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In most of the aquaculture selection programs, harvest body weight has been a
preferred performance trait for improvement. Molecular interplay of genes linked
to higher body weight is not elucidated in major carp species. The genetically
improved rohu carp with 18% average genetic gain per generation with respect to
harvest body weight is a promising candidate for studying genes’ underlying
performance traits. In the present study, muscle transcriptome sequencing of
two groups of individuals, with significant difference in breeding value, belonging
to the tenth generation of rohu carp was performed using the Illumina HiSeq
2000 platform. A total of 178 million paired-end raw reads were generated to
give rise to 173 million reads after quality control and trimming. The genome-
guided transcriptome assembly and differential gene expression produced
11,86,119 transcripts and 451 upregulated and 181 downregulated differentially
expressed genes (DEGs) between high-breeding value and low-breeding value
(HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were
identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated
transcripts, eight were associated with cellular growth and proliferation and
harbored 13 SNPs. The gene expression pattern was observed to be positively
correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform
X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of
26 miRNA target interactions were also identified to be associated with
significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-
CoA linked to higher harvest bodyweightmay serve as candidate genes inmarker-
assisted breeding and SNP array construction for genome-wide association
studies and genomic selection.
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1 Introduction

Aquaculture is one of the fastest growing food production
sectors providing animal protein at affordable cost. However, the
demand for fish is likely to double in the near future due to
population growth, increased average income, and urbanization.
Aquaculture production is expected to reach 105 Mt by 2029, 10 Mt
more than that of the capture sector (OECD& Food and Agriculture
Organization of the United Nations, 2022). To meet the demand,
several technological interventions like system and species
diversification, better management practices, and genetic selection
are in use. Genetic improvement through selective breeding has
emerged as one of the preferred methods to increase the production
and productivity. Successful genetic selection for growth traits has
been demonstrated in several fish species (Gjedrem, 2000). As per
the estimate derived from those species under selection, the average
genetic gain in growth rate is over 12.5% per generation, and the
aquaculture production could be rapidly increased if selective
breeding is applied to farmed animals (Gjedrem and Robinson,
2014). The genetic gain for growth rates reported through genetic
selection for different fish species, for example, are 15% in Atlantic
salmon, 13% in rainbow trout, 12%–18% in channel catfish
(Gjedrem, 2000; Gjedrem and Robinson, 2014), 15% in tilapia
(Nguyen et al., 2010; Nguyen, 2016), and 7% for common carp
(Ninh et al., 2011; Dong, Nguyen, and Zhu, 2015), and in aquatic
invertebrates, the reported genetic gain rate was 11% for the giant
freshwater prawn (Pillai et al., 2022) and 18.4% for the Pacific white
shrimp (Castillo-Juárez et al., 2015) with medium-to-high
heritability.

India had its first genetic improvement program for rohu carp in
1992 at ICAR-Central Institute of Freshwater Aquaculture (ICAR-
CIFA), Bhubaneswar, in collaboration with the Institute of
Aquaculture Research (AKVAFORSK), Norway. Under this
program, the base population for selective breeding was
developed by collecting rohu fingerlings from five major rivers
Ganga, Yamuna, Brahmaputra, Sutlej, and Gomati along with the
ICAR-CIFA farm stock. The improved rohu, “Jayanti™,” has
achieved an average genetic gain of 18% per generation after
nine generations of selection (Mahapatra et al., 2017) and
heritability estimates of 0.2–0.3 in mono and polyculture ponds
(Gjerde et al., 2019). Using the index selection method and BLUP
ranking for selection of potential parents, a total of 49 males and
33 females were used to produce 51 families belonging to the tenth
generation rohu. After fishes attained taggable size, i.e. 10–15 gms,
40 families were tagged with passive integrated transponder (PIT)
tags and stocked in communal rearing ponds. Presently, the twelfth
generation of rohu selected for higher growth rate is being
maintained along with one control line at ICAR-CIFA. The seed
of “Jayanti” is in great demand as it grows significantly better than
local rohu (Mahapatra et al., 2017). Selective breeding of rohu for
enhanced growth has been successfully demonstrated in India
through different hatcheries and fish farmers.

Body weight is a commercially important trait having polygenic
control of expression. Muscle growth is dependent on the quantum
of hypertrophy and hyperplasia. In fishes, this dynamics functions
under strict control of several growth-associated genes such as IGF,
GH, and GHR2; myogenic regulatory factors such as MyoD and
Myf6 (Liu et al., 2020a); and structural genes such as myosin,

myotrophin, and titin (Alves-Costa, Silva, and Wasko, 2015).
There have been some reports on systems of controlling harvest
body weight of fishes, in which one of them is compensatory growth.
It is a period of accelerated growth that occurs when an appropriate
environment is provided following a spell of growth depression as a
result of prolonged feed scarcity. This system is useful in the
aquaculture setup to control body growth according to the
harvesting period. Molecular responses upon feed restriction as
an effect of compensatory growth includes upregulation of
hyperphagic ghrelin and GH-related genes followed by a period
of food deprivation that triggers compensatory growth in Labeo
rohita (Dar et al., 2018; Dar et al., 2020). The hormonal system of
controlling body growth includes major hormonal cascades such as
the GH–IGF system, ghrelin–leptin system, and thyroid for
metabolism and appetite control are well-explained in temperate
fishes such as cod and salmon (Weidner et al., 2020) and to some
extent in Labeo rohita (Dar et al., 2020; Shahjahan et al., 2020;
Shahjahan et al., 2021). Gene editing/knockout of muscle growth-
related genes has been attempted in channel catfish where a faster
growth was observed after knockout of the myostatin gene (Yeh
et al., 2017; Coogan et al., 2022). However, the underlying biological
processes may involve complex gene regulation networks
comprising several interacting genes with varying effects.

Integration of genomic tools into selective breeding programs
has expedited the pace of genetic improvement with accuracy
(Fjalestad, Moen, and Gomez-Raya, 2003; Laghari et al., 2014).
This has been possible mostly due to development of high-end
genomic resources, particularly, draft genome sequences, and
thereby genome-wide SNPs and arrays in a number of non-
model fish species such as salmon, catfish, and trout (Coppe
et al., 2010; Dominik et al., 2010; Dan et al., 2013; Liu et al.,
2014; Sun et al., 2017; Salem et al., 2018; Yoshida et al., 2018;
Mastrochirico-Filho et al., 2020) to be implemented in QTL
identification marker-assisted selection and/or genomic selection.
Furthermore, improved bioinformatics pipelines made it possible to
automate the large-scale genotyping of SNPs (Slate et al., 2009), and
their subsequent utilization in high-resolution linkage maps and
genome-wide association studies (Bennet et al., 2010; Salem et al.,
2012; Li et al., 2016; Joshi et al., 2018; Hillestad et al., 2020; Yáñez
et al., 2022) has been elucidated. Use of differential expression data
from transcriptomes for identification of genes linked to improved
growth (Chealoh et al., 2018; Duran et al., 2022; Shen et al., 2022),
disease resistance (Yanez, Houston, and Newman, 2014; Tadmor-
Levi et al., 2019), and low saline adaptation (Lin et al., 2019; Powell
et al., 2021) has been instrumental in understanding molecular
pathways associated with performance traits. In rohu, a number
of genomics resources have been generated in the last 1 decade to
enable genome-guided data analysis and marker-assisted breeding
programs (Robinson et al., 2012; Robinson et al., 2014; Das et al.,
2020; Arick et al., 2022). However, the genetic architecture
underlying harvest body weight in rohu carp has not yet been
elucidated.

