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Introduction: This research explored the immune characteristics of natural killer
(NK) cells in lung adenocarcinoma (LUAD) and their predictive role on patient
survival and immunotherapy response.

Material and methods: Molecular subtyping of LUAD samples was performed by
evaluating NK cell-associated pathways and genes in The Cancer Genome Atlas
(TCGA) dataset using consistent clustering. 12 programmed cell death (PCD)
patterns were acquired from previous study. Riskscore prognostic models were
constructed using Least absolute shrinkage and selection operator (Lasso) and
Cox regression. The model stability was validated in Gene Expression Omnibus
database (GEO).

Results: We classified LUAD into three different molecular subgroups based on NK
cell-related genes, with the worst prognosis in C1 patients and the optimal in C3.
Homologous Recombination Defects, purity and ploidy, TMB, LOH, Aneuploidy
Score, were the most high-expressed in C1 and the least expressed in C3.
ImmuneScore was the highest in C3 type, suggesting greater immune
infiltration in C3 subtype. C1 subtypes had higher TIDE scores, indicating that
C1 subtypes may benefit less from immunotherapy. Generally, C3 subtype
presented highest PCD patterns scores. With four genes, ANLN, FAMS83A,
RHOV and PARP15, we constructed a LUAD risk prediction model with
significant differences in immune cell composition, cell cycle related pathways
between the two risk groups. Samples in C1 and high group were more sensitive to
chemotherapy drug. The score of PCD were differences in high- and low-groups.
Finally, we combined Riskscore and clinical features to improve the performance
of the prediction model, and the calibration curve and decision curve verified that
the great robustness of the model.

Conclusion: We identified three stable molecular subtypes of LUAD and
constructed a prognostic model based on NK cell-related genes, maybe have
a greater potential for application in predicting immunotherapy response and
patient prognosis.
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1 Background

Lung cancer is a leading cause of cancer mortality in the world
(Hirsch et al, 2017). Statistics reported that in 2022 in the
United States will die from cancer, and approximately 350 of them
die from lung cancer every day (Siegel et al., 2022). Adenocarcinoma
(lung adenocarcinoma, LUAD) is currently the predominant
histologic type, which accounts for approximately 50% of all lung
cancer cases, and is notable for its high incidence, high mortality, and
poor prognosis (Succony et al, 2021). Currently, surgery is
recommended for early-stage lung cancer and is considered the
most effective treatment option, while those with advanced disease
are often further supplemented with radiotherapy, chemotherapy,
targeted therapy, and immunotherapy (Hoy et al., 2019). Regardless of
the interventions used, the overall 5-year survival of LUAD patients
remains below 20% (Duma et al., 2019). Therefore, it is necessary to
develop current understanding on the pathogenesis of LUAD to
provide a theoretical basis for reducing the occurrence of LUAD,
improving the treatment of LUAD and its prognosis.

The development of LUAD involves external environment, gene
mutation, tumor immunity, and family genetics, and is a multistep,
cascade process (Suster and Mino-Kenudson, 2020). As a component
of the tumor microenvironment, tumor immune cells are present in
all stages of LUAD and play an important role in shaping tumor
development (Saab et al., 2020). For example, tumor-associated
macrophages can accelerate tumor progression by promoting
tumor angiogenesis, metastasis and immune escape. Regulatory
T cells inhibit anti-tumor immune responses, thereby promoting
the development of immunosuppressive tumor microenvironments
and promoting cancer progression (Hsich et al., 2012). Cytotoxic
CD8" memory T cells kill tumor cells by recognizing specific antigens
on them and stimulating an immune response (Arneth, 2019).
Dendritic cells are antigen-presenting cells, which are an important
bridge between innate and adaptive immunity. Dendritic cells can not
only induce cellular immunity and humoral immunity, but also
activate natural killer (NK) cells and NK T cells (Sadeghzadeh
et al,, 2020). NK cells are anti-tumor immune cells that kill cancer
cells in the body, but in the tumor microenvironment NK cells are
generally reduced in number and impaired in function (Russell et al.,
2022). Basic experiments and clinical studies together have shown that
NK cells are in the first line of defense against tumors and do not
require pre-stimulation to cause NK cells to migrate to the lesion and
play an immunomodulatory role (Guillerey, 2020). Phenotypically,
NK cell subpopulations display potent antitumor immune
cytotoxicity via MEK/ERK and PI3K/Akt/mTOR pathways upon
stimulation through cytokines such as interleukin (IL) (Valipour
et al, 2019). Although patient’s immune system can recognize
neoantigens produced by tumors with high mutational load
(immunogenic “hot” tumors), in terms of its mutational load, lung
cancer is immunogenic, only moderately, to some extent. Therefore,
the highly complex interaction between LUAD and NK cells is a major
challenge to improve immunotherapy.

Studies on the pathogenesis of NK cells in LUAD have delved into
the genetic-molecular field, and it is mostly believed that the
development of LUAD is the result of a multigene, multistage
involvement (Crinier et al., 2020). However, the genetic landscape
and immune profile of NK cells in LUAD are unclear, also the
prognosis and immune efficacy prediction of LUAD based on NK
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cells have not been reported. This study first identified stable molecular
subtypes of LUAD by consistent clustering of NK cell-associated genes,
and further compared clinicopathological, mutational, immunological,
and pathway characteristics among the subtypes. Then, we constructed
a risk model and a clinical prognostic model, which can be used to
evaluate personalized treatment for LUAD patients.

2 Materials and methods

2.1 Source of clinical information and gene
expression profile data of NK cells

The clinical information and mRNA transcriptome data of LUAD
patients were downloaded from the TCGA GDC API (Colaprico et al,,
2016). To verify the accuracy of the results, we also downloaded the
clinical and mRNA gene expression data of LUAD patients from the
Gene Expression Omnibus database (GEO) database (Toro-
Dominguez et al., 2019), including GSE72094, GSE31210 datasets.
The TCGA dataset contained 500 LUAD samples as the training set,
while the GSE72094 and GSE31210 datasets contained 398 and
226 LUAD samples, respectively, as the validation set.

To ensure the quality and reliability of the downloaded data,
quality control was performed, and the inclusion and exclusion
criteria were (Hirsch et al., 2017) to remove samples with incomplete
clinical information; (Siegel et al., 2022); to remove samples with
unknown survival time and survival status; (Succony et al., 2021); to
remove probes with one probe matching to multiple genes, and the
mean value was taken as the expression value of that gene when
multiple probes matched to one gene.

NK cell-associated genes were obtained from three parts,
including the ImmPort official website (https://www.immport.
org/resource), the MSigDB database
Database, https://ngdc.cncb.ac.cn/databasecommons/database/id/
1077) and the LM22 database (Newman et al., 2015), containing
134 cell-associated genes, 18 NK cell-associated pathways, and

(Molecular  Signatures

79 NK cell-associated genes, respectively.

2.2 Subtyping of LUAD patients based on NK
cell-associated genes

A total of 213 NK cell-associated genes and 18 NK cell-
associated pathways were obtained from the three databases, and
we used the single sample gene set enrichment analysis (ssGSEA)
method to evaluate these 213 NK cell-associated genes and 18 NK
cell-associated pathways in the TCGA and GEO datasets,
The then
ConsensusClusterPlus using these pathway scores in the TCGA
and GEO cohorts, and the “K-M” algorithm and “l-Pearson
correlation” as the metric distance (Azman et al, 2006). We

respectively. samples  were clustered by

conducted 500 bootstraps, with each one including 80% patients
of in the training set and 20% those of the validation set. Finally,
based on the cumulative distribution function (CDF), the optimal
number clusters were decided, and the optimal classification and the
sample molecular subtyping was obtained by calculating the
consistency matrix and the consistency cumulative distribution
function (Zhang et al., 2021a).
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2.3 Immunological features and pathway
analysis among different molecular subtypes

We obtained the molecular characteristics of LUAD genomic
alterations from published literature, including LOH, Aneuploidy
Score, tumor mutation burden (TMB), purity, and ploidy,
Homologous Recombination Defects, Intratumor heterogeneity.
The relative abundance of 22 immune cells were calculated using
CIBERSORT R package. At the same time, we used the ESTIMATE
algorithm R package to calculate the proportion of immune cells and
finally compared the inflammatory and immune activity scores
(Chakraborty and Hossain, 2018; Chen et al., 2018).

