteristics such as rounded and evergreen
shrubs, broad leaves, and glabrous texture. In particular, some studies
have reported the leaf extraction of V. japonicum contained rich
medical value. This indicates that the species has great potential for
ornamental and economic use. In the past, the species was thought to be
only naturally distributed on the coast of Japan (Mainly Honshu,
Kyushu, and Ryukyu Islands). In 1994, V. japonicum was reported
by Chinese plant taxonomists from the east coast of Zhejiang Province
(Qiu, et al., 1994). By 2003,V. japonicum again occurred in South Korea
(Gageo-do Island) (Hong and Im, 2003). Based on thefield survey,most
populations of V. japonicum survive in the island hillside forest, mixed
wood forest, or rock pile, with an extremely small number. In addition,
in recent years, along with the tourism development and economic
activities of East Zhejiang islands, some wild habitats of V. japonicum
have been affected to some extent. Thus, it was recognized as a plant
species with extremely small populations (PSESP) and listed among
Zhejiang Province’s Key Protected Wild Plants. Despite its endangered
status and anthropogenic disturbance, genetic and genomic resources
available for V. japonicum are scarce, compared to other Viburnum
species. Previous researchmainly focused on phytochemistry, resistance
physiology, and breeding techniques. To the best of our knowledge,
there was only one recent study relating to V. japonicum genetic
diversity that has relied on the traditional molecular marker (inter-
simple sequence repeat, ISSR). However, this traditional marker can

provide only a small number of polymorphisms from a large sample
collection. Next-generation technologies have revolutionized the depth
of information we can get from a species’ genome (Janjua, et al., 2020).
In the present study, to efficiently address the above drawback, we
applied the ddRAD-seq approach to obtain genome-wide SNP makers
for the population genetic analysis of naturally occurring V. japonicum
populations along the Chinese coast. The study aims to answer the
following questions as revealed by the detected SNP data: (1) The
characterization of the pattern of genetic diversity and population
structure of the four populations in China, (2) investigation of the
gene flow and migration history, and (3) development of appropriate
conservation and management strategies for long-term.

2 Materials and methods

2.1 Sampling collection and DNA extraction

From January 2021 to October 2022, we conducted a collection of
V. japonicum samples from nearly all known natural populations
known to exist across mainland China. A total of 51 individuals from
four natural populations were sampled and all the populations
originated from islands within an altitudinal range from 45.84 to
230.81 m (DFS-1, DFS-2, DC, TA; Figure 1; Table 1). To preserve the
species’ rarity in China, we chose not to publish detailed geographical
coordinates. Fresh leaf tissues were collected from the field and
preserved in plastic ziplock bags with silica gel desiccant until the
DNA extractions. Genomic DNA extraction was performed with the
dried leaf tissues using Plant Genomic DNA Kit (Tiangen Biotech,
Beijing, China) following the manufacturer’s protocol. The quality
was assessed via gel electrophoresis on 0.8% agarose gels.

FIGURE 1
Sampling locations of four populations of V. japonicum cover nearly all known natural distributions across mainland China.
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2.2 Library preparation and sequencing

The ddRAD-seq library construction was prepared by Shandong
Expert Testing Technology Service Co. Ltd. (Qingdao, China). To
achieve this, genomic DNAwas digested with the suitable restriction
enzyme HindIII and MspI at 37°C for 5 h. The resulting PCR
products were purified, pooled, and electrophoresed on 2%
agarose gels. DNA fragments ranging between 220 and 450 bps
were isolated and purified, using the Agilent High Sensitivity DNA
Kit. The DNA libraries were quantified using an Agilent
Bioanalyzer. Finally, pools were combined in equimolar
concentration to form a single genomic library and sequenced on
an Illumina NovaSeq platform using 2 × 150 bp paired-end reads.

2.3 Quality filtering and SNP calling

The initial check of the raw reads was performed using FastQC
v.0.11.9 (Andrews, 2010). To increase coverage depth and maximize
loci, the ustacks function in Stacks software v 2.5.5 (Catchen, et al.,
2013) was employed to identify ddRAD loci within individuals,
requiring a minimum depth of four reads to form a stack and
allow a maximum nucleotide mismatch between two stacks. To
evaluate the effect of missing data on the analysis, a filtering
parameter of r = 0.6 was employed, requiring≥ 60% of individuals
in a population to process a locus. The raw SNPs data were further
filtered using the following thresholds: (1) maximum observed
heterozygosity of 0.75; (2) minor allele frequency (MAF) ≥ 0.02;
and (3) minimum stack depth of m = 4 and p = 8 (i.e., one locus
appeared in at least eight populations). Based on these calculations, a
high-quality SNP dataset was obtained for further analysis.

