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Introduction

Abalone (Haliotis discus hannai) is an expensive seafood in Asian countries and an important
species in fishery and mariculture industries, generating marginal revenue for the Chinese and
South Korean economies. South Korea is the second largest producer of abalones, followed by
China (Nam et al., 2016). Thus far, approximately 70 species of Haliotis have been discovered
worldwide; among them, 7 have commercial importance and 6 are naturally distributed in South
Korea (i.e., Haliotis discus hannai, Haliotis discus, Haliotis madaka, Haliotis gigantea, Haliotis
diversicolor, and Haliotis diversicolor supertexta) (Adachi and Okumura, 2012). In particular, the
species Haliotis discus hannai is farmed widely in coastal regions of South Korea (Im and Kim,
2020). Two major factors affect abalone production in the sea: overfishing, due to its high market
value, and increased atmospheric CO2, resulting in rising sea temperatures (Peter, 2016). While
overfishing can be addressed by imposing strict laws and establishing a mariculture system,
mitigating the changes in sea temperature is more difficult. Moreover, temperature fluctuations in
sea water cause high mortality in marine cage-based abalone cultivation, particularly in the
summer in coastal regions of South Korea (Kang et al., 2019). Thus, genetic/genome-assisted
breeding could be a reasonable solution to increase abalone production in natural sea and
mariculture systems. A draft reference genome of abalone is available, which could help determine
genotypes for specific phenotypic traits (Nam et al., 2017). Many scientific reports have addressed
the establishment of molecular datasets related to the physiological process of heat resistant traits,
i.e., transcriptome (Tripp-Valdez et al., 2019; Kyeong et al., 2020; Kim et al., 2021), proteome (Kang
et al., 2019), and metabolome (Xu et al., 2020) analyses. These datasets can be used to elucidate
preliminary genemarkers such as heat shock proteins (HSPs), which function in transcription and
translation in abalone (Kyeong et al., 2020). Heat stress also alters energymetabolism and increases
susceptibility to various pathogens, such as Vibrio parahemolyticus (Nam et al., 2016; Crosson
et al., 2020), affecting the reproduction and growth of abalones (Swezey et al., 2020) as well as the
metabolic rate in the digestive tract (Frederick et al., 2022). To our knowledge, no genotyping
studies or datasets are available for Haliotis discus hannai other than a population assessment
(Nam et al., 2021). In this study, we used genotyping-by-sequencing (GBS) to observe the
genotypes associated with heat stress, and establish genotypic chip and machine learning (ML)-
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based prediction models to predict heat-sensitive abalones for breeding
purposes with 96 single-nucleotide polymorphisms (SNPs).

Significance of the data

Genotype data was generated for heat-resistant and -sensitive
abalones from three different populations. Initially, 96 SNPs selected
from the GBS dataset and those used to build the targeted Fluidigm
chip were used for validation in two additional populations. These
datasets were subjected to ML methods to develop a predictive
model for heat-resistant and -sensitive abalone phenotypes. This
dataset could be used to generate a genetic library for genome-
assisted breeding for abalone.

Materials and methods

Experimental design for GBS and the
fluidigm

A total of 400 abalones were selected from the Genetic and
Breeding Research Center, NIFS, in Geoje, South Korea, and from

a commercial farm in Wando and Heanam, South Korea
(Supplementary Figure S1). The average shell length was
54.69 ± 3.78 mm, the shell width was 37.09 ± 2.63 mm, and
the body weight was 16.44 ± 3.87 g. The experiment lasted
20 days (23 September 2016, to 12 October 2016). The
abalones were maintained in a tank (1.2 × 3 × 0.8 m) with a
constant flow of seawater at the Genetic and Breeding Research
Center. The temperature was maintained at ≤ 24°C for the first
7 days to acclimate. The temperature was increased by 1°C per
day for the next 7 days, until reaching a maximum temperature of
31°C, using an Aquatron system (Yoowon Electronics, Seoul,
South Korea). During this time, the dissolved oxygen level was
maintained at 7.8 ± 0.5 mg/L. The temperature was maintained at
31°C for an additional 6 days, during which the abalone mortality
rate of the general population was 50%. Dead abalones were
collected immediately for sampling. Foot muscles were collected
and stored in ethanol. The heat resistant of the abalones was
measured by survival time. The animals were categorized into
two groups: heat-resistant and heat-sensitive (Figure 1A).
Finally, 156 heat-resistant and 107 heat-senstive abalones were
randomly selected from F4 population for sequencing. A similar
experimental procedure was carried out for another two
populations in 2019 and 2020 as shown in Table 1. In total,