The present investigation focuses on the molecular underplays
linked to harvest body weight of rohu pertaining to the ongoing
selective breeding program currently operating in its twelfth
generation. It is expected that there might be many genes
significantly contributing to the improved growth rate, which is
the trait under selection. Considering this, the present work was
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planned to identify significant differentially expressed genes (DEGs)
in high-breeding value (HB) and low-breeding value (LB) groups of
improved carp and their possible association with higher body
weight. A positive correlation of body growth and disease
resistance to the aeromoniasis trait in improved rohu as per
earlier reports (Robinson et al., 2012; Robinson et al., 2014;
Gjerde et al., 2019) prompted us further to identify DEGs and
pathways linked to disease resistance in the HB group. As
transcription factors (TFs) have a pivotal role in modulating gene
expression profiles, in silico TF enrichment analysis of DEGs was
performed along with the description of an upstream regulatory
kinase network. Furthermore, identification of miRNA targets in
selected DEGs was attempted to pinpoint putative miRNAs for
possible downstream application in regulation of gene expression.
Last, identification of coding SNPs and annotation was performed
with the aim to find out their association and possible effects on
growth-related gene expression profiles. The information on
candidate genes will be useful for marker-assisted breeding, SNP
array construction for genome-wide association studies, and
genomic selection. Validation of expression dynamics of growth-
and immunity-related genes shall aid in visualizing how genetic
selection changes the transcript landscape for improving traits under
selection. Apart from this, highly enriched miRNA targets and
transcription factors shall act as resources for tailored regulation
of gene expression in rohu and related species. Furthermore, SNP
hotspots associated with DEGs identified through mapping against
chromosomes shall serve as putative candidates as QTLs for body
growth. Further validation in terms of phenotype contribution shall
be instrumental for simultaneous trait selection with respect to
correlated traits.

2 Materials and methods

2.1 Sampling, RNA extraction, and
quantification

For this study, muscle tissues were originated from an
ongoing selection breeding program for the harvest body
weight of rohu carp (Mahapatra et al., 2017). Muscle tissues
were collected from six individuals with HB value and five with
LB value. Phenotypic data such as length and weight were
recorded, and the relationship was calculated using Microsoft
Excel (Microsoft Corporation, 2018). Fishes were dissected and
50-mg muscle tissues were chopped with a sterile scalpel and
snap-frozen in liquid nitrogen. Handling and sampling of fish was
performed following the guidelines for control and supervision of
experiments on animals by the Government of India and
approved by the Institutional Animal Ethics Committee
(IAEC) of ICAR-CIFA. The snap-frozen muscle tissues were
homogenized in a tissue lyser for 1 min. The homogenized
tissues were added with 1 mL of TRIzol reagent by vortexing
to lyse the cells and stabilize the RNA. The homogenate was
mixed with an equal volume of absolute ethanol and applied
onto the Zymo-Spin column. RNA elution was performed in 20 µl
of nuclease-free water. The RNA quality assessment was
carried out using the RNA ScreenTape system (Agilent) in a
4150 TapeStation system (Agilent) to calculate the RIN values.

RNA concentration was determined on a Qubit 3.0 Fluorometer
using the Qubit™ RNA BR Assay Kit (Thermo Fisher Scientific).

2.2 mRNA enrichment, library preparation,
and sequencing

Following the manufacturer’s protocol, 500 ng total RNA (two
individuals/library) was used to enrich the mRNA using the
NEBNext Poly(A) mRNA Magnetic Isolation Module (New
England Biolabs). The enriched mRNA was used to prepare six
libraries (three in the HB group and three in the LB group) with the
NEBNext® UltraTM II RNA Library Prep Kit for Illumina (New
England Biolabs). The fragmented mRNAs were reverse-transcribed
to form cDNA after being primed with NEBNext Random Primers
and cleaned with 1.8 X AMPure XP beads (Beckman Coulter). Loop
adapters were ligated to the adenylated fragments and cleaved with
the uracil-specific excision reagent (USER) enzyme. The cDNA was
amplified (10 times) and purified with 0.9 X AMPure beads
(Beckman Coulter). Sequencing of libraries was performed using
the Illumina HiSeq 2000 platform (PE 2 × 100 bp).

2.3 Identification of differentially expressed
transcripts, functional annotation
enrichment, and validation using qPCR

FastQC (Andrews, 2010) and AfterQC (Chen et al., 2017) were
used to visualize quality and remove adapters. Low-quality reads (Q
20), and unpaired reads from Illumina short raw reads along with
filtered high-quality reads were subjected to genome-guided
assembly using the chromosome-level genome (NCBI Bioproject:
PRJNA887821) of Labeo rohita in Trinity (ver.2.11) (Grabherr et al.,
2011). Benchmarking Universal Single-Copy Ortholog (BUSCO)
analysis was performed using the Eukaryota and core vertebrate
gene (CVG) datasets (Manni et al., 2021). The contigs were merged
according to a similarity criterion of 90% in CD-HIT-EST (version
4.6.3) (Fu et al., 2012). For identification of protein coding regions in
a transcriptome, the assembled transcripts were analyzed using
TransDecoder (https://github.com/TransDecoder) (Haas et al.,
2013).

Simultaneously, high-quality filtered reads from all six libraries
were aligned to the rohu reference genome using the genome-guided
assembly mode of command line-based software Trinity (ver 2.11)
with default parameters. Estimation of N50 and ExN50 using
BUSCO ensured the accuracy and effectiveness of the assembly
outputs. The BAM mapping files were fed to edgeR (Robinson,
McCarthy, and Smyth, 2010) for differential gene expression
analysis. The transcripts were considered differentially expressed
if |log2 fold change| ≥1 and adjusted p-value < 0.5 × 10−3 (Benjamini,
Heller, and Yekutieli, 2009). Furthermore, transcripts with |log2 fold
change| ≥2 were screened, mapped, and annotated using the
Blast2Go Pro feature in OmicsBox 2.2 (Conesa et al., 2005) to
allocate gene descriptions at an E-value cut-off of 1 × 10−6 against the
NCBI RefSeq database. These annotated DETs were then mapped to
KEGG pathways using the “Load KEGG pathways” in the OmicsBox
suite, elucidating the network of pathways involved in contributing
differential body weight in fishes under study. Functional
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classification was accomplished using WEGO software (Ye et al.,
2018). A total of 16 pathways of interest were chosen from the
allocated KEGG pathways to decipher the involvement of DETs in
body growth. The protein–protein interaction (PPI) was executed
using the K-means clustering method in the STRING database
(https://string-db.org/) (Szklarczyk et al., 2019).

For validation of DETs, total RNA was extracted from all the
collected samples using TRIzol reagent (Sigma-Aldrich, St. Louis,
MO, USA). Synthesis of first-strand cDNA was carried out using the
Prime Script™ first-strand cDNA Synthesis kit (DSS TAKARA Bio,
Japan) primed with the Oligo dT primer as per the manufacturer’s
protocol and stored at −25°C until use. A total of 18 primer pairs
(12 upregulated and six downregulated; Supplementary Table S1)
were designed using the Primer-BLAST online server (Ye et al.,
2012) for transcripts that were differentially expressed in muscle
tissues of rohu between the HB and LB groups. The specificity of all
primers was tested using conventional PCR, with TM specific to the
primer set (Table S1). RT-qPCR was performed in triplicates for
muscle tissues of rohu belonging to HB and LB groups (four fishes/
group) using the LightCycler 96 SW 1.1 (Roche, Germany). In a 96-
well plate, each 20 μl reaction volume contained 2 μl cDNA (10 ng),
0.2 μl of each primer (concentration 10 μM), 5 μl of 2X FastStart
Essential DNA Green Master Mix (Roche, Germany), and 12.6 μl
Milli-Q water. Conversion of raw data to cycle threshold (Ct) values
was achieved using the software provided by the LightCycler 96 SW
1.1 system (Roche, Germany). Quantification of relative gene
expression was performed using the delta–delta (2−ΔΔCT) method
(Livak and Schmittgen, 2001) and using beta actin as the
housekeeping gene for normalization of relative expression. For
calculation of p-values for differentially expressed transcripts
between HB and LB groups, the paired t-test was used. The fold-
change value for each gene was calculated as the expression ratio in
the HB group to that in the LB group. All results were correlated with
RNA-seq-log2fold change data using Microsoft Excel (Microsoft
Corporation, 2018) to examine the trend of gene expression.
Significantly expressed (>4 fold) and validated DETs were used
to query GO for biological process, GOSlim process, and KEGG
pathways using ShinyGO 0.76 (http://bioinformatics.sdstate.edu/go/
) (Ge et al., 2020) to know enriched GO terms contributed by them.
For enrichment analyses, the default statistical parameters were
used. Ranking of statistical significance of terms was performed
using hypergeometric and chi-square methods to identify highly
tempered biological processes.