We performed gene set enrichment analysis (GSEA) on all NK
cell-associated genes in the Hallmark database, and then used the
ssGSEA method to calculate the pathway scores for both TCGA and
GEO datasets in the GSVA package (Barbie et al.,, 2009). A false
discovery rate (FDR) of <0.05 in this study was considered
statistically significant.

2.4 Drug sensitivity analysis between
molecular subtypes

Immune checkpoint inhibitor (ICI)-based therapy has become
one of the standard treatments for advanced lung cancer (Zhang
et al,, 2021b). We first assessed the expression of genes associated
with immunotherapy, such as CTLA4, PD-L1, and PD-1, among
various molecular subtypes to determine whether there were
differences in immunotherapy responsiveness among them. Next,
we used the TIDE software (http://tide.dfci.harvard.edu/) to assess
the potential clinical effects of immunotherapy in our defined
molecular subtypes. Greater likelihood of immune escape was
correlated with a higher TIDE prediction score, suggesting that
patients may benefit less from immunotherapy (Jiang et al., 2018).
Finally, we performed drug sensitivity prediction for LUAD in the
“pRRophetic” package (Geeleher et al., 2014).

2.5 Identification of key NK cell-related
genes among molecular subtypes

The differentially expressed genes among different molecular typing
were calculated by the “limma” package, using FDR <0.05 and |
log2FC| > 1 as the statistical difference criteria, and visualized the
differentially expressed genes by “pheatmap” and “ggplot2” R packages
in a heatmap and volcano map. Then, all genes with statistically
significant differences were enriched using the “clusterProfiler” package.

Next, we performed univariate Cox regression analysis for
differentially expressed genes between molecular subtypes, and then
reduced the prognosis-related genes by Lasso regression (Sun et al,
2021), which can better solve the problem of multicollinearity in
regression analysis by compressing some coefficients and setting
some coefficients to zero at the same time. With the gradual
increase of lambda, we selected the number of factors when the
coefficients of independent variables tended to zero. Then, we used
the AIC deficit pool information criterion through stepwise regression,
which has the advantage of considering the statistical fit of the model
and the number of parameters used to fit it, and at the same time
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indicates a sufficient fit of the model obtains with fewer parameters
(Zhang, 2016).

2.6 Construction and validation of the
prognostic model

We calculated the NK cell-related prognostic RiskScore for each
sample according to the formula defined by the sample RiskScore
(below), and normalized it (Nie et al.,, 2021).

RiskScore = coefficientl*genel expression + . ..

+ coefficientN*geneN expression.

After that, LUAD patients were divided into high- and low-risk
groups based on the relationship between RiskScore and 0, where
those with RiskScore >0 were considered as having a high risk and
those with RiskScore <0 were considered as having a low risk.
Finally, the survival differences between the two groups were
compared by log-rank test. In order to verify the robustness of
the model, we performed immune signature analysis, survival curve,
and drug treatment difference analysis for the patients in the two
groups.

2.7 Improvement of prognostic models and
survival prediction in LUAD patients

To more accurately quantify the risk assessment and survival
probability of LUAD patients, we combined the RiskScore with
other clinicopathological characteristics of LUAD patients and
constructed a nomogram using the “nomogramEx” R package.
To validate the accuracy of the model, a calibration curve was
plotted by the “PredictABEL” function to visualize the goodness-
of-fit. This was followed by decision curve analysis (DCA) to
describe the change in net benefit as the threshold probability
changed under the intervention of the predicted value by the
model (Van Calster et al., 2016; Van Calster et al., 2018).

2.8 Programmed cell death (PCD) analysis

12 PCD patterns (apoptosis, pyroptosis,
ferroptosis, cuproptosis, entotic cell death, netotic cell death,
death, autophagy-
dependent cell death, alkaliptosis, and oxeiptosis) have been

necroptosis,

parthanatos, lysosome-dependent cell
taken from the previous research (Zou et al., 2022). ssGSEA
analysis based on the expression data of PCD related genes using
the R package GSVA. Spearman analysis was conducted to know
the relationship among PCD patterns, clinical features, RiskScore
in LUAD samples.

2.9 Statistical analysis
Unless otherwise specified, all statistical tests were bilateral and

conducted using R software (version 4.1.3, https://www.r-project.
org/), and p < 0.05 was considered statistically significant.
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FIGURE 1

Molecular subtyping based on natural killer cell-associated genes. (A) Forest plot of prognostically significant natural killer cell-associated genes in

the TCGA-LUAD cohort. (B) CDF curves of the TCGA-LUAD cohort. (C) CDF Delta area curves of the TCGA-LUAD cohort. (D) heat map of sample
clustering at consensus k = 3 in the TCGA-LUAD cohort. (E) KM curves of the relationship between overall survival (OS) prognosis of the three subtypes in
the TCGA-LUAD cohort. (F) Prognostic differences between the three molecular subtypes in the GSE72094 cohort. (G) Heatmap of prognosis
significant natural killer cell genes expression in different subtypes of TCGA-LUAD.

3 Results

3.1 Molecular subtyping of LUAD based on
NK cell-associated genes

We first calculated the NK cell-related genes showing close
relationship with LUAD survival chance by univariate Cox
regression analysis, and screened 63 prognostically significant
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genes (p < 0.05, Figure 1A), including the prognostic (Protective)
genes SHCI, TICAM1, PVR, RAETIE, RACI (HR > 1), and
KLRB1, CD160, KIR3DL2, CLEC12B, and KIR2DL1 (HR < 1).
Then, we used these 63 differential genes for consistent
clustering, and determined the best cluster number according
to CDF. And we could see from Figures 1B, C that Cluster = 3 had
more stable clustering results, hence, k = 3 was selected to obtain
three molecular subtypes (C1, C2, and C3) (Figure 1D). Then, we
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Aneuploidy Score, Fraction Altered, Number of Segments, and Tumor mutation burden in the TCGA cohort molecular subtypes. (B) Comparison of the
three molecular subtypes with immune molecular subtypes. (C) Somatic mutations in the three molecular subtypes (chi-square test). *p < 0.05; **p <

0.01; ***p < 0.001; ****p < 0.0001.
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with  these
three molecular subtypes using the K-M survival method,

performed survival analysis of patients
and the results identified a significant difference in prognosis
among the three molecular subtypes, with CI1 patients
having the worst prognosis and C3 patients having the
optimal prognosis (Figure 1E). The results were also validated
in the GSE72094 dataset (Figure 1F). Meanwhile, we found that
the “Risk” genes were high-expressed in the C1 subtype and the
“Protective” genes were high-expressed in the C3 subtype in
the heat map (Figure 1G). These results suggested that
the molecular subtyping based on NK cell-related genes was
reasonable, and there were significant differences in
gene expression and prognosis among patients with different

subtypes.