FIGURE 1
Sampling of machine learning predicted summaries. (A). Heat resistance experiment for sample selection and defining the class as case and control.
(B). Sampling locations in South Korea. (C). Sample diversity observed with 96 SNPs based on principal component analysis (PCA). (D). Machine learning
models predicted the accuracy from the pooled dataset.
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2,282 samples were included from all three studies (Table 1;
Supplementary Table S3).

GBS library preparation and sequencing

Total genomic DNA from the 263 samples was extracted from
muscle tissue, quantified, and normalized to 20 ng/μL. The DNA
(200 ng) was digested with 8 U of high-fidelity PstI at 37°C for 2 h
and heated to 65°C for 20 min to inactivate the enzyme. Six DNA
libraries were constructed for GBS as described previously (Nam
et al., 2021), pooled, and amplified by multiplex polymerase chain
reaction (PCR). The products were purified using a QIAquick PCR
Purification Kit (Qiagen, Hilden, Germany) and the distribution of
fragment sizes was evaluated with a BioAnalyzer 2,100 instrument
(Agilent Technologies, Santa Clara, CA, United States). The GBS
libraries were sequenced with the Illumina NextSeq500 platform
(San Diego, CA, United States) using 150-bp single reads in DNA
Link, the authorized service provider. Library preparation has been
described previously (Nam et al., 2021). A summary is provided in
Supplementary Table S1.

Variant calling, SNP selection, and estimate
association

Sequences were subjected to quality and adapter trimming with
Trimmomatic 0.32 using the following parameter settings: leading, 5;
trailing, 5; sliding window, 4:15; andmin, 30 (Bolger et al., 2014). The
processed reads weremapped to the abalone reference genome (Nam
et al., 2017) using Bowtie2 v.2.2.8 (Langmead and Salzberg, 2012)
and variant calling was performed with the Haplotype caller in the
Genome Analysis Toolkit (GATK) (McKenna et al., 2010). SNPs
were selected with GATK parameters, i.e., normalized quality
score ≥2 and mapping quality ≥40. Additionally, the missing
genotypes were input with Beagle method v.4.1 (Browning et al.,
2021). SNPs were annotated with SnpEff v.4.2 (Cingolani et al.,
2012). Finally, high-quality SNPs were selected with the following
steps: 1) bi-allelic sites, 2) genotyping rate of the samples at each
variable site ≥90%, 3) minor allele frequency (MAF) > 5%, and 4)
Hardy-Weinberg equilibrium (HWE) < 0.001 using PLINK1.9
(Purcell et al., 2007). The selected SNPs were subjected to
population stratification with the STRUCTURE algorithm
(Pritchard et al., 2000) with a K range of 1–7 with
10,000 iterations. The association between genotype and

phenotype was estimated as follows. The samples were classified
as heat-resistant (Case) or -sensitive (Control). Dead abalones were
considered sensitive and the rest were considered heat-resistant.
Features such as fixation index (Fst) and genomic nucleotide
diversity (π) were calculated with VCFtools v. 0.1.3 (Danecek
et al., 2011). Reduction of diversity (ROD) was determined by the
following equation [ROD = 1 − (π of case/π of control)] within a
10 kb window size. The region at which the ROD >0.8 was defined as
the selective sweep. The SNP ran from −5 kb to +5 kb in the gene
region until the end of the gene. SNPs were considered to be
significantly associated with the trait when p < 0.01; analyses
were done using PLINK with the—assoc function.