2.4 Population genetic and statistical
analyses

The genetic diversity parameters for each population including the
average number of nucleotide differences (Num Indv), observed
heterozygosity (Ho), expected heterozygosity (He), average
nucleotide diversity (π), and inbreeding coefficient within individuals
(FIS) were calculated using Stacks software v 2.5.5. The selfing rate (s)
was calculated from s = 2FIS/(1 + FIS) (Barrière and Félix, 2005). To
evaluate the differentiation within or among populations, analysis of
molecular variance (AMOVA) and the genetic differentiation
coefficient (FST) were estimated using Arlequin v 3.5.2.2 (Excoffier,
et al., 2005). To verify whether species fit the isolation-by-distance (IBD)
patterns among populations, the relationship between pairwise genetic
distance and geographic distance was evaluated by the Mantel test in
Past software v 4.03 (Hammer, et al., 2001) with 9,999 random
permutations. To determine the evolutionary relationship between
populations, the phylogenetic tree was constructed based on the
filtered SNPs using the Maximum Likelihood (ML) algorithm in the
FastTree v 2.1 (Price, et al., 2010), and a rapid bootstrapping analysis
with 1, 000 replications under the GTR + CAT model was conducted.
Principal component analysis (PCA) was also used to evaluate the
population structure and eigenvalues using the GCTA software v 1.94.1
(Yang, et al., 2011). The population structure of V. japonicum with
different geographical distributions was visualized by theADMIXTURETA
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software v 1.3.0 (Alexander, et al., 2009) to cluster all samples with the
ML algorithm. We conducted a K-means clustering analysis supposing
the K-value ranged from 1 to 10. The clustering results were cross-
validated and the most favorable fit for the number of clusters (K) value
was determined by the cross-validation (CV) error. To further
investigate the historical migration between four populations, an ML
drift tree of populations and residual fitting heat map using TreeMix
v1.3.1 (Pickrell and Pritchard, 2012) was also generated in this study.
First, the ML tree was constructed, and then, migration arrows (events)
were added to the tree sequentially, until a graph with the smallest
residuals was found.

3 Results

3.1 SNPs identification by ddRAD-seq
analysis

To obtain high-resolution genotypic information on the 51 V.
japonicum accessions, we utilized the ddRAD-seq method for SNPs
genotyping. A total of 8,611,606 tags were acquired with an average
sequence depth reaching 47.05 (range 34.48–64.32) ×. After filtering
poor data, 445,060 SNPs were detected across the four populations.
Among these, the majority were transitions (Ts) type SNPs (267,217),
making up 60.04% of the total SNPs, while transversions (Tv) type

SNPs (177,843) account for only 39.96%. The transitions to
transversions ratio (Ts/Tv) was 1.503. Furthermore, heterozygosity
SNPs (284,222) dominated, accounting for 63.86% of the total SNPs,
whereas homozygosity SNPs (160,838) represented only 36.14%.
Nevertheless, the distribution of SNP mutations was not uniform.
The mutation spectrum analysis revealed that genome-wide SNP
mutations could be divided into six types, with C:G > T:A and T:A >
C:G as the main SNP mutants (Figure 2).

3.2 Genetic diversity and population
divergence

Table 1 shows the genetic indices of the four V. japonicum
populations. The highest level of average nucleotide diversity (π),
observed heterozygosity (Ho) and expected heterozygosity (He) was
recorded in population DFS-2 (π = 0.3039, Ho = 0.2481, He =
0.2895). By contrast, population TA exhibited the lowest diversity
(π = 0.2294, Ho = 0.1811, He = 0.2128). Additionally, a lower
observed heterozygosity (Ho) value was observed in all populations
compared to expected heterozygosity (He), and, the FIS values varied
from 0.2130 to 0.2627, resulting in a mean selfing rate (s) of 24.52%.

At the species level, the AMOVA statistics of the 445,060 SNPs
indicated significant genetic variation among (52.90%) and within
(47.10%) the population (Table 2).

FIGURE 2
SNPs mutation types spectrum of V. japonicum.
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Furthermore, the average pairwise FST value was 0.1425 (range
0.0431–0.1924). DFS-2 population to TA had the highest level of
differentiation compared to the remaining populations (Table 3).