2.4 Transcription factor prediction and
enrichment analysis and prediction of target
interactions

To predict transcription factors from assembled transcripts, the
animal transcription factor database AnimalTFDB 3.0 (http://
bioinfo.life.hust.edu.cn/AnimalTFDB/#!/predict) (H. Hu et al.,
2019) was used. Using this information, TFEA was performed on
39 top predicted transcription factors attained from significant
DETs using the X2K webserver. In order to find out miRNA
targets associated with significant DETs, the enrichr web service
(https://maayanlab.cloud/Enrichr/) (Chen et al., 2013) was used
with miRTarBase as validated miRNA target database and

zebrafish as a model organism. miRNA targets associated with
selected transcription factors were predicted using GeneCodis 4
(García-Moreno et al., 2021).

2.5 Coding SNP discovery and annotation

Filtered reads were subjected to mapping with Labeo rohita-
indexed chromosome level genome (NCBI Bioproject:
PRJNA887821)) in BWA-MEM command line software (Li,
2013) followed by SAM to BAM file conversion and SNP calling
in BCFtools (Li, 2013). The sequences were mapped to the reference
genome with a maximum of two mismatches in each sequence for
the assembly step. The following quality and significance filters were
used to detect SNPs: 1) minimum average quality of surrounding
bases = 20 quality score units, 2) minimum coverage = 10 reads, and
3) minimum variant frequency or count = 20% or two read counts
per SNP. High-quality SNPs were annotated using the “SnpEff”
module of the Galaxy webserver (https://usegalaxy.org) (Cingolani
et al., 2012). Identification of QTLs associated with SNP harboring
DETs was carried out using Animal QTLdb taking the rainbow trout
as a model organism (https://www.animalgenome.org/cgi-bin/
QTLdb/) (Hu et al., 2013).

3 Results

3.1 Phenotypic data analysis, mRNA
sequencing, QC, and assembly

Fish belonging to the LB group had a mean length 45.6 cm
and weight 1.1 kg, while for the HB group, the mean length was
50.8 cm and weight 1.85 kg (Figure 1). The length–weight
relationship analysis indicated “b” value 3.074, which showed
that growth was slightly positive allometric. R2 value of
0.89 indicated positive association between length and weight
(Supplementary Figure S1). Condition factor “K” was found to be
1.07 and indicated the wellbeing of fish under study and its
environment.

Sequencing of six NGS libraries derived from good-quality
muscle RNA (RIN >6) from both the groups yielded 178 million
paired-end reads (2 × 150) (Supplementary Table S2). The data has
been deposited in Sequence Read Archive (NCBI) database with
Bioproject Accession ID: PRJNA8944. Quality analysis and stringent
filtering of low-quality reads resulted in 173 million reads, with GC
content ranging from 37% to 42%. The average read length and
Phred score were 151 bp and 35, respectively (Table 1). High-quality
reads were assembled using high-quality rohu reference genome into
11,86,119 contigs with N50 of 1123 bp. A total of 736,781,229 bases
were assembled. BUSCO analysis of assembled contigs revealed
58.74% completeness of the assembly (Table 2). CD-HIT EST
analysis revealed 10,97,979 clusters of UniGenes. Identification of
protein coding regions in the transcriptome revealed a total of
5,34,791 complete ORFs. As an indicator of annotation
performance, the GO-level distribution graph presented a total of
16,485 annotations with a mean level of 6.64 and standard
deviation 2.58. A significant number of complete ORFs were
found (5,34,791). The longest 5′ partial ORF (3354 nt) was
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annotated as protein SON-like isoform X2, whereas the longest 3′
partial ORF detected was the glutamate synthase [NADPH] large
chain.

3.2 Identification of differentially expressed
transcripts, annotation, functional
enrichment, and validation

We discovered a significant proportion of transcripts that
expressed differently between HB and LB groups on the two-fold
change in expression with adjusted p-value < 0.5 × 10−3 and could
obtain 451 upregulated and 181 downregulated transcripts.
Heatmaps for DETs clearly categorized downregulation and
upregulation of several genes in biological replicates of LB and
HB groups (Figure 2). Functional annotation using GO categories
revealed that “binding and cellular processes”-related GO terms
were highly enriched (Supplementary Figure S2). Highly
upregulated transcripts (more than 4-fold) were involved in
biological processes such as muscle integrity, regeneration,
epidermal differentiation, and regulation of growth factor
binding. Downregulated transcripts were associated with cell
cycle regulation, signal transduction, and ion channel binding.

We could observe that DEGs were distributed across the
chromosomes and a larger proportion was observed on
chromosome no. 14, 16, and 19, indicating potential hotspots at

FIGURE 1
Phenotypic data of adult rohu from LB and HB families along with their EBVs.

TABLE 1 Sequence statistics for LB and HB libraries.

Sample ID No. of reads Data in GB GC% Read length % Q20 % Q30

Lib 1 LB84 33957484 5.128 42.0 151 97.980 86.070

Lib 2 LB88 + LB89 30187094 4.558 42.5 151 97.575 85.040

Lib 3 LB82 + LB87 35454238 5.354 38.5 151 97.660 84.785

Lib 4 HB133 + HB135 23770916 3.589 39.0 151 97.120 83.110

Lib 5 HB121 + HB122 26638640 4.022 41.5 151 97.435 84.700

Lib 6 HB104 + HB108 31325938 4.730 37.5 151 96.380 81.200

TABLE 2 Statistics of genome-guided transcriptome assembly completeness.

Attribute Observation

Number of sequences 1,186,119

Longest sequence (nt) 16,755

Shortest sequence (nt) 201

GC-content (%) 36.17%

N50 sequence length (nt) 1,123

Core genes queried 429

Core genes detected 366

Complete 252 (58.74%)

Complete + Partial 366 (86.31%)

Scores in BUSCO format C: 58% [D: 13%], F: 26%, and M: 14%

Average number of orthologs per core gene 1.27
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respective locations (Figure 3). Functional annotation of DEGs
indicated the most enriched enzyme class as “hydrolases,”
followed by “transferases” and “oxidoreductases” (Supplementary
Figure S3). KEGG pathways with ≥3 DEGs assigned and showing
p-value < 0.05 were considered enriched. The KEGG pathway
enrichment analysis of the DEGs indicated purine metabolism
(Supplementary Figures S4, S10), thiamine metabolism, folate
biosynthesis (Supplementary Figure S11), mTOR signaling fatty
acid synthesis, and glycolysis/gluconeogenesis were highly
enriched pathways in the HB group. Other than this, T cell
receptor signaling and mucin-type O-glycan biosynthesis
pathways were also enriched, indicating their potential role in
enhanced immune capacity in the HB group. PPI network

analysis revealed three major clusters, viz., eukaryotic translation
initiation factors, structural proteins, and metabolic enzymes, along
with growth factors. Among these, maximum protein interaction
nodes were observed in eukaryotic translation initiation factors
(Supplementary Figure S5).