Targeted fluidigm chip design

A Fluidigm chip was designed with 96 SNP markers from the
GBS dataset-assisted genome wide association study (GWAS). The
target SNP genotyping chip was constructed with a Fluidigm
96.96 dynamic array integrated fluidic circuit (IFC) using an
Adventa sample ID genotyping panel. For chip design, the
primers for each SNP were selected as 100 bp of the flanking
regions. Primers such as allele-specific primers (ASPs), locus-
specific primers (LSPs), and specific target amplification primers
(STAs) were designed using the Fluidigm SNP type assay protocol.
The PCR cocktail was prepared with ASPs, LSPs, and STAs
according to the manufacturer’s protocol along with the high-
quality DNA prepared from each sample. The samples were
loaded in a 96-well plate (12 columns x 8 rows) and subjected to
the SNPtype 96X96 thermal cycling protocol with a FC1 PCR cycler
to detect fluorescence by Biomark HD and processed with the SNP
Trace™ Panel Analysis tool in the SNP genotyping analysis software.
Genomic DNA (gDNA) quality was assessed by the concentration
(ng/μLS) of each sample, which was measured with a Biotek Epoch
spectrometer at 260/280 nm. All experimental protocols were
performed by the TNT research service provider in Anyang,
South Korea. A detailed summary is provided in Supplementary
Table S2.

Machine learning approach to predict
phenotype

To assess the classification potential of selected SNPs, 7 ML
models were used: AdaBoost (AB), Bagged Tree (BT),

TABLE 1 Selected SNP-assisted machine learning based prediction summary from three different combinations of datasets.

Dataset GBS 2017 Fluidigm 2019 Fluidigm 2020 Balanced accuracy (96 SNPs) Balanced accuracy (38 SNPs)

Size 107 controls 346 controls 440 controls

156 cases 806 cases 417 cases

Type 3 Training and testing [70% (train and test), 30% independent dataset] 0.697 0.680

Type 2 Training and testing Validation 0.486 0.463

Type 1 Training and testing Validation 0.502 0.524
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Generalized Boosted Regression (GBR), Boosted Logistic
Regression (BLR), partial least squares (PLS), Random Forest
(RF), and support vector machine with Linear Kernel (SVM-LK).
In this study, we generated three datasets (datasets 1–3). We
developed the basic models using a pooled dataset with individual
validation datasets to understand the association of SNPs with
three different populations. ML was performed using the ‘train’
in function in the caret package in R software with tenfold cross
validation (ver. 3.3; R Development Core Team, Vienna, Austria)
(Zhao, 2014; Emir et al., 2016). Model assessments were
performed using parameters such as accuracy, kappa,
sensitivity, specificity, pro pred value, negative pred value,
precision, recall, F1, prevalence, and balance accuracy as
described previously (Malik et al., 2022).

Preliminary analysis report

In total, 185.9 GB of sequence was generated by GBS from
263 samples, and 81.59% of the reads were mapped to the abalone
genome (Supplementary Figure S2). The mapped reads covered
approximately 3% of the genome. From the mapped reads,
16,119 high-quality SNPs were obtained from 232,231 called
SNPs, as illustrated in Supplementary Figure S3. Among those,
96 SNPs were selected with the metrics described in the Materials
and Methods. In summary, 18 markers were selected using the
ROD, 32 SNP markers were selected using the ODD score, and
46 markers were selected from the GWAS. The majority of the
selected SNPs were present in intergenic regions and upstream of
coding regions (Supplementary Figure S4). These SNPs were
encoded with a Fluidigm chip for genotyping, and genotypes
were generated from two other populations (Figure 1B) from
different regions of Korea to include abalone diversity
(Figure 1C). Detailed genotype summaries are provided in
Supplementary Table S3. Finally, the 96 selected SNPs were
subjected to the ML models to determine the predictive
potential from. In this study, we used 7 ML methods (AB, BT,
GBR, BLR, PLS, RF, and SVM-LK) with three combinations of
genotyped datasets (Supplementary Table S4; Supplementary
Figure S5, S6). We observed that an increase in the size of the
dataset from different populations increased the ML prediction
balanced accuracy (Table 1). Furthermore, the RF performed well
in a pooled dataset (i.e., Type 3) with 0.714 balanced accuracy.
Further, while optimizing the machine with 96 SNPs as features,
we identified a subset of the SNPs (i.e., 38 SNPs) that contributed
to the higher accuracy (Table 1; Supplementary Table S5). The
features were selected with the same seven machines and the final
features were selected from the seven machines with mean
probabilities ≥0.1. This preliminary dataset could be a
valuable asset to gain insight into heat resistance trait
selection during abalone breeding. Detailed annotations of the
SNPs are provided in Supplementary Table S5.
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