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Background: Brain metastasis, with an incidence of more than 30%, is a common
complication of non-small cell lung cancer (NSCLC). Therefore, there is an urgent
need for an assessment method that can effectively predict brain metastases in
NSCLC and help understand its mechanism.

Materials andmethods:GSE30219, GSE31210, GSE37745, andGSE50081 datasets
were downloaded from the GEO database and integrated into a dataset (GSE). The
integrated dataset was divided into the training and test datasets. TCGA-NSCLC
dataset was regarded as an independent verification dataset. Here, the limma R
package was used to identify the differentially expression genes (DEGs).
Importantly, the RiskScore model was constructed using univariate Cox
regression analysis and least absolute shrinkage and selection operator (LASSO)
analysis. Moreover, we explored in detail the tumor mutational signature, immune
signature, and sensitivity to treatment of brain metastases in NSCLC. Finally, a
nomogram was built using the rms package.

Results: First, 472 DEGs associated with brain metastases in NSCLC were
obtained, which were closely associated with cancer-associated pathways.
Interestingly, a RiskScore model was constructed using 11 genes from
472 DEGs, and the robustness was confirmed in GSE test, entire GSE, and
TCGA datasets. Samples in the low RiskScore group had a higher gene
mutation score and lower immunoinfiltration status. Moreover, we found that
the patients in the low RiskScore group were more sensitive to the four
chemotherapy drugs. In addition, the predictive nomogram model was able to
effectively predict the outcome of patients through appropriate RiskScore
stratification.

Conclusion: The prognostic RiskScore model we established has high prediction
accuracy and survival prediction ability for brain metastases in NSCLC.
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1 Introduction

Lung cancer mainly includes two main types: small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC). Lung cancer ranks as a leading cause of malignant tumor-
induced death worldwide. Among them, NSCLC is more common, and its prevalence rate
exceeds 80% (Grant et al., 2021). The brain is the most likely target for distant metastasis in
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NSCLC, and approximately 30% of the patients develop brain
metastases during the cancer progression (Balasubramanian et al.,
2020; Eguren-Santamaria et al., 2020). Previous studies reported that
for most brain metastases, the cerebral hemisphere is the most easily
invaded part, accounting for approximately 80%, and studies
showed that the brainstem sites are the least likely to develop
NSCLC metastases, occurring in less than 5% of the patients
(D’Antonio et al., 2014; Wang et al., 2022). Regrettably, NSCLC
with brain metastases, characterized by an extremely poor
prognosis, is a major factor resulting in disability and death in
advanced NSCLC. Brain metastases tend to seriously affect the
cognitive function of patients, reduce the quality of life, and
shorten the survival time (Teixeira Loiola de Alencar et al., 2021;
Zhi et al., 2021). Currently, untreated median overall survival (OS)
for patients with brain metastases is less than 3 months, and there
are only few effective treatment options due to the presence of the
blood–brain barrier (Dempke et al., 2015). Unfortunately, to date,
strategies that can effectively predict the treatment effect after brain
metastases in NSCLC are lacking.

Prognostic models developed using gene expression profiles of
NSCLC have been reported previously. Kratz et al. (2012) developed
a model for identifying patients who have small, node-negative lung
tumors but at high risk of mortality. Currently, an integrated
transcriptome and epigenome analysis identified 17 genes
associated with NSCLC prognosis. These genes are associated
with hypoxia response and NSCLC epigenetic modification
(Chen et al., 2019). Moreover, a comprehensive study filtered six
genes associated with an adenocarcinoma type of NSCLC based on
integrated analysis and weighted gene co-expression network
analysis (Xie and Xie, 2019). Although considerable work has
been performed on NSCLC prognostic prediction, due to its
complexity, predictive models for NSCLC brain metastases are
unclear.

Here, in this work, we first identified differentially expression
genes (DEGs) in NSCLC brain metastasis patients. Then, the genes
significantly related to the overall survival of NSCLC patients were
selected from the aforementioned genes based on the results of
univariate Cox regression analysis. Finally, 11 prognostic genes of
brain metastases in NSCLC were determined by multivariate Cox
and LASSO regression analyses and used to build a RiskScore model.
Moreover, we validated the efficiency of the model in detail through
immune tumor microenvironment, drug sensitivity, survival, tumor
mutation, and decision tree analyses.

2 Materials and methods

2.1 Lung cancer-related dataset download
and quality control

To get a deeper insight into the mechanism of NSCLC patients
with brain metastases, first, The Cancer Genome Atlas (TCGA)
database was selected to download the transcriptomic expression,
clinical survival, and characteristic information, including LUAD
and LUSC, and 599 patients were obtained. The lung cancer
microarray sequencing dataset with survival time was
downloaded from the Gene Expression Omnibus (GEO)
database, including GSE30219 (254 samples), GSE31210

(226 samples), GSE37745 (95 samples), and GSE50081
(176 samples) (Okayama et al., 2012; Rousseaux et al., 2013; Der
et al., 2014; Goldmann et al., 2021). Moreover, a dataset of NSCLC
with features of brain metastases, GSE200563 (Bader and Hogue,
2003), was also downloaded from the GEO database.