A number of immune-related genes were highly upregulated in
the HB group, a majority of them being immunoglobulins
(Supplementary Table S3). Apolipoproteins belonging to L3 and
L6 gene families, recently reported to have an active role in lipid
metabolism inAcipenser dabryanus (Chen et al., 2021) in addition to
immune-related functions, were found to be upregulated in the HB
group. On the other hand, macrophages, lectins, and
thrombospondin families were least represented (Supplementary

FIGURE 2
Heatmap of differentially expressed transcripts for LB and HB groups of Labeo rohita.
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FIGURE 3
Manhattan plot for differentially expressed genes. X-axis indicates the number of chromosomes in the Labeo rohita genome, while the Y-axis
shows-log10 (p-value) significance.

FIGURE 4
Validation of selected transcripts from RNA-seq data using relative gene expression in RNA-seq and qPCR data.
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Figure S6). Gene Ontology indicated major biological processes such
as macromolecule catabolism (GO:0009057) and response to
retinoic acid (GO:0071300). For category, “molecular processes,”
calcium-dependent cysteine-type endopeptidase activity (GO:

0004198), RNA polymerase II transcription factor activity, and
sequence-specific transcription regulatory region DNA binding
(GO:0001133) terms were enriched, while “cellular component”
category reported enrichment of GO terms such as nuclear

FIGURE 5
Gene Ontology and enriched KEGG pathways for validated transcripts: (A) biological processes, (B)molecular processes, and (C) cellular processes.
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FIGURE 6
Transcription factors associated with DETs and their interactions with related proteins and kinases. (A) TFs associated with DETs; (B) PPI interactions
of enriched TFs; (C) kinase enrichment analysis of transcription factors; (D) prediction of the upstream regulatory network of DETs using the
eXpression2Kinases network. TFs are shown in red, while kinases are depicted in blue; size of the bubble indicates the significance of TFs and kinases. Gray
dots represent intermediate proteins, while white lines indicate interactions.
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transcription factor complex (GO:0044798) and RNA polymerase II
transcription factor complex (GO:0090575) (Supplementary Figures
S7A–C). KEGGanalysis showed involvement of the extracellularmatrix
(ECM) receptor interaction and phagosome followed by focal adhesion.

In total, 10 highly upregulated and 10 downregulated transcripts
were selected for validation. Out of 20 transcripts tested for qPCR,
17 were successfully quantified in both HB and LB groups. Genes such
as acetyl-CoA and transforming growth factor (TGF) showed variable
upregulation in real-time and RNA-seq data, while variation was lesser
for genes such as titin isoform X11, fibroblast growth factor 4B (FG4B),
and growth factor receptor-bound protein 10-like isoform X1 (GRBP),
indicating complementarity of RNA-seq and qRT data (Figure 4).
Correlation and t-test employed for comparing overall expression
data of RNA-seq and qPCR revealed positive correlation (0.51) and
p-value > 0.05 (0.139) which was insignificant, and hence it was
concluded that no significant difference between qPCR and RNA-
seq data was observed (Supplementary Figure S8). However, at
transcript level, comparison between qPCR LB, HB, and RNA-seq
HB data indicated significant variation between expression levels of
calpastatin, sema3AA, and RPS6 primarily because of their
upregulation in the LB group and contrast downregulation in the
HB group. We could also observe a sharp upregulation in the
myostatin expression LB group and considerable downregulation in
the HB group (Figure 4). Figure 4 shows that the expression of AMP
deaminase and myogenic 6 is quite significant (p-value < 0.005) as
noted by asterisks in the HB group and insignificant in other groups. In
addition to this, the paired t-test for HB and LB groups indicated
p-value < 0.05 (0.042), depicting significant difference of gene
expression between both groups. PPI network analysis revealed
38 nodes with 51 edges, and average local clustering coefficient was
0.63. The GO and KEGG analysis for qPCR validated transcripts
revealed the most significant GO terms such as “morphogenesis,”
“myofibril assembly,” “striated muscle development,” and “muscle
cell development” under the biological processes category
(Figure 5A). Terms such as acetyl-CoA carboxylase activity, ligase
activity, NAPDH: sulfur oxidoreductase activity, translation initiation
factor binding, TGF beta receptor binding, and FAD binding were
mostly enriched under category “molecular processes” (Figure 5B). The
Cellular component category had two terms enriched, viz., protein
kinase CK2 complex and eukaryotic translation initiation factor
3 complex (Figure 5C).

3.3 Transcription factor enrichment analysis
and prediction of miRNA target interaction

TFEA was performed on 39 top predicted transcription factors
attained from significant DETs obtained as a result of differential
expression analysis. Top predicted TFs included CTCF, AR, SMC3,
FLI1, ELF1, and PPARG. (Figure 6B). These TFs are predicted to
interact with POU1F1, EGFR, SIN3A, MUC1, SP3, LMO2, STAT6,
RXRA, RELA, FAB2, and SMAD2 (Figure 6A). Furthermore, the
prediction of likely regulators of PPIs, protein kinases (PKs), was
performed using kinase enrichment analysis (KEA) with gene set
libraries from kinase-substrate interaction databases. The top
significant PKs were CSNK2A1, MAPK1–14, CDK1, and HIPK2
(p-value < 0.01) (Figure 6C). In addition to this, the
eXpression2Kinases (X2K) network was created for prediction of an

upstream regulatory network of DETs inferred fromTFEA (Figure 6D).
A total of 26 miRNA target interactions (p-value < 0.05) were found to
be associated with significant DETs. Most of them were found to have
positive or negative regulation of cell proliferation and apoptosis and
were associated with genes such as thyroid receptor, acetyl-CoA, and
EO GT1R (Table 3). Top five enriched MTIs associated with
transcription factors were miR-17-5p, miR-16-5p, miR-24-3, miR-
20-5p, and miR-21-5p (Supplementary Figure S9).

3.4 Coding SNP identification and
annotation

A total of 39,452 cSNPs were discovered and after stringent
filtering, and around 39,158 high-quality cSNPs were identified with
38,044 transitions (Ts) and 30,800 transversions (Tv) with the Ts/Tv
ratio of 1.23. A total of 5,816 A/G and 6,093 C/T base changes were
observed (Table 4). More cSNPs were present in the downstream
region (20.18%) than those present upstream (19.2%) (Table 5). A
total of 4,589 cSNPs (57.48%) were missense and might have effects
on protein expression. On the other hand, 40% of the cSNPs (3,270)
were silent effectors. Approximately 124 cSNPs were classified as
nonsense cSNPs. In total, 95% of the cSNPs had a modifier effect on
protein expression. Our studies revealed 12 cSNPs associated with
significant validated DEGs such as myogenic factor 6, fibroblast
growth factor, growth factor receptor-bound protein 10-like, IGF-1-
like, and TGF β (Table 6). Upon comparing the chromosomal
location of these SNPs, we could detect more than one cSNP
closely spaced in chromosome no. 4, 14, and 19 (Table 6). The
highest number of SNPs was present on chromosome no. 14. These
genes could be candidates for QTL search, and hence further studies
are required to rightly pinpoint the QTLs and elucidate their
association with growth in improved rohu.