3.2 Genetic landscape between molecular
subtypes of LUAD

To explore the differences in specific gene expression
profiles among different molecular subtypes, we compared the
molecular profiles among CI, C2, and C3 subtypes of LUAD
samples, respectively, and it is obvious from Figure 2A that
purity, TMB, LOH,
Homologous Recombination Defects expression were the

and  ploidy, Aneuploidy  Score,
highest in C1 but the lowest in C3, which was consistent with
previous studies (Thorsson et al, 2018). In addition, we
compared the differences between the molecular subtyping of
published studies and that in this study. Here it was
found that the C3 subclass occupied the most of the
C3 subtypes we defined, suggesting that the C3 subtype was
the major subtype of LUAD (Figure 2B). In addition, a significant
correlation between molecular subtypes and gene mutations was
detected after analyzing the correlation between gene mutations
and molecular subtypes, and observed. TTN, MUC16, CSMD3,
and RYR2 were the most widely mutated genes in LUAD
(Figure 2C), and this finding indicated that the development
of LUAD was closely related to the above-mentioned gene
mutations.

3.3 Pathways enrichment analysis among
the molecular subtyping of LUAD

To investigate pathway differences in LUAD among
different molecular subtypes, we performed GSEA enrichment
among molecular subtypes. As
Figure 3A, we enriched a total of 33 significant pathways in
the TCGA-LUAD dataset, including MYC_TARGETS_V2, E2F_
TARGETS, NFLAMMATORY_ RESPONSE, MYOGENESIS,
INTERFERON_GAMMA_RESPONSE, MYC_TARGETS_V1,
GLYCOLYSIS, G2M_CHECKPOINT, EPITHELIAL
MESENCHYMAL_TRANSITION, ALLOGRAFT_REJECTION,
suggesting that these NK cell genes were mainly associated with

analysis shown in

cell cycle and immunity in C1 and C3. Additionally, pathways
different between C1 and C3 subtypes, between C2 and
C3 subtypes, between C1 and C2, were analyzed (Figure 3B).
Overall, the cell cycle pathway was activated in C1 patients, while
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the immune-related pathway was suppressed, therefore we
hypothesized that these NK cell genes might play an
important role in the cell cycle pathway as well as in the

tumor microenvironment. To validate these results, we
presented the pathway differences between Cl1 and C2,
and C2 and C3 as radar plots, and the results

showed that they both had significant consistency in cell cycle
(MYC_TARGETS_V2, MTORCI1_SIGNALING, MYC_
TARGETS_V1) and immune-related pathways (G2M_
CHECKPOINT, E2F_TARGETS, UNFOLDED_PROTEIN_
RESPONSE) (Figure 3C).

3.4 Immune characteristics among different
molecular typologies of LUAD

The immune system plays a dual role in the development of
LUAD, as it can recognize and destroy tumor cells, while tumor
cells can also evade host immune attack by forming a complex
immunosuppressive network under the pressure of immune
selection using the immune system’s own negative regulatory
mechanisms, thus the TME is in a constant state of change
(Anichini et al., 2020; Spella and Stathopoulos, 2021). To
explore the immune landscape among different molecular
subtypes of LUAD, we first assessed the differences in the
components of immune cells in the TCGA-LUAD cohort
using the CIBERSORT algorithm and observed that most
immune cells (B cells, T cells, NK cells, etc.) were significantly
different (p < 0.05) (Figure 4A). We then used the ESTIMATE
algorithm to assess immune cell infiltration, and the results
showed that StromalScore, ImmuneScore and EstimateScore
were significantly different between C1, C2, and C3 (p <
0.05)), with
proportion of C3 types, suggesting a higher degree of immune

ImmuneScore accounting for the largest
infiltration in C3 subtypes (Figure 4B). Similarly, we obtained
results in the GSE72094-LUAD cohort that were consistent with
the TCGA-LUAD cohort (Figures 4C, D). In addition, we
assessed the inflammatory activity of C3, C2, Cl, except for
IgG, the remaining six out of 7 metagenes clusters (HCK,
Interferon, LCK, MCH I, MCH 1II, and STATI1) showed
different with  the
C4 subtype having higher inflammatory activity (Figure 4E).
The findings were consistent in the GSE72094-LUAD cohort
(Figure 4F).

significantly enrichment  scores,

3.5 Differences in immunotherapy between
molecular subtypes

In recent years, immunotherapy has led to new opportunities
in the treatment of small cell lung cancer. Clinical trials of some
immune checkpoint inhibitors have demonstrated their efficacy
and safety in LUAD (Hua et al., 2021). Based on this, we first
evaluated the expression of the representative molecules of
immunotherapy (PD-1, PD-L1, CTLA4) among the three
molecular subtypes, and observed that PD-1, PD-LI, and
CTLA4 were significantly more expressed in C3 subtype (p <
0.05) (Figure 5A). We also applied the “T-cell-inflamed GEP
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FIGURE 3

Pathway analysis between molecular subtypes. (A) Bubble plots of GSEA results for C1 vs. C3 subtypes in two lung adenocarcinoma cohorts. (B)
Bubble plots of GSEA results for different molecular subtypes compared to each other in the TCGA-LUAD cohort. (C) Radar plots of C1 vs. C2 and C2 vs.
C3 activation pathways in the TCGA-LUAD cohort.

score” to assess the predictive potential of different molecular ~ IFN-y is a cytokine that plays a key role in immunomodulation
subtypes to cancer immunotherapy, and the results also showed  and immunotherapy, we downloaded the GOBP_RESPONSE_
that the score was highest in C3 (Figure 5B). Considering that ~TO_INTERFERON_GAMMA gene set from the GO database for
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FIGURE 4

Proportions of immune cell components in the two lung adenocarcinoma cohorts. (A) Differences in 22 immune cell scores between different
molecular subtypes in the TCGA-LUAD cohort. (B) Differences in ESTIMATE immune infiltration between different molecular subtypes in the TCGA-LUAD
cohort. (C) Differences in the GSE72094 cohort 22 immune cell scores between different molecular subtypes. (D) Differences in ESTIMATE immune
infiltration between different molecular subtypes in the GSE72094 cohort. (E) Differences in seven inflammation-related gene cluster scores across
molecular subtypes in TCGA-LUAD cohort. (F) Differences in gene cluster scores between different molecular subtypes in seven inflammatory-related

genes in GSE72094 cohort.

ssGSEA analysis, and found that the IFN-y response was
significantly enhanced in the C1 subtype (Figure 5C). We also
compared the differences in INFG gene expression in the
three subtypes and found that INFG was noticeably high-
expressed in the C3 subtype (Figure 5D). Moreover, CYT
score, which reflects the cytotoxic effect, was significantly
higher in the C3 subtype than in the other subtypes
(Figure 5E). In addition, the TIDE prediction data indicated
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that the C1 subtype had a higher TIDE score, suggesting that the
C1 subtype was less likely to benefit from immunotherapy
(Figure 5F). The estimated IC50 of docetaxel, vincristine,
paclitaxel and cisplatin among 3 subtypes showed that C1 was
more sensitive to the four chemotherapy drugs (Figure 5G). The
that predicting immunotherapy
for LUAD based on NK cell-related genes was a practical

above results indicated

approach.
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3.6 The analysis of PCD patterns among
molecular subtypes

The ssGSEA analysis calculated the score of 12 PCD
patterns in each sample in TCGA dataset and
GSE72094 dataset. We found that 9 PCD had
differences among 3 subtypes in both two datasets (Figures
6A, B). In TCGA dataset, Stage, Gender, especially, Age had
closely associated to PCD patterns (Figure 6C), but in
GSE72094 dataset, clinical features had litter associated to
PCD patterns 6D).
increased in the
Autophagy, Necroptosis and Oxeiptosis were enhanced in
Male samples, and with 60 had
higher Pyroptosis, Entotic. cell.death scores in TCGA
dataset (Figure 6E). In GSE72094 dataset, Oxeiptosis score
was highest in Stagelll, and Ferroptosis and Necroptosis scores
were greater in patients with age>60 (Figure 6F).