A significant positive correlation between genetic distances
(pairwise FST) and geographic distance (r = 0.982, p = 0.030) was
detected by the Mantel test (Figure 3).

3.3 Genetic structure and historical
migration

According to the ML phylogenetic tree, the four populations
were divided into three groups based on their genetic distance.
Group A comprised individuals from DFS-1 and DFS-2. On the

other hand, The individuals from DC and TA formed Group B and
Group C, respectively (Figure 4A).

The contribution rates of the first principal component (PC1)
and the second principal component (PC2) in the principal
component analysis (PCA) were 21.46% and 5.46%, respectively.
Furthermore, the PCA scatter plots of PCA reflected that DFS-1 and
DFS-2 individuals were closely clustered together but distinct from
individuals from DC and TA (Figure 4B).

The ADMIXTURE analysis for all SNPs showed that the
optimum K value was 2 (Figure 5A), indicating that all 51 V.
japonicum individuals evolved from two ancestral groups.
Figure 5B showed that DC and TA evolved from one ancestor,
while, DFS-1 and DFS-2 evolved from another ancestor.

The TreeMix analysis supports one gene flow from DFS-2 to TA
(Figure 6). Additionally, the heat map showed a value of 0 between
all populations (Suppelementary Figure S1). This indicates that the

TABLE 2 Analysis of molecular variance (AMOVA) among and within populations of the studied V. japonicum individuals.

Source of variation df Sum of squares Variance components Percentage of variation (%) p-value

Among populations 3 75822.532 1871.50524 52.90 <0.001

Within populations 47 78316.132 1666.30068 47.10 <0.001

Total 50 154138.664 3537.80592 100.00 <0.001

TABLE 3 Genetic distance (FST, above diagonal) and geographic distance (km,
below diagonal) among four populations of V. japonicum.

DFS-1 DFS-2 DC TA

DFS-1 — 0.0431 0.1692 0.1917

DFS-2 0.616 — 0.1673 0.1924

DC 202.944 202.61 — 0.0912

TA 178.041 177.751 29.435 —

FIGURE 3
A Mantel test was conducted between the geographic and
genetic distances among the four V. japonicum populations, using
standardized data (log 10 genetic and log 10 geographic distances).
The diagram displays dots marked with numbers that depict the
six genetic and geographic distances generated from the combination
of the four populations.

FIGURE 4
Phylogenetic relationship among the four V. japonicum
populations was analyzed based on single nucleotide polymorphisms
(SNPs). Shown through (A) the Maximum Likelihood (ML) tree and (B)
scatter plots of the principal component analysis (PCA). Sampling
location code are listed in Table 1.
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ML tree model was accurately predicted and consistent with the
inferred reality.

4 Discussion

4.1 Genetic diversity

Population genetic analysis is an essential tool in assessing the
evolutionary potential and environmental adaptability of species
and it is also considered one of the most important parameters to
determine the priority in conservation genetic research (Wang, et al.,
2021; Ji, et al., 2022).While sampling as many individuals as possible
is desirable when studying population genetics, it can be challenging
when investigating rare and endangered species, which often have a
narrow range and lower genetic diversity than widely distributed
plants (Hu, et al., 2022; Ji, et al., 2022). A recent study on the genetic
diversity of V. japonicum, based on inter-sample sequence repeat
(ISSR) revealed a high level of genetic diversity (Jiang, et al., 2021).
However, different molecular markers can reveal different levels of
genetic diversity (Zhang, et al., 2016). In contrast, analysis of SNPs
showed that V. japonicum population maintained a moderate
genetic diversity level (Table 1). The high density and uniform
distribution of SNPs on the genome obtained by ddRAD-seq
analysis (Janjua, et al., 2020), enable a more comprehensive and
accurate picture of the genetic characteristics of V. japonicum than
traditional molecular makers, providing a reference for future
research.

The genetic diversity of species is influenced by several factors
such as its distribution range, life history, breeding system, seed
dispersal mechanism, and evolutionary history (Moritsuka, et al.,
2017). V. japonicum similar to most Viburnum species, exhibits a
low germination rate in the wild due to the presence of seed
dormancy (Baskin, et al., 2009), which hinders the population’s
development. Meanwhile, the natural distribution of V. japonicum is
limited to islands, and while it can adapt to mild and moderate
drought and light to some extent, long-term severe drought and high
ultraviolet radiation prevalent on islands, can hamper its growth (Li,
et al., 2018). This is likely to be a significant reason for the lower
genetic diversity seen in its population when compared with other
species. In addition, V. japonicum faces the dual impact of biological
invasion and human activities, leading to severe damage to its
habitats. Overall, narrow geographical distribution, shrinking
habitats, and small population sizes are significant factors
contributing to the reduction in its genetic diversity.