4 Discussion

The present study aims to identify genes associated with the HB
group of improved rohu of the tenth generation selected for faster
growth, which will be helpful for identifying faster growing candidates
for breeding. Muscle growth in mammals occurs primarily through
hypertrophy, with little cellular proliferation. In contrast to mammals,
fish muscle growth is accomplished through both hypertrophy and
hyperplasia, particularly in large bodied and fast-growing fish, while
slow-growing and small-sized fish primarily grow because of
hypertrophy and display a slower recruitment rate for muscle fibers
(Liu et al., 2020). Another distinguishing characteristic of muscle
growth in fish compared to other vertebrates is that it is continuous.
This fact explains why, after sexual maturation, fish continues to grow
with significant rates of muscle hyperplasia, in contrast to many
mammals (Vélez et al., 2017).

4.1 Sampling, mRNA sequencing, QC, and
assembly

For sampling, we selected individuals on the basis of their
estimated breeding values (EBVs). The EBV is the genetic
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superiority of individuals contributing to the next generation. The
higher the EBV, the better is the individual’s ability to contribute
selected alleles for a particular trait to the next generation. As we had
to identify genes linked to high body weight concurrent with high
EBV, we selected six fish/groups, i.e., LB and HB, based on earlier
reports (Danzmann et al., 2016; Lin et al., 2019; Shen et al., 2022).
Clean and trimmed reads generated had GC content ranging from
37% to 42%, which is similar to previous reports (Das et al., 2020;
Jaiswal et al., 2021). BUSCO analysis indicated that our

TABLE 3 Identification of microRNA targets associated with differentially expressed genes.

MTI Term P-value Odds
Ratio

Combined
Score

Associated
Genes

Function Reference

miR-425-5p 0.0047 9.580 51.348 THRB;EOGT;EIF3C Cell proliferation Wu et al. (2021)

miR-597-5p 0.0059 18.823 96.538 ACACA;IGF1R Inhibition of cell proliferation and migration He et al. (2017)

miR-592 0.007 17.009 84.022 ACACA;IGF1R Cell proliferation Pan et al. (2021)

miR-3690 0.009 14.493 67.280 ACACA;HBEGF Cell cycle progression Shen et al. (2020)

miR-15b-3p 0.010 13.811 62.883 THRB;IGF1R cell proliferation and migration Wei et al. (2020)

miR-5002-5p 0.012 12.624 55.375 THRB;ACACA Cell proliferation Berillo et al. (2013)

miR-4254 0.013 11.939 51.142 ACACA;HBEGF Tissue repair and regeneration Dao et al. (2018)

miR-
4433b-5p

0.015 11.324 47.408 ACACA;IGF1R Cell to cell communication Carvalho et al.
(2022)

miR-4261 0.016 10.770 44.092 EOGT;ACACA Cell proliferation Jiao et al. (2017)

miR-194-5p 0.020 9.7006 37.857 IGF1R;HBEGF Regulator of Apoptosis; Target gene is IGF1R Niu et al. (2021)

miR-4520-5p 0.020 54.198 209.49 EOGT Cell proliferation, Stress biomarker Rong & Liu (2020)

miR-590-5p 0.020 54.198 209.49 TNS1 Negative regulation of NF90/VEGFA signalling
axis

Q. Zhou et al., (2016)

miR-4636 0.023 48.173 181.187 ACACA Inhibition of tumor cell progression Tang et al. (2020)

miR-320c 0.026 8.321 30.158 THRB;EIF3C Apoptosis regulator Lim et al. (2020)

miR-296-3p 0.027 39.411 141.134 IGF1R Cell proliferation Zhou et al. (2020)

miR-6857-3p 0.028 8.0913 28.914 BRD2;ACACA NA

miR-3161 0.029 7.8033 27.376 THRB;EOGT NA

miR-344b-3p 0.032 33.344 114.345 THRB Negative regulator of TLR2 signalling pathway Xu et al. (2017)

miR-6084 0.032 33.344 114.345 IGF1R

miR-6727-5p 0.041 25.493 81.132 IGF1R Cell proliferation Liu et al. (2017)

miR-494-3p 0.041 6.476 20.568 ACACA;IGF1R Mitochondrial biogenesis Lemecha et al.
(2018)

miR-465b-5p 0.043 24.076 75.347 THRB Negative regulator of ESC differentiation Sun et al. (2019)

miR-465a-5p 0.043 24.076 75.347 THRB Critical suppressor of osteoblastogenesis Zheng et al. (2021)

miR-465c-5p 0.043 24.076 75.347 THRB

miR-1237-3p 0.045 6.200 19.218 TNS1;HBEGF Associated with reduced chordoma invasion Zou et al. (2015)

miR-466f-5p 0.048 21.666 65.687 EOGT Cell differentiation Gong et al. (2014)

TABLE 4 Base changes attributed to cSNPs.

A C G T

A 0 2166 5816 3283

C 2047 0 1354 6093

G 5201 1154 0 2304

T 3162 4566 2012 0
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transcriptome had partial to complete gene information for 86.31%
of the genes when compared with the eukaryote orthologous set.
CD-HIT EST revealed 12,97,979 UniGene clusters, which upon
annotation were found to be involved in several metabolic and
signaling pathways. The longest 5’ prime partial ORF (3354 nt)
annotated as protein SON-like isoform X2 was significantly
upregulated (4-fold) in the HB group. Majorly known in
humans, SON protein is a huge serine-/arginine-related protein
which has an active role as a splicing cofactor that promotes effective
splicing during cell cycle progression (Ahn et al., 2011). The longest
3′ partial ORF, glutamate synthase [NADPH] large chain, is mainly
involved in glutamate, nitrogen metabolism, cell integrity, and
protein synthesis and is documented to have a role in muscle
growth (Rufino-Palomares et al., 2016).

4.2 Identification of differentially expressed
transcripts, annotation, and functional
enrichment

For this particular study, we had taken six HB and five LB adult
rohu samples of the same age group (2 years) and one spawning
batch belonging to the tenth generation of the ongoing selective
breeding program, raised in a common environment, i.e., pond. The
HB group contained superior genetic makeup of rohu being selected
for more than 10 generations for higher growth rate. The LB group
represented rohu having low breeding value and exhibited lesser
growth as compared to the HB group. Differential gene expression
revealed 451 up and 181 downregulated genes between HB and LB
group. Selective breeding, which is going on continuously for
12 generations, may presumably have favorable alleles in their
respective lines and might have resulted in a large number of
DEGs. Historically, Indian major carps including rohu, Labeo
rohita originally belonged to the Ganga river system and its
tributaries. In river, they naturally breed in monsoon season in
the presence of environmental conditions such as low temperature,
rainy cloudy weather, and moving water system. In stagnant/
confined water bodies such as ponds, however, they mature, but
do not breed/spawn there unless they are artificially induced using
commercially available GnRH analogs such as ovaprim/ovatide or
pituitaries (Kaui and Rishi, 1986; Bais, 2018), mostly practiced in
specialized carp hatchery systems. Hence, HB and LB groups,
though raised together, do not breed between or within groups
unless they are artificially induced. Furthermore, continuous
selective breeding of higher breeding value individuals led to
increased frequency of alleles favorable for higher body growth
might have very well influenced the levels of transcript expression in
major growth, metabolism, and immunity-related pathways in the
HB group as evident from our results. Though we have taken equal
numbers of males and females (three males and three females) in
each sampling group, its effect on a large number of differentially
expressed genes cannot be ruled out. It is noteworthy that most of
the researchers have used both males and females in their studies of
differentially expressed genes related to body growth (Lin et al.,
2019; Guan, Qiu, and Feng-Liu, 2020; Shen et al., 2022). In this
study, we could find that upregulated transcripts were specific to
major categories such as cellular proliferation, fatty acid metabolism,
and regulation of growth factor binding, which contributes to the

elevated hypertrophic conditions favoring more body growth. Apart
from this, many genes such as titin, actin, myosin, and myotrophin
which are associated with muscle integrity, hypertrophy,
transcription, ribonucleoprotein packaging and transport, and
chromatin remodeling (Alves-Costa et al., 2015) were
upregulated. Furthermore, the purine and thiamine metabolism
pathways followed by the folate biosynthesis pathway were most
significantly enriched and are reported to improve growth
performance (Jamalzad Falah et al., 2020) (Supplementary Figure
S4) (Supplementary Figures S10, S11).