scores

(Figure Autophagy score were

early Stage, scores of Pyroptosis,

samples age >
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3.7 Establishment of LUAD risk model

We first calculated the NK cell-related genes significantly
differentially expressed among the three molecular subtypes by the
limma package, significant expression differences of NK cell-related
genes among C1, C2, and C3 were detected, including 11 upregulated
genes and 180 downregulated genes (Supplementary Figures S1A, B).
Differentially expressed downregulated genes were related to
immune-related pathways, as shown by the results of enrichment
analysis (Supplementary Figure S1C). Genes with upregulated level
were related to inflammatory and immune pathways (Supplementary
Figure S1D). 173 genes with high prognostic impact (p < 0.05),
including 159“Protective” and 14“Risk” genes, were identified from
those genes by conducting one-way Cox regression analysis
(Supplementary Figure S2A). Further, we observed the trajectory
of each gene with lambda using Lasso analysis, and the model was
optimal when lambda = 0.0382, which corresponded to 9 differential
genes (Supplementary Figures S2B, C). After that, we reduced the
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FIGURE 6

The PCD characteristic among 3 molecular subtypes. (A) the ssGSEA analysis of 12 PCD patterns among 3 molecular subtypes in TCGA-LUAD
dataset. (B) the ssGSEA analysis of 12 PCD patterns among three molecular subtypes in GSE72094 dataset. (C) The spearman analysis between clinical
feature and PCD in TCGA-LUAD dataset. (D) The spearman analysis between clinical feature and PCD in GSE72094 dataset. (E) The ssGSEA analysis of
PCD in TCGA-LUAD samples with Stage, Gender and Age. (F) The ssGSEA analysis of PCD in GSE72094 samples with Stage, and Age.

genes to four, namely, ANLN, FAM83A, RHOV, and PARP15, by the
stepAIC method in the MASS package (Supplementary Figure S2D).

Then, we calculated the Riskscore score for each TCGA-LUAD
patient using these four genes and the above formula (Figure 7A).
We classified those RiskScore with 0 < as low-risk group and with
RiskScore >0 as high-risk group. Then, we performed a prognostic
classification ROC analysis in the “timeROC” package for analyzing
1-year, 2-year, 3-year, and 5-year prediction
classification efficiency, and we found that the model had a high
AUC (0.71, 0.69, 0.7, and 0.67) (Figure 7B). The results of survival
analysis showed that patients in the low-risk group developed a
significantly better prognosis (p < 0.001) (Figure 7C). To confirm the
robustness of this clinical prognostic model, we validated it in the
GSE72094 and GSE31210 cohorts and used the same approach to

calculate the RiskScore of patients (Figures 7D-G).

prognostic

3.8 Pathological characteristics of high- and
low-risk groups

To investigate the reliability of this risk model classification
method, we first compared the clinical characteristics of patients in
both high- and low-risk groups. The results showed that the
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RiskScore scores of patients with Stage III-IV, M Stage, N Stage,
T Stage were significantly higher than Stage I-II ones. In addition, we
also found that male patients had a higher RiskScore (Figure 8A).
Also, we compared the differences in RiskScore by molecular
subtype and found that the RiskScore for the C1 subtype with
poorer prognosis was significantly higher than C3 with a better
prognostic outcome (Figure 8B), and that the majority of the
samples with high RiskScore were “Cl1” patients (Figure 8C). In
addition, we also compared whether there was a prognostic
difference in the—high- and low-risk groups between the
different clinicopathological characteristics subgroups in the
TCGA-LUAD cohort. Across different clinical subgroups, the risk
grouping performed equally well, pointing to the reliability of the
grouping (Figure 8D). This finding also applied to the GSE72094-
LUAD cohort (Supplementary Figure S3).

3.9 Immune infiltration and pathway
characteristics of low-risk and high-risk
patients

We compared the relative abundance of 22 immune cell types in
the two subgroups of the TCGA-LUAD cohort in high- and low-risk
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Risk modeling and validation. (A) RiskScore, survival time vs. survival status and expression of necroptosis-related genes in TCGA-LUAD dataset. (B)
ROC curves with AUC for RiskScore classification in the TCGA-LUAD dataset. (C) Distribution of KM survival curves for RiskScore in the TCGA-LUAD
dataset. (D,E): ROC curves and KM survival curves for RiskScore in the GSE72094 cohort. (F,G): ROC curves and KM survival curves of RiskScore in the

GSE31210 cohort.

groups. We discovered that the majority of immune cells (B cells,
macrophages, T cells, and mast cells) were significantly different in
high- and low-risk groups (p 0.05, Figure 9A). It is worth noting that
activated NK cells had no significance between high- and low-group.
We also examined the connection between the RiskScore and
22 immune cell components (Figure 9B). Also, we assessed the
immune cell infiltration using the ESTIMATE method. The three
scores were significantly different between two risk groups (p <
0.05), and the low-Riskscore group had higher immune infiltration
(Figure 9C). The relationship between biological function in
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different samples with RiskScore was analyzed by “ssGSEA”
analysis and found that the high risk group was significantly
enriched to some cell cycle-related pathways, such as
HALLMARK_SPERMATOGENESIS, and HALLMARK_REPAIR,
SPERMATOGENESIS, HALLMARK_DNA_REPAIR, ALLMARK
MYC_TARGETS_V2, HALLMARK_UNFOLDED_PROTEIN_
RESPONSE, etc. (Figure 9D). Further, we selected functional
pathways with correlations greater than 0.4, from which we could
see that RiskScore showed positive correlation with cell cycle-related
such HALLMARK_MYC_TARGETS_V1,

pathways, as
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3.10 Differences in immunotherapy/
chemotherapy for patients in high- and low-
risk groups

First, we used the “T-cell-inflamed GEP score” to assess
the predictive potential of the different RiskScore subgroups in
cancer immunotherapy. The results showed that the “T-cell-
inflamed GEP score” was elevated in the low-risk group, but the
difference was not statistically significant (Figure 10A), however, in
the low-risk group the IFN-y response was noticeably elevated
(Figure 10B). The CYT score, which reflects cytotoxic effects, was
elevated in the low-risk group, showed no statistically significant
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differences (Figure 10C). The expression of representative molecules
of immunotherapy (CTLA4, PD-L1, and PD-1) was calculated in the
risk groups and showed that CTLA4 was significantly more
expressed in the low-risk group (p < 0.05), while the difference
in PD-1 and PD-L1 expression was not significant (Figure 10D). We
looked at the connection between RiskScore and medication
response in cancer cell lines to better understand the impact of
RiskScore on drug response. We found 49 substantially linked
relationships between RiskScore and drug sensitivity in the
Genomics of Drug Sensitivity in Cancer (GDSC, http://cancer.
sanger.ac.uk/cell_lines#) database using Spearman correlation
analysis. Of these 49 pairs, 15 pairs were significantly associated
with Riskscore correlations, such as Vinorelbine, Sabutoclax,
Vinblastine, Entinostat, Vincristine, and Sorafenib (Figure 10E).
We found that these drugs mainly target the EGFR signaling and
TNKS2 pathways through the study on the signaling pathways of the
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the association among RiskScore, model genes and 12 PCD patterns.

genes targeted by these drugs (Figure 10F). In addition, we also
explored the response of different molecular subtypes in the TCGA-
LUAD cohort to the traditional chemotherapeutic agents Docetaxel,
Vinorelbine, Paclitaxel and Cisplatin, and found that overall patients
in the high-risk group were more sensitive to all the four
chemotherapeutic agents (Figure 10G), suggesting that patients in
the high-risk group may benefit from these four drugs.
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3.11 PCD characteristics in high- and low-
risk groups

We also determine the PCD characteristics in high- and low-risk
groups using ssGSEA analysis. 6 of 12 PCD styles had differences
between high- and low-risk groups in TCGA dataset (Figure 11A).