4.2 Genetic differentiation, gene flow and
genetic structure

Several factors affect genetic differentiation among plant
populations, with geographical isolation being a crucial factor that
affects population growth, gene flow, and ultimately species’ persistence
(Wu, et al., 2015). In this regard, natural islands provide the ideal
laboratory for studying the geographical isolation of plants. In this
study, we found a moderate level of genetic differentiation (average

FIGURE 5
Population ADMIXTURE analysis of four V. japonicum
populations based on single nucleotide polymorphisms (SNPs). (A)
Possible K value estimation (k = 1–10) and (B) when the ancestor
number is assumed to be 2–4. Each individual was represented
by a vertical line, with its color indicating its proportion from ancestral
populations.

FIGURE 6
Patterns of historical gene flow using the TreeMix. The
maximum-likelihood tree (ML) that best fits the data has one inferred
migration event.
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FST = 0.1425) between populations with the AMOVA analysis
indicating that 52.9% of the genetic variation occurred across
geographical regions. These results align well with the study findings
of Jiang, et al. (2021), which used ISSRmarkers (52.71%). Furthermore,
all populations had positive FIS values, and the selfing rate (s) estimated
was 24.52%, indicating that inbreeding occurred within all populations.
The narrow geographical distribution and distance between the islands
where V. japonicum grows can limit gene flow (pollen and seed)
between populations, leading to increased genetic drift and
inbreeding in the native population. These factors contribute to the
increase of genetic differentiation observed among populations.

Notably, the distance between the TFS-2 and DC populations
examined in this study was approximately 177.751 km, posing a
significant geographic barrier hindering gene flow between these
populations. However, one gene flow event was observed between
the two populations in TreeMix. We calculated that Nm ≈ (1-FST)/
4FST = 0.046 < 1, indicating that gene flow between the two populations
is limited. Nevertheless, field observations showed that V. japonicum
has a high flowering capacity, displays bright red fruit, and produces an
abundance of seeds. These traits attract local pollinators over short
distances and a variety of frugivorous birds that can feed on the fruit and
disperse seeds over long distances. Therefore, we hypothesize that
sporadic birds dispersing seeds between islands facilitate the
maintenance of gene flow between populations of V. japonica.

The Mantel test is a frequently used approach to evaluate spatial
processes that influence population structure (Diniz-filho, et al.,
2013). Our study utilized the Mantel test, which revealed a
significant correlation between the genetic similarity and
geographical location of V. japonicum (r = 0.982, p ≤ 0.030).
This finding demonstrates that the geographic distance could be
a limiting factor to gene flow between populations of V. japonica.
The Mantel’s test results were further solidified through analysis of
the ML tree, PCA, and ADMIXTURE.

4.3 Conservation and management
strategies

Island plants tend to have lower genetic diversity than terrestrial
species, and have a higher extinction risk (Pinheiro, et al., 2021). Human
disturbance, rather than the limitations of pollen and seed dispersal, may
be the direct cause of the population shrinkage and genetic diversity
reduction ofV. japonica, further exacerbated by the geographical isolation
of islands which restricts the gene exchange between populations and
intensifies the genetic differentiation among populations. Therefore, to
enhance the protection of V. japonica and its utilization, it is
recommended to strengthen the in situ protection of natural
populations, regulate economic activities and artificial construction,
such as wind turbines and solar power panels, in the vicinity of the
populations, and prevent deforestation and reclamation to promote the
population renewal and reproduction. Moreover, a germplasm resource
bank can be established on Tian’ao Island, which can facilitate themixing
and breeding of individuals from different islands such as Dongfushan
Island,Dachen Island, and other islands can be to promote gene exchange
between populations and maximize the protection and restoration of the
genetic diversity of V. japonica. Considering V. japonica’s specific habitat
requirements, it would be beneficial to advance research on artificial

breeding techniques to improve survival rates in ex-situ conservation.
Additionally, by employing in situ population protection and ex-situ
cultivation, excellent varieties can be chosen to support island vegetation
restoration and landscaping design.
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