4.2.1 GH–IGF system, PI3K/AKT, and mTOR
pathways hint elevated protein synthesis

The GH–IGF system is primarily responsible for vertebrate
growth and development. IGF1 is one of the most studied
growth factors which influence muscle growth. Growth hormone
(GH) is the activator for the Janus kinase (JAK)-signal transducer
and activator of transcription (STAT) signaling pathway (Bergan-
Roller & Sheridan, 2018). IGF1 has been linked to growth,

TABLE 5 cSNP annotation and number of effects by type and region.

Type of variant (SNP) Count Percent

Downstream gene variant 44,882 20.18

Intergenic region 13,896 6.28

Intron variant 27,219 12.21

Missense variant 4,523 2.03

Non-coding transcript exon variant 2,429 1.09

Splice acceptor variant 81 0.04

Splice donor variant 135 0.06

Splice region variant 398 0.18

Start lost 1 0.00

Stop gained 124 0.06

Stop lost 65 0.03

Stop retained variant 21 0.01

Synonymous variant 5,638 2.53

Upstream gene variant 42,719 19.16

Region of variant (SNP) Count Percent

Downstream 44,882 20.18

Exon 12,718 5.72

Intergenic 13,896 6.25

Intron 26,799 12.05

Splice site acceptor 81 0.04

Splice site donor 131 0.06

Splice site region 336 0.15

Transcript 59,102 26.58

Upstream 42,719 19.21
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metabolism (Castillo et al., 2004), development (Moon & Choi,
2020), reproduction (Reinecke, 2010), and osmoregulation
(Chandhini et al., 2021) in fish and shellfish. The IGF-binding
proteins promote IGF binding to the IGF receptor. A greater
abundance of IGFR1 in fish muscle than that in insulin receptors
indicates that IGFR1 is more important in the regulation of muscle
function than IR in fish (Liu et al., 2020). In this study, we could find
elevated expression (>3 FC) of IGF-related genes such as insulin-like
growth factor I isoform X1, insulinase family protein, and insulin
receptor-like proteins. Significant upregulated eIF-3 subunit C
isoform X1 (7-fold) (Supplementary Table S3) displayed
numerous protein interactions with other eukaryotic translation
initiation factors, such as eIF3d, eIF3g, eIF3f, and eIF4e1c
(Supplementary Figure S5. The eIF-3 complex precisely targets
and inducts the translation of mRNAs involved in cell
proliferation, and hence its upregulation indicated a stimulative
effect on protein synthesis in the HB group as compared to the LB
group. Apart from this, reports of a contributory effect of IGF1 on
glucose uptake other than cellular proliferation have also been
reported (Montserrat et al., 2012). Many signaling pathways are
involved in the regulation of muscle mass. The phosphatidylinositol
3-kinase/PI3K/AKT pathway, which activates protein synthesis and
inhibits protein degradation, is a key player in muscle mass

regulation. mTOR is a ser/thr kinase that detects intracellular
and environmental changes and synchronizes a variety of cellular
processes such as cell growth, autophagy, and is a master regulator in
controlling skeletal muscle mass (Yoon, 2017). MTOR regulates the
phosphorylation of key regulators of mRNA translation and
ribosome synthesis, and mTORC1 promotes protein synthesis. In
this study, we could reveal the upregulation of RIO2, WNK4,
WNK4-like, and SMG1-like serine/threonine protein kinases in
the HB group which are involved in PI3K/AKT pathways. In
response to hormones, nutrients, growth-associated factors, and
signals associated with stress, they are the central regulators of cell
metabolism and growth (Saxton & Sabatini, 2017).

4.2.2 Efficient ubiquitin–proteasome system
improved muscle regeneration

A major intracellular protein degradation system, the
ubiquitin–proteasome system (UPS), is important for muscle
homeostasis and health. Myoblast cells are produced from
stimulated satellite cells and then go through the series of phases
to become myofibers, including proliferation, differentiation, fusion,
and maturation (Chargé & Rudnicki, 2004; Tajbakhsh, 2009).
Recently, better growth performance in common carp was found
to be associated with elevated UPS activity concurrent with the

TABLE 6 cSNPs associated with differentially expressed genes and their effects.

Gene name Function Accession Chromosome Start Stop Length cSNP Position SNP effect

Retinoid acid receptor
alpha-B isoform X1

Cellular growth and
differentiation

NC_066871.1 3 17723931 17808700 453 G/T 17796406 Intron variant and
modifier, high

Myogenic factor 6 Muscle
differentiation

NC_066872.1 4 27560948 27562329 239 G/C 27601011 Missense variant,
moderate

Insulin-like growth factor
I isoform X1

Growth hormone
regulation

NC_066872.1 4 32034024 32045647 149 A/T 32017624 Upstream gene
variant and
modifier, high

Transforming growth
factor beta-2 proprotein

Regulator of cell
proliferation

NC_066882.1 14 22043194 22055303 414 A/G 22069302 3′ UTR variant
andmodifier, high

Meprin A subunit beta-
like isoform X1

Cytokine processing
and inflammation

NC_066882.1 14 32556739 32577283 646 A/T 32571335 Protein coding,
high

Eukaryotic translation
initiation factor 4E-
binding protein 3-like

Translation
initiation

NC_066882.1 14 21136243 21141167 112 C/G 21136224 3′ UTR variant
modifier,
moderate

T/A 21141033 Splice donor
variant and intron
variant, high

Growth factor receptor-
bound protein
10 isoform X1

Regulator of the
Wnt pathway

NC_066884.1 16 29492597 29558237 600 T/C 29581464 Upstream gene
variant modifier,
Moderate

Titin isoform X11 Muscle elasticity NC_066885.1 17 9353801 9392343 3547 T/C 9379989 Splice donor
variant and intron
variant, high

C/T 9380005 Missense variant,
moderate

Thyroid hormone
receptor beta isoform X1

Muscle
development,
metabolism

NC_066887.1 19 319012 347736 415 C/T 338329 Intronic modifier,
high

Casein kinase II subunit
beta

Cell metabolism
and differentiation

NC_066887.1 19 7748857 7753726 215 A/G 7748458 3′ UTR modifier,
high
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activation of protein synthesis (Sun et al., 2018). Other studies have
found that the enhanced UPS activity is critical in satellite cell
(muscle stem cells) proliferation and is associated with augmented
muscle regeneration (Kitajima et al., 2018; Kitajima et al., 2020). In
this study, we could find that several genes associated with the UPS
system such as E3 ubiquitin-protein ligase SMURF2-like,
E3 ubiquitin-protein ligase TTC3-like, E3 ubiquitin-protein ligase
MYCBP2-like, and E3 ubiquitin-protein ligase XIAP-like isoform
X1 were highly upregulated in the HB group, pointing toward the
active development of satellite cells required for cell proliferation.
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1 or PGP9.5)
positively regulates myoblast proliferation (Gao et al., 2017). This
finding was similar to our results where we could observe high
upregulation (up to 7-fold) of UCH isoforms such as ubiquitin
carboxyl-terminal hydrolase 15 isoform X3, UCH 2-like isoform X2,
UCHMINDY-3, and UCH 4, which might be positively involved in
myoblast proliferation in the HB group and hence beneficial for
muscle regeneration and repair.