In GSE72094 dataset, 10 PCD patterns scores presented
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Establishment of nomogram. (A,B): Univariate and Multivariate Cox analysis of RiskScore and clinicopathological characteristics; (C): The nomogram

model; (D): Calibration curves for 1, 3, and 5 years for the nomogram; (E)

differentiation in high- and low-risk groups (Figure 11B). Moreover,
the differences of 9 PCD scores between high- and low-groups was
observed in GSE31210 dataset (Figure 11C). RiskScore as well as
four model genes were obviously related to PCD patterns
(Figure 11D).

3.12 RiskScore combined with
clinicopathological features to further
improve prognostic models and survival
prediction

Univariate and multifactorial Cox regression analyses
revealed RiskScore as the most significant prognostic factor
(Figures 12A, B). We created a nomogram (Figure 12C)
combining RiskScore and other clinicopathological traits for
the risk assessment and prediction of survival probability for
LUAD patients. The model results revealed that RiskScore had
the biggest influence on survival prediction. The prediction
calibration curves at the three calibration points of 1, 3, and
5year(s) nearly overlapped with the standard curve, which
indicated that the nomogram plot had excellent prediction
performance. We further assessed the prediction accuracy of
the model using the calibration curve (Figure 12D). We also
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: Decision curves for the homogram.

used DCA (Decision curve) to test the model’s dependability, and
it was shown that RiskScore and Nomogram performed much
better than the extreme curve and had the strongest ability to
predict survival among other
(Figure 12E).

clinicopathological factors

4 Discussion

Lung cancer is currently the most aggressive malignancy in the
world, of which LUAD is the most common histological subtype of
primary lung cancer, accounting for 64% of peripheral lung cancers,
and has been reclassified from invasive precancerous lesions to
invasive adenocarcinoma (Denisenko et al., 2018; Hutchinson
et al, 2019). Despite the current advances in the treatment of
LUAD, the median survival is only 8.6 months and immune
escape is considered one of the main factors leading to treatment
failure in LUAD (Yotsukura et al, 2021). In contrast to the
remarkable efficacy of immune checkpoint inhibitor (ICI) in
metastatic melanoma, Hodgkin’s lymphoma, and bladder cancer,
not all patients with LUAD are sensitive to ICI (Zhang et al., 2020).
Mechanisms of immune escape that lack adaptive immune response
include hypoxia-driven immunosuppressive factors, anti-apoptotic
pathways, chronic inflammation, metabolic damage, and immune
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cells such as regulatory T (Treg) cells, tumor-associated
M2 macrophages (TAM), myeloid-derived suppressor cells
(MDSC) (Yu et al,, 2021). Recent studies have shown that T and
NK cell dysfunction and depletion or deficiency of antitumor-
specific effector cells are involved in LUAD immune escape
(Hong et al, 2019), and although the exact mechanism is
unclear, it points to new ideas for the study of immune escape in
LUAD and provides new targets for immunotherapy in LUAD.
LUAD usually

radiotherapy and leads

is resistant to chemotherapy and/or
the of distant

metastases (Jiang et al., 2021). NK cell dysfunction and failure

to development
in patients with LUAD could be caused by immune escape

mechanisms mediated by lung cancer cells or tumor
microenvironment, leading to failure of immunotherapy. The
reason for this is related to tumor upregulation of inhibitory
(e.g, HLA-C molecules) by
autoinhibitory KIR receptors carrying ITIM motifs (Daéron
et al, 2008). Cellular experiments showed that other
inhibitory receptors, for instance, KLRG-1, LAG-3, CD9%4/
NKG2A, TIM3, TIGIT, and their ligands were also frequently
upregulated on NK cells from LUAD patients (Lee et al., 1998;

Nayyar et al., 2019), which was consistent with our study, where

ligands and recognition

we found significantly different NK cell-related gene expression
in different subtypes. CTLA-4 (ipilimumab) improved clinical
prognosis of patients with LUAD (Paulsen et al., 2017) in

addition to the common PDL-1 inhibitors (avelumab,
atezolizumab, durvalumab) and PD-1 (camrelizumab,
spartalizumab, nivolumab, pembrolizumab). Our study

identified the expression patterns of PD-1/PD-L1 and CTLA-4
in different subtypes, confirming a possible immune escape
mechanism of NK cells in LUAD and providing a new
perspective for blocking immune dysregulation.

The tumor microenvironment (TME) consists of associated
fibroblasts (CAF), cells, other immune and
endothelial cell (ECs) (Vitale 2019).
Ghiringhelli F et al. showed that suppressive immune cells such

tumor cells,

constituents et al,
as Treg cells, CTLA-4+ regulatory, and that N2 neutrophils and
M2 macrophages can disrupt the anti-lung cancer activity of NK
cells (Domagala-Kulawik et al., 2014). Similarly, our data showed
significant differences in the proportion of NK cells, B cells, and
T cell content between different molecular subtypes, suggesting that
other immune cells may impair the cytotoxic and migratory activity
of NK cells with numerical and functional advantages, and thus
causing NK cell depletion (Bi and Tian, 2017). But we found that
activated NK cells had no differences between high- and low-group,
maybe caused by insufficient samples.

Changes in NK cell counts, including peripheral blood,
circulation and TME in healthy individuals, can be used as
prognostic markers in patients with head and neck and lung
tumors (Lin et al., 2017; Lin et al., 2020; Zhong et al., 2021). We
constructed the prognosis model by NK cell-related genes
(ANLN, FAMS83A, RHOV, and PARP15), which is a powerful
tool to assist clinical decision-making with effective prediction
of patient survival and drug sensitivity. ANLN is an actin-
binding protein, and previous studies have demonstrated that
ANLN is associated with actin cytoskeleton dynamics (Xu et al.,
2019). Xu J et al. showed that ANLN overexpression promotes
distant metastasis of lung cancer cells and is associated with
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epithelial mesenchymal transformation (EMT) of LUAD cells
transformation (EMT) in LUAD cells. Similar to previous
bioinformatic analyses, our study found that upregulated
FAM83A in LUAD tissues, which was relate to LUAD
prognosis (Suzuki et al., 2005; Deng et al., 2021). Knockdown
of FAMS83A inhibited proliferation, migration and invasion of
LUAD cells. In addition, the IncRNA FAM83A-AS1 regulates
FAMBS83A expression by acting as a competing endogenous RNA
for miR-495-3p (Wang et al., 2021). These results suggested that
FAMBS83A plays an oncogenic role in LUAD and that FAM831-
AS1 can regulate FAMS83 expression by taking up miR-495-
3p. Similar to FAM83A, invasion, migration and proliferation of
LUAD cells could be stimulated by RHOV overexpression, while
knockdown of RHOV inhibits the functionalistic behavior of the
cells. In addition, RHOV knockdown inhibits metastasis and
LUAD tumor growth of nude mice, which may be related to
RHOV activation of the JNK/c-Jun signaling pathway (Zhang
etal., 2021c). There are fewer basic studies on PARP15 in LUAD,
and genomic data with large sample sizes suggested that RHOV
is a useful marker for immunotherapy and survival in LUAD
(Han et al., 2020). The above studies revealed a novel regulatory
mechanism of NK cells in LUAD tumor development, which
may be a new biomarker and therapeutic target for LUAD.
Docetaxel, Vinorelbine, Paclitaxel and Cisplatin are currently
widely used chemotherapy drugs for lung cancer, which cause cell
cycle arrest (Clegg et al., 2001; Dasari and Tchounwou, 2014). However,
resistance can develop, leading to further tumor development and side
effects such as myelosuppression, drug nephritis, nausea, vomiting,
hearing loss and polyneuropathy, which will significantly reduce the
patient’s quality of life (Dasari and Tchounwou, 2014). Acquired
chemotherapy resistance is a major problem faced by clinicians and
a major cause of treatment failure. Regardless of the type of resistance,
loss of tumor sensitivity to the drug leaves very little time for therapy to
correct, with the goal of improving patient survival. Patients’ clinical
outcomes can be significantly improved by personalizing treatment
regimens and predicting the effects of drug therapy. The results of this
study showed that patients in CI subtype and high-risk group were
more sensitive to and benefited from four chemotherapy drugs. We
speculated that may be the number of NK cells affects drug sensitivity.
Although this study reveals the immune signature of NK cell-
related genes in LUAD and confirms the role in prognosis and
immunotherapy of LUAD, the following limitations remain: (Hirsch
et al., 2017): The wide variety, rapid development of bioinformatics
tools can help predict potential key molecules and pathways, narrow
the scope and improve the efficiency of the study, but the final
findings should be validated based on real genetic data in basic and
clinical settings; (Siegel et al., 2022); The database used to conduct
functional and signaling pathway enrichment analysis has
comprehensive and complete data, but its slow updates may have
some unpredictable effects on the results; (Succony et al., 2021); The
results were based on extrapolation of the raw signal algorithm and
should be supported by further laboratory and clinical evidence.