4.2.3 Immunity-related genes contributed to
muscle growth

As per earlier reports in improved rohu, disease resistance to
aeromoniasis is positively correlated with the growth rate (estimated
genetic correlation: 0.43) (Mahapatra et al., 2017). We could detect
substantial upregulation of polymeric immunoglobulin receptor
(pIgR)-like gene which plays an active role in mucosal surface
defense by modulating transport of polymeric Ig (Turula & Wobus,
2018). Recently, its role in tumor cell growth and proliferation has also
been unveiled (Dewdney &Hebbard, 2018), hinting its indirect effect in
regulating muscle growth besides imparting immunity. In addition to
this, upregulation of HSP20, HSP70, and HSP90 chaperones indicated
marked protein folding efficiency for newly synthesized proteins,
refolding of misfolded ones, and regulation of protein activity
(Mayer and Bukau, 2005), suggesting prominent protein synthesis in
the HB group. Furthermore, upregulation of mucin isoform indicated
an active role in imparting innate immunity and modulation of mucus
secretion (Marcos-López et al., 2018), thereby imparting better disease
resistance. Functional annotation of immunity-related genes indicated
their role in biological processes such as “macromolecule catabolic
process” followed by “cellular response to retinoic acid” (Supplementary
Figure S7A). Apart from hinting at elevated catabolic processes, high
expression of retinoic acid receptor alpha indicates significant levels of
retinoids, which are essential for proper innate and adaptive immune
responses. Moreover, its role in regulating cellular differentiation is also
well-known (Chen and Catharine Ross, 2004; Cunningham and Gregg,
2015) According to Chen and Catharine Ross (2004), retinoic acid may
enhance immunity by inducing differentiation of myeloid and
lymphoid cells, but full elucidation of mechanisms of its activity in
the immune system remains unknown. Calpastatin expression is
suppressed (−7 FC) in the HB group, which hints at elevated levels
of calcium-dependent cysteine proteases, popularly known as calpain.
Under the molecular category, “calcium-dependent cysteine-type
endopeptidase activity” was the highest enriched GO term
complementing elevated calpain levels which are responsible for
cellular inflammatory responses (Supplementary Figure S7B).
Enrichment of GO term “nuclear transcription factor complex”
under the cellular compartmentalization category (Supplementary
Figure S7C) hints at the significantly active NF-κB signaling

pathway which regulates inflammation, cell proliferation, and
immunity responses. Siglec-6 is also known as obesity-binding
protein 1 (OB-BP1) and CD antigen. CD327 is mainly involved in
mediating sialic acid-dependent binding to cells, and through glycan
recognition, siglec regulates the functions of cells in the innate and
adaptive immune system (Crocker et al., 2007). Due to their
upregulation in the HB group, these proteins could have additional
roles in growth, which may be studied in future.

Furthermore, we validated 17 transcripts out of 20 which showed a
similar trend with RNA-seq data, but the overall expression average was
on the lower side. Validated transcripts included thyroid hormone
receptor beta, acetyl-CoA, and fibroblast growth factor 4B responsible
for cellular proliferation and cell cycle progression and muscle building,
growth, and regeneration (Edwards et al., 2009; Shi & Tu, 2015; Shibata
et al., 2016). In addition to this, upregulated expression of IGF1-like in
the HB group hinted its role in muscle growth by building new satellite
cells, giving rise to new myofibrils and stimulating the mTOR pathway.
Other than this, many structural genes such as plectin and myogenin
were found to be upregulated, indicating their role in muscle growth.
Plectin is essential for C2C12 myoblast differentiation and proliferation
and for regulating the expression of atrophy-related genes (atrogin-
1 and muRF-1) (Yin et al., 2021). Furthermore, upregulation of
unconventional myosin-Ic-like isoform X1 (myoIc) known to
improve microfilament motor activities like motility and vehicle
transport (Fili & Toseland, 2019) was observed in the HB
group. Upregulation of thyroid hormone receptor beta indicates
involvement in increasing GH, adrenocorticotropic hormone
(ACTH), and alpha-melanocyte stimulating hormone (alpha-MSH)
which acts by binding to thyroid receptors (Kongchum et al., 2010).
Furthermore, TH receptors are known to regulate the rate of
transcription by modulation of T3 binding and are associated with
the retinoid x receptor (RXR) along with regulation of mitogen-
activated protein kinase (MAPK) or phosphatidylinositol 3-kinase
(PI3K) pathways (Hiroi et al., 2006).

4.3 Gene ontology analysis of validated DETs
suggests the significant association of
growth with cellular proliferation and fatty
acid metabolism

The GO analysis indicated the significant involvement of DETs
in morphogenesis, striated muscle development, and translation
initiation under biological processes, which might be due to
continuous body growth of fish throughout its lifespan.
Enrichment of GO terms such as muscle structure development
and post transcriptional regulation of transcription by RNA Pol II
was also evident. Regulation of transcription by RNA Pol II is further
influenced by changes in chromatin structure, interactions of
regulatory elements, promoters, co-regulators, and mechanisms
associated with progression of transcription (Linzer et al., 2021).
Striated muscle cell development was also flagged as an important
biological process in this study, which hinted at cellular machinery
working toward development of myofibrils, an important muscle
fiber component for inducing muscle hypertrophy. Among
molecular processes, acetyl-CoA carboxylase (ACC) activity was
the most enriched term. ACCs have a central role in fatty acid
metabolism and insulin signaling pathway (Supplementary Figure
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S12). It catalyzes the carboxylation of acetyl-CoA by ATP to form
malonyl-CoA (Harwood Jr, 2005), which is a critical metabolic
signal for controlling fatty acid production and utilization in
response to environmental changes. Significant upregulation of
ACC (9-fold) and mitochondrial malonyl-CoA decarboxylase
(6.9-fold) in the HB group hints at enhanced fatty acid
biogenesis attributed to increased body weight (Sakamoto et al.,
2000). In our study, KEGG analysis showed a similar trend as in
enriched molecular and biological processes such as MAPK and
FoxO signaling pathways along with major metabolic pathways
including fatty acid biosynthesis, adherens junction, TGF, and
insulin signaling pathway. MAPK cascades have been shown to
play an important role in the conversion of extracellular signals to
cellular responses. There are at least three MAPK families known:
extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK),
and p38 MAPK, which are known to be associated with many
complex cellular processes, including proliferation, differentiation,
protein synthesis, development, transformation, and apoptosis
(Zhang & Liu, 2002). Usually located downstream of many
growth factor receptors, the MAPK pathway indicated
upregulation of receptor tyrosine kinase (RTK) in our study
(Supplementary Figure S13), which are cell-surface
transmembrane proteins that function as signal transducers. They
control vital cellular processes such as proliferation, metabolism,
and apoptosis (Dev et al., 2021). Along with upregulation of RTKs,
TGFB, TGFB receptors, and MEF2C, which are a part of JNK and
p38 MAPK pathway, also had elevated profiles and hinted at their
involvement in cell proliferation (Pon & Marra, 2016).

4.4 Transcription factor enrichment analysis
and miRNA target identification

TFs play a vital role in transcription initiation by binding to
targeted sequences of DNA, thereby regulating RNA polymerase

activity. Understanding transcriptional regulation helps track the
dynamics of gene expression in response to genetic or
environmental variations (Pascual-Ahuir et al., 2020). There are
limited reports related to information on TFs playing a key role in
growth regulation such as POU1F1 (POU class 1 homeobox 1)
(Wang et al., 2017), homeostasis, and stress regulation (Sampieri
et al., 2019). Sahoo and colleagues discovered 13 classes of TFs from
liver and muscle tissues of rohu, viz., bZIP, bHLH, and CSD (Sahoo
et al., 2022). Similar observation was also made in our results
(Figure 6A) and in addition to it, we could find that LRRFIP
followed by the bHLH and leucine zipper class (bZIP) was highly
represented in the rohu muscle. On the other hand, TFEA for
significant DETs indicated their involvement pathways associated
with cell growth and chromosome architecture. The PPI network
analysis of peroxisome proliferator-activated receptor (PPARG), a
metabolic nuclear receptor involved in energy homeostasis and cell
proliferation (Hernandez-Quiles et al., 2021), presented its
interaction with SMAD2, RELA, PML, KAT2B, and JUN
(Figure 7B), out of which many are associated with biological
functions such as cellular proliferation, immunity, and apoptosis
(Ungefroren et al., 2011; Lee, 2017; Venezia et al., 2021).

A transcriptional repressor and insulator, CTCF, highest
enriched TF in our study, mediates chromatin looping and
boundary establishment with chromatin structure (Fang et al.,
2020). According to Stik et al. (2020), CTCF is needed for the
expression of genes specific to lineage during cell differentiation. As
it is highly enriched in our TF enrichment data, it can be concluded
that its role in cell differentiation is not only limited to juvenile stages
of life but also in adult stages as well. PPI studies revealed the
interaction of CTCF with SIN3A, GATA1, GATA2, and NCOA6. A
pleiotropic coregulator, NCoA6 plays a role in growth, development,
wound healing, and energy homeostasis maintenance. NCOA6 acts
as a coregulator for estradiol (E2)/ERα–activated
GREB1 transcription intended for regulation of cell proliferation
(Mahajan & Samuels, 2008; Tong et al., 2019). The

FIGURE 7
Distribution of cSNPs across Labeo rohita chromosomes.
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eXpression2Kinases (X2K) network created for prediction of the
upstream regulatory network of DETs inferred from TFEA indicated
the involvement of major PPI regulators, CSNK2A1 and MAPK14.
Both of the protein kinases are known to be associated with cellular
growth progression, transcription, and apoptosis. The MAP kinase
signaling pathway member, MAPK14, plays an imperative role in
cellular responses associated with environmental stimuli such as
physical stress or proinflammatory cytokines causing transcription
factor activation (Notch et al., 2012). The top five enriched miRNA
targets associated with transcription factor were miR-17-5p, miR-
16-5p, miR-24-3p, miR-20-5p, and miR-21-5p, which were mostly
associated with cell proliferation (Stoen et al., 2021; Yan et al., 2019),
cell cycle regulation (Wang et al., 2021), and apoptosis modulation
(Xiao et al., 2018).

4.5 cSNP identification and annotation

Single-nucleotide polymorphisms have been described in the
Atlantic salmon IGF-1 gene promoter, which was discovered to be
strongly linked with performance growth attributes (Tsai et al.,
2015). A whole-transcriptome RNA-seq analysis from higher
growth selected rainbow trout population versus unselected
genetic cohorts revealed 22 cSNP markers associated with the
growth rate (Salem et al., 2012). Around 5 million genomic SNPs
from riverine population of rohu have been reported previously
(Sahoo et al., 2022) along with 3,193 cSNPs for resistance against
Aeromonas hydrophila in rohu along with the linkage map
(Robinson et al., 2014). In this work, we have focused on
identification of cSNPs in HB individuals to pinpoint the cSNPs
associated with better performing individuals in terms of body
growth. We could find around 39,158 high-quality cSNPs which
harbored more transitions (A↔G or C↔T) than transversions
(A↔C or T and G↔ C or T) and hinted at lesser protein
changes attributed to cSNPs. Upon placement of SNPs in
chromosomes, it was observed that maximum numbers (2,303)
were present on chromosome 14, followed by chromosome
3 with 2,118 nos. and chromosome 19 with 1,671 cSNPs
(Figure 7). A larger percent of cSNPs (9.5%) were present in the
downstream region (3′ UTR) of genes as compared to the upstream
located cSNPs (0.24%), implying that those located downstream
may play a role in microRNA and post-transcriptional regulation of
gene expression (Ali et al., 2019;Ali et al., 2019 2020). Fewer cSNPs
found to be residing in the upstream gene regionmight be functional
SNPs modulating binding of the transcription factor and changing
the gene expression abilities (Li et al., 2018). Approximately
4,523 cSNPs were categorized as missense cSNPs, which are
known to cause missense mutation. It is a type of non-
synonymous substitution in which one amino acid is replaced
with another, creating altered protein with functional and
structural modifications, which might result in diseased
conditions (Emadi et al., 2020). Further investigations on these
cSNPs with differentially expressed transcripts are warranted to
detect their contribution to better growth rate. Alternatively,
5,638 cSNPs were synonymous and considered silent effectors. A
meager number (124) of cSNPs were classified as nonsense, which
could possibly insert a stop codon into CDS and disrupt or truncate
the formation of proteins (Chu & Wei, 2019). Of the significantly

important ones, we could find two cSNPs in titin isoformX11, one of
which was the splice donor variant, possibly playing role in splice
site mutations, and other being missense. This type of mutation
results in altered amino acid production due to change in codon
sequence. We also noticed that significantly upregulated myogenic
Factor 6 and insulin-like growth factor I isoform X1 had missense
and upstream gene modifier SNP harboring within them,
respectively. These two genes are located closely on the same
chromosome No. 4 and are upregulated in the HB
group. Another hotspot was detected on chromosome no. 14,
which is also the highest SNP harboring chromosome in our
study. Table 6 shows that this chromosome holds the eukaryotic
translation initiation factor 4E-binding protein 3-like, transforming
growth factor beta-2 proprotein, and meprin A subunit beta-like
isoform X1 with 2, 1, and 1 cSNPs present within them, respectively.
While the earlier ones are involved in cell differentiation and growth,
the later gene, meprin A subunit beta-like, is situated away from
both and is involved in cell proliferation (Schütte et al., 2010),
cytokine processing, and inflammatory responses (Herzog, Haun,
and Kaushal, 2019). The coding SNP present in meprin is annotated
as a high-impact protein coding variant which might be responsible
for its 3-fold upregulation. Furthermore, chromosome no.
19 harbored two predicted high-impact SNPs in thyroid
hormone receptor beta isoform X1 and casein kinase II subunit
beta. These genes are significantly upregulated in our studies and
indicate their association with body weight in the HB
group. Furthermore, the presence of immunity- and growth-
related genes/SNPs in the vicinity on the same chromosome
hints at the presence of possible QTLs, which needs to be
validated in larger population for downstream applications such
as marker panel development and association studies.

5 Conclusion

Overall results of this work established the substantial
involvement of growth-related pathways such as GH/IGF growth
axis, mTOR and proteolytic systems, and thyroid hormone
regulation cascade toward body growth to which differential
body weight between HB and LB groups is attributed. The
transcriptome generated from genetically improved farmed rohu
carp, “Jayanti”, in this study shall be a valuable genomic resource in
expanding our knowledge on genetic architecture and expression
dynamics of genes linked to harvest body weight and studying how
genetic selection for economically important traits changes the
transcription landscape. Furthermore, large-scale validation of
cSNPs generated in this study may result in marker loci or
candidate genes with possible QTL effects for use in marker-
assisted breeding, SNP array construction for genome-wide
association studies, and genomic selection for enhanced growth
rate in improved rohu.
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