5 Conclusion

Based on NK cell-related genes, we identified three stable
molecular subtypes of LUAD, which differed significantly in
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terms of immunity, pathways, prognosis and drug sensitivity among
different molecular subtypes. Based on NK cell-related genes, this
study developed a prognostic model, which was highly robust and
had a greater application
immunotherapeutic response and patient prognosis.

potential ~ for in predicting

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Materials, further inquiries can be
directed to the corresponding author.

Author contributions

All authors contributed to this present work: DZ, designed the
study. YZ, acquired the data. YZ, drafted the manuscript. DZ,
revised the manuscript. All authors read and approved the
manuscript.

Funding

This study was supported by Clinical Study on Diagnosis and
Treatment of Peripheral Pulmonary Nodules by Bronchoscopic

References

Anichini, A., Perotti, V. E., Sgambelluri, F., and Mortarini, R. (2020). Immune escape
mechanisms in non small cell lung cancer. Cancers 12 (12), 3605. doi:10.3390/
cancers12123605

Arneth, B. (2019). Tumor microenvironment. Med. Kaunas. Lith. 56 (1), 15. doi:10.
3390/medicina56010015

Azman, J., Frkovi¢, V., Bili¢-Zulle, L., and Petrovecki, M. (2006). [Correlation and
regression]. Acta medica Croat. cas. Hravatske akad. Med. znan. 60 (1), 81-91.

Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, L F,, et al.
(2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers
require TBK1. Nature 462 (7269), 108-112. doi:10.1038/nature08460

Bi, J., and Tian, Z. (2017). NK cell exhaustion. Front. Immunol. 8, 760. doi:10.3389/
fimmu.2017.00760

Chakraborty, H., and Hossain, A. (2018). R package to estimate intracluster
correlation coefficient with confidence interval for binary data. Comput. methods
programs Biomed. 155, 85-92. doi:10.1016/j.cmpb.2017.10.023

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. Clift.
NJ) 1711, 243-259. doi:10.1007/978-1-4939-7493-1_12

Clegg, A., Scott, D. A, Sidhu, M., Hewitson, P., and Waugh, N. (2001). A rapid and
systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel,
docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer. Health
Technol. Assess. Winch. Engl. 5 (32), 1-195. doi:10.3310/hta5320

Colaprico, A, Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., et al. (2016).
TCGAbiolinks: An R/bioconductor package for integrative analysis of TCGA data.
Nucleic acids Res. 44 (8), €71. doi:10.1093/nar/gkv1507

Crinier, A., Narni-Mancinelli, E., Ugolini, S., and Vivier, E. (2020). SnapShot: Natural
killer cells. Cell. 180 (6), 1280-1280.e1. doi:10.1016/j.cell.2020.02.029

Daéron, M., Jaeger, S., Du Pasquier, L., and Vivier, E. (2008). Immunoreceptor
tyrosine-based inhibition motifs: A quest in the past and future. Immunol. Rev. 224,
11-43. doi:10.1111/j.1600-065X.2008.00666.x

Dasari, S., and Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular
mechanisms of action. Eur. J. Pharmacol. 740, 364-378. doi:10.1016/j.ejphar.2014.
07.025

Deng, F., Xu, Z., Zhou, J., Zhang, R., and Gong, X. (2021). ANLN regulated by miR-
30a-5p mediates malignant progression of lung adenocarcinoma. Comput. Math.
methods Med. 2021, 9549287. doi:10.1155/2021/9549287

Frontiers in Genetics

18

10.3389/fgene.2023.1156230

Navigation and Thoracic Wall Navigation (No. S2023-YF-YBSF-
0407).

Conflict of interest

Author YZ was employed by Yuce Biotechnology Co, Ltd.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1156230/
full#supplementary-material

Denisenko, T. V., Budkevich, I. N., and Zhivotovsky, B. (2018). Cell death-based
treatment of lung adenocarcinoma. Cell. death Dis. 9 (2), 117. doi:10.1038/s41419-017-
0063-y

Domagala-Kulawik, J., Osinska, I, and Hoser, G. (2014). Mechanisms of immune
response regulation in lung cancer. Transl. lung cancer Res. 3 (1), 15-22. doi:10.3978/j.
issn.2218-6751.2013.11.03

Duma, N., Santana-Davila, R., and Molina, J. R. (2019). Non-small cell lung cancer:
Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 94 (8), 1623-1640.
doi:10.1016/j.mayocp.2019.01.013

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for
prediction of clinical chemotherapeutic response from tumor gene expression levels.
PloS one 9 (9), €107468. doi:10.1371/journal.pone.0107468

Guillerey, C. (2020). NK cells in the tumor microenvironment. Adv. Exp. Med. Biol.
1273, 69-90. doi:10.1007/978-3-030-49270-0_4

Han, L., Shi, H,, Luo, Y., Sun, W, Li, S., Zhang, N, et al. (2020). Gene signature
based on B cell predicts clinical outcome of radiotherapy and immunotherapy for
patients with lung adenocarcinoma. Cancer Med. 9 (24), 9581-9594. doi:10.1002/
cam4.3561

Hirsch, F. R., Scagliotti, G. V., Mulshine, J. L., Kwon, R., Curran, W. ], Jr., Wu,
Y. L, etal. (2017). Lung cancer: Current therapies and new targeted treatments.
Lancet (London, Engl. 389 (10066), 299-311. doi:10.1016/S0140-6736(16)
30958-8

Hong, G., Chen, X,, Sun, X., Zhou, M., Liu, B,, Li, Z., et al. (2019). Effect of autologous
NK cell immunotherapy on advanced lung adenocarcinoma with EGFR mutations.
Precis. Clin. Med. 2 (4), 235-245. doi:10.1093/pcmedi/pbz023

Hoy, H., Lynch, T., and Beck, M. (2019). Surgical treatment of lung cancer. Crit. care
Nurs. Clin. N. Am. 31 (3), 303-313. doi:10.1016/j.cnc.2019.05.002

Hsieh, C. S., Lee, H. M., and Lio, C. W. (2012). Selection of regulatory T cells in the
thymus. Nat. Rev. Immunol. 12 (3), 157-167. doi:10.1038/nri3155

Hua, Z. D., Liu, X. B, Sheng, J. H, Li, C, Li, P, Cai, X. Q, et al. (2021).
UBE2V2 positively correlates with PD-L1 expression and confers poor patient
survival in lung adenocarcinoma. Appl. Immunohistochem. Mol. Morphol. AIMM 29
(8), 585-591. doi:10.1097/PAI.0000000000000928

Hutchinson, B. D,, Shroff, G. S., Truong, M. T., and Ko, J. P. (2019). Spectrum of lung
adenocarcinoma. Seminars ultrasound, CT, MR 40 (3), 255-264. d0i:10.1053/j.sult.2018.
11.009

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fgene.2023.1156230/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1156230/full#supplementary-material
https://doi.org/10.3390/cancers12123605
https://doi.org/10.3390/cancers12123605
https://doi.org/10.3390/medicina56010015
https://doi.org/10.3390/medicina56010015
https://doi.org/10.1038/nature08460
https://doi.org/10.3389/fimmu.2017.00760
https://doi.org/10.3389/fimmu.2017.00760
https://doi.org/10.1016/j.cmpb.2017.10.023
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.3310/hta5320
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1016/j.cell.2020.02.029
https://doi.org/10.1111/j.1600-065X.2008.00666.x
https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1155/2021/9549287
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.3978/j.issn.2218-6751.2013.11.03
https://doi.org/10.3978/j.issn.2218-6751.2013.11.03
https://doi.org/10.1016/j.mayocp.2019.01.013
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1007/978-3-030-49270-0_4
https://doi.org/10.1002/cam4.3561
https://doi.org/10.1002/cam4.3561
https://doi.org/10.1016/S0140-6736(16)30958-8
https://doi.org/10.1016/S0140-6736(16)30958-8
https://doi.org/10.1093/pcmedi/pbz023
https://doi.org/10.1016/j.cnc.2019.05.002
https://doi.org/10.1038/nri3155
https://doi.org/10.1097/PAI.0000000000000928
https://doi.org/10.1053/j.sult.2018.11.009
https://doi.org/10.1053/j.sult.2018.11.009
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156230

Zhang and Zhao

Jiang, P., Gu, S., Pan, D,, Fu, ], Sahu, A,, Hu, X,, et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550-1558. doi:10.1038/s41591-018-0136-1

Jiang, T., Fang, Z., Tang, S., Cheng, R, Li, Y., Ren, S., et al. (2021). Mutational
landscape and evolutionary pattern of liver and brain metastasis in lung
adenocarcinoma. J. Thorac. Oncol. official Publ. Int. Assoc. Study Lung Cancer 16
(2), 237-249. doi:10.1016/j.jtho.2020.10.128

Lee, N., Llano, M., Carretero, M., Ishitani, A., Navarro, F., Lopez-Botet, M., et al.
(1998). HLA-E is a major ligand for the natural killer inhibitory receptor CD94/
NKG2A. Proc. Natl. Acad. Sci. U. S. A. 95 (9), 5199-5204. doi:10.1073/pnas.95.9.5199

Lin, M, Liang, S. Z,, Shi, J., Niu, L. Z,, Chen, J. B, Zhang, M. J,, et al. (2017). Circulating
tumor cell as a biomarker for evaluating allogenic NK cell immunotherapy on stage IV non-
small cell lung cancer. Immunol. Lett. 191, 10-15. doi:10.1016/j.imlet.2017.09.004

Lin, M,, Luo, H,, Liang, S., Chen, J., Liu, A., Niu, L., et al. (2020). Pembrolizumab plus
allogeneic NK cells in advanced non-small cell lung cancer patients. J. Clin. investigation
130 (5), 2560-2569. doi:10.1172/JCI132712

Nayyar, G., Chu, Y., and Cairo, M. S. (2019). Overcoming resistance to natural killer cell
based immunotherapies for solid tumors. Front. Oncol. 9, 51. doi:10.3389/fonc.2019.00051

Newman, A. M,, Liu, C. L., Green, M. R,, Gentles, A. J., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. methods 12 (5),
453-457. doi:10.1038/nmeth.3337

Nie, J., Shan, D., Li, S., Zhang, S., Zi, X,, Xing, F., et al. (2021). A novel ferroptosis
related gene signature for prognosis prediction in patients with colon cancer. Front.
Oncol. 11, 654076. doi:10.3389/fonc.2021.654076

Paulsen, E. E,, Kilvaer, T. K., Rakaee, M., Richardsen, E., Hald, S. M., Andersen, S.,
et al. (2017). CTLA-4 expression in the non-small cell lung cancer patient tumor
microenvironment: Diverging prognostic impact in primary tumors and lymph node
metastases. CII 66 (11), 1449-1461. doi:10.1007/s00262-017-2039-2

Russell, E., Conroy, M. J., and Barr, M. P. (2022). Harnessing natural killer cells in
non-small cell lung cancer. Cells 11 (4), 605. doi:10.3390/cells11040605

Saab, S., Zalzale, H., Rahal, Z., Khalifeh, Y., Sinjab, A., and Kadara, H. (2020). Insights
into lung cancer immune-based biology, prevention, and treatment. Front. Immunol.
11, 159. doi:10.3389/fimmu.2020.00159

Sadeghzadeh, M., Bornehdeli, S., Mohahammadrezakhani, H., Abolghasemi, M.,
Poursaei, E., Asadi, M., et al. (2020). Dendritic cell therapy in cancer treatment; the
state-of-the-art. Life Sci. 254, 117580. doi:10.1016/.1fs.2020.117580

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics, 2022.
CA a cancer J. Clin. 72 (1), 7-33. doi:10.3322/caac.21708

Spella, M., and Stathopoulos, G. T. (2021). Immune resistance in lung
adenocarcinoma. Cancers 13 (3), 384. doi:10.3390/cancers13030384

Succony, L., Rassl, D. M., Barker, A. P., McCaughan, F. M., and Rintoul, R. C. (2021).
Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment
strategies. Cancer Treat. Rev. 99, 102237. doi:10.1016/j.ctrv.2021.102237

Sun, J., Yue, W., You, J., Wei, X,, Huang, Y., Ling, Z., et al. (2021). Identification of a
novel ferroptosis-related gene prognostic signature in bladder cancer. Front. Oncol. 11,
730716. doi:10.3389/fonc.2021.730716

Suster, D. I, and Mino-Kenudson, M. (2020). Molecular pathology of primary non-small
cell lung cancer. Archives Med. Res. 51 (8), 784-798. doi:10.1016/j.arcmed.2020.08.004

Suzuki, C., Daigo, Y., Ishikawa, N., Kato, T., Hayama, S., Ito, T., et al. (2005). ANLN
plays a critical role in human lung carcinogenesis through the activation of RHOA and
by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 65 (24),
11314-11325. doi:10.1158/0008-5472.CAN-05-1507

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H., et al.
(2018). The immune landscape of cancer. Immunity 48 (4), 812-830.e14. doi:10.1016/j.
immuni.2018.03.023

Frontiers in Genetics

19

10.3389/fgene.2023.1156230

Toro-Dominguez, D., Martorell-Marugan, J., Lopez-Dominguez, R., Garcia-Moreno,
A., Gonzalez-Rumayor, V., Alarcén-Riquelme, M. E,, et al. (2019). ImaGEO: Integrative
gene expression meta-analysis from GEO database. Bioinforma. Oxf. Engl. 35 (5),
880-882. doi:10.1093/bioinformatics/bty721

Valipour, B., Velaei, K., Abedelahi, A., Karimipour, M., Darabi, M., and Charoudeh,
H. N. (2019). NK cells: An attractive candidate for cancer therapy. J. Cell. physiology 234
(11), 19352-19365. doi:10.1002/jcp.28657

Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B, Pencina, M. J., and Steyerberg,
E.W. (2016). A calibration hierarchy for risk models was defined: From utopia to empirical
data. J. Clin. Epidemiol. 74, 167-176. doi:10.1016/j.jclinepi.2015.12.005

Van Calster, B., Wynants, L., Verbeek, J. F. M., Verbakel, J. Y., Christodoulou, E.,
Vickers, A. J., et al. (2018). Reporting and interpreting decision curve analysis: A
guide for investigators. Eur. Urol. 74 (6), 796-804. doi:10.1016/j.eururo.2018.
08.038

Vitale, I, Manic, G., Coussens, L. M., Kroemer, G., and Galluzzi, L. (2019).
Macrophages and metabolism in the tumor microenvironment. Cell. metab. 30 (1),
36-50. doi:10.1016/j.cmet.2019.06.001

Wang, G., Li, X,, Yao, Y., Jiang, Z., Zhou, H., Xie, K,, et al. (2021). FAM83A and
FAMS83A-AS1 both play oncogenic roles in lung adenocarcinoma. Oncol. Lett. 21 (4),
297. doi:10.3892/01.2021.12558

Xu,J., Zheng, H., Yuan, S., Zhou, B., Zhao, W., Pan, Y., et al. (2019). Overexpression of
ANLN in lung adenocarcinoma is associated with metastasis. Thorac. cancer 10 (8),
1702-1709. doi:10.1111/1759-7714.13135

Yotsukura, M., Asamura, H., Motoi, N., Kashima, J., Yoshida, Y., Nakagawa, K.,
et al. (2021). Long-term prognosis of patients with resected adenocarcinoma in
situ and minimally invasive adenocarcinoma of the lung. J. Thorac. Oncol. official
Publ. Int. Assoc. Study Lung Cancer 16 (8), 1312-1320. doi:10.1016/j.jtho.2021.
04.007

Yu, Y., Wang, Z,, Zheng, Q., and Li, J. (2021). GREB1L overexpression correlates with
prognosis and immune cell infiltration in lung adenocarcinoma. Sci. Rep. 11 (1), 13281.
doi:10.1038/5s41598-021-92695-x

Zhang, C., Zhang, G., Sun, N., Zhang, Z., Zhang, Z., Luo, Y., et al. (2020).
Comprehensive molecular analyses of a TNF family-based signature with regard to
prognosis, immune features, and biomarkers for immunotherapy in lung
adenocarcinoma. EBioMedicine 59, 102959. doi:10.1016/j.ebiom.2020.102959

Zhang, H., Luo, Y. B.,, Wu, W,, Zhang, L., Wang, Z., Dai, Z., et al. (2021). The
molecular feature of macrophages in tumor immune microenvironment of glioma
patients. Comput. Struct. Biotechnol. J. 19, 4603-4618. doi:10.1016/j.csb;j.2021.
08.019

Zhang, Q., Tang, L., Zhou, Y., He, W., and Li, W. (2021). Immune checkpoint
inhibitor-associated pneumonitis in non-small cell lung cancer: Current understanding
in characteristics, diagnosis, and management. Front. Immunol. 12, 663986. doi:10.
3389/fimmu.2021.663986

Zhang, D,, Jiang, Q., Ge, X, Shi, Y., Ye, T., Mi, Y., et al. (2021). RHOV promotes lung
adenocarcinoma cell growth and metastasis through JNK/c-Jun pathway. Int. J. Biol. Sci.
17 (10), 2622-2632. doi:10.7150/ijbs.59939

Zhang, Z. (2016). Variable selection with stepwise and best subset approaches. Ann.
Transl. Med. 4 (7), 136. doi:10.21037/atm.2016.03.35

Zhong, R., Chen, D., Cao, S., Li, J., Han, B., and Zhong, H. (2021). Immune cell
infiltration features and related marker genes in lung cancer based on single-cell RNA-
seq. Clin. Transl. Oncol. official Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mexico 23
(2), 405-417. doi:10.1007/s12094-020-02435-2

Zou, Y., Xie, J., Zheng, S., Liu, W., Tang, Y., Tian, W., et al. (2022). Leveraging diverse
cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast
cancer patients after surgery. Int. J. Surg. Lond. Engl. 107, 106936. doi:10.1016/j.ijsu.
2022.106936

frontiersin.org


https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1016/j.jtho.2020.10.128
https://doi.org/10.1073/pnas.95.9.5199
https://doi.org/10.1016/j.imlet.2017.09.004
https://doi.org/10.1172/JCI132712
https://doi.org/10.3389/fonc.2019.00051
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3389/fonc.2021.654076
https://doi.org/10.1007/s00262-017-2039-2
https://doi.org/10.3390/cells11040605
https://doi.org/10.3389/fimmu.2020.00159
https://doi.org/10.1016/j.lfs.2020.117580
https://doi.org/10.3322/caac.21708
https://doi.org/10.3390/cancers13030384
https://doi.org/10.1016/j.ctrv.2021.102237
https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.1016/j.arcmed.2020.08.004
https://doi.org/10.1158/0008-5472.CAN-05-1507
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1093/bioinformatics/bty721
https://doi.org/10.1002/jcp.28657
https://doi.org/10.1016/j.jclinepi.2015.12.005
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.3892/ol.2021.12558
https://doi.org/10.1111/1759-7714.13135
https://doi.org/10.1016/j.jtho.2021.04.007
https://doi.org/10.1016/j.jtho.2021.04.007
https://doi.org/10.1038/s41598-021-92695-x
https://doi.org/10.1016/j.ebiom.2020.102959
https://doi.org/10.1016/j.csbj.2021.08.019
https://doi.org/10.1016/j.csbj.2021.08.019
https://doi.org/10.3389/fimmu.2021.663986
https://doi.org/10.3389/fimmu.2021.663986
https://doi.org/10.7150/ijbs.59939
https://doi.org/10.21037/atm.2016.03.35
https://doi.org/10.1007/s12094-020-02435-2
https://doi.org/10.1016/j.ijsu.2022.106936
https://doi.org/10.1016/j.ijsu.2022.106936
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156230

	Identification of natural killer cell associated subtyping and gene signature to predict prognosis and drug sensitivity of  ...
	1 Background
	2 Materials and methods
	2.1 Source of clinical information and gene expression profile data of NK cells
	2.2 Subtyping of LUAD patients based on NK cell-associated genes
	2.3 Immunological features and pathway analysis among different molecular subtypes
	2.4 Drug sensitivity analysis between molecular subtypes
	2.5 Identification of key NK cell-related genes among molecular subtypes
	2.6 Construction and validation of the prognostic model
	2.7 Improvement of prognostic models and survival prediction in LUAD patients
	2.8 Programmed cell death (PCD) analysis
	2.9 Statistical analysis

	3 Results
	3.1 Molecular subtyping of LUAD based on NK cell-associated genes
	3.2 Genetic landscape between molecular subtypes of LUAD
	3.3 Pathways enrichment analysis among the molecular subtyping of LUAD
	3.4 Immune characteristics among different molecular typologies of LUAD
	3.5 Differences in immunotherapy between molecular subtypes
	3.6 The analysis of PCD patterns among molecular subtypes
	3.7 Establishment of LUAD risk model
	3.8 Pathological characteristics of high- and low-risk groups
	3.9 Immune infiltration and pathway characteristics of low-risk and high-risk patients
	3.10 Differences in immunotherapy/chemotherapy for patients in high- and low-risk groups
	3.11 PCD characteristics in high- and low-risk groups
	3.12 RiskScore combined with clinicopathological features to further improve prognostic models and survival prediction

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