In order to obtain high-quality downstream analysis results, we
performed quality control on the downloaded dataset. The quality
control was performed using the following steps: remove samples
without clinical follow-up information and samples without disease-
free survival (DFS) time and status; convert gene names to uniform
IDs; and merge the datasets and remove batch effects using the
removeBatchEffect function of the limma package (R package)
(Ritchie et al., 2015). Specifically, for GSE200563, we only
considered two types of samples: primary lung cancer and
metastatic lung cancer in the brain.

2.2 Identification of differentially expressed
gene (DEG)

To identify the pathogenesis of brain metastases in NSCLC, we
performed DEG analysis on patients with metastatic lung cancer in
the brain and primary lung cancer of GSE200563 using the limma R
package (Ritchie et al., 2015). The threshold for DEGs was set to
|foldchang| > 1.2 and p-value < 0.05.

2.3 Function enrichment and
protein–protein interaction (PPI) analyses

The WebGestaltR (R package) was selected to perform function
enrichment analysis of DEGs, including Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses (Liao
et al., 2019). The threshold for significant difference of GO and
KEGG terms was set to p-value < 0.05.

The Search Tool for Retrieval of Interacting Genes/Proteins
(STRING) (https://string-db.org/, v11.0) was selected to perform
PPI analysis on aforementioned DEGs, and Cytospace was used to
visualize the PPI network (Kohl et al., 2011). Currently, the STRING

TABLE 1 Clinical information of the test and training datasets.

Test
(N = 377)

Training
(N = 377)

p-value

DFS

0 238 (63.1%) 250 (66.3%) 0.402

1 139 (36.9%) 127 (33.7%)

DFS.time

Mean (SD) 1580 (1360) 1720 (1420) 0.169

Median [min, max] 1490 [6.00, 7320] 1620 [7.00, 7680]

Dataset

GSE30219 129 (34.2%) 126 (33.4%) 0.938

GSE31210 109 (28.9%) 117 (31.0%)

GSE37745 49 (13.0%) 47 (12.5%)

GSE50081 90 (23.9%) 87 (23.1%)
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database consists of 18,838 human proteins with 25, 914, 693 core
network interactions. The highest confidence interaction score was
set to 0.9, which reduces the number of false-positive interactions
(Bozhilova et al., 2019). The molecular complex detection
(MCODE) algorithm was used to perform network function
module mining (Bader and Hogue, 2003). MCODE calculates
accurate correlation levels and identifies essential PPI network
modules.

2.4 Establishment of the prognostic model

The DEGs related to brain metastases in NSCLC were used to
build the prognostic model. To avoid random assignment bias that
could affect the stability of subsequent modeling, all samples in the
GSE dataset were randomly grouped 100 times with playback
beforehand, according to the ratio of the training set: validation
set = 1:1. There were no significant differences between the two parts
in DFS and status (Table 1). Then, we performed univariate Cox
regression analysis on DEGs in the training dataset. Then, LASSO
analysis was performed via glmnet (R package) to reduce the
candidate prognostic genes (Zhang et al., 2022). Moreover, we
used stepwise multivariate Cox regression analysis to identify the
prognostic genes.

Significantly, we calculated each patient’s RiskScore using the
following formula: RiskScore = Σβi × Expi, where Expi refers to the
gene expression level of the signature and β represents the Cox
regression coefficient of the corresponding gene.

High- and low-risk groups of patients were divided based on the
median threshold. The Kaplan–Meier method for prognostic
analysis was employed for drawing survival curves, followed by
studying the significant differences with the log-rank test. The time-
dependent ROC curve showed survival of different risk groups, and
survivalROC (R package) evaluated the prediction of the model
(Heagerty and Zheng, 2005).

2.5 Tumor mutation analysis

Mutect2 was selected to conduct tumor mutation analysis
(Prashant et al., 2021; Jin et al., 2022). First, genes showing a
mutation frequency greater than 3 were obtained, and those with
significantly high frequency mutations in each subtype were
screened by Fisher’s test under p-value < 0.05. Next, the
distribution of fraction altered, tumor mutation burden, number
of segments, and homologous recombination defects of each subtype
was studied.

2.6 Immune signature analysis

Immune signature analysis (ESTIMATE) was performed,
including calculation of the immune score, immune infiltration
score, and ESTIMATE score, for the purpose of elucidating
differences in the patients’ immune microenvironment
(Yoshihara et al., 2013). Based on the gene marker expression in
immune cells, immune cell infiltration in patients could be analyzed
(Becht et al., 2016). A total of 10 immune cells were scored by MCP-

counter estimates and the single-sample gene set enrichment
analysis (ssGSEA) algorithm (Becht et al., 2016; Charoentong
et al., 2017) that counted 28 immune cells. ESTIMATE scored
the overall immune microenvironment infiltration.

2.7 Immunotherapy/chemotherapy effect
analysis

The effectiveness of immune mutation score (IMS) on
predicting clinical responsiveness to immune checkpoint
inhibitors (ICIs) was verified by applying the tumor immune
dysfunction and exclusion (TIDE) algorithm (Jiang et al., 2018).
Immune checkpoints obtained from the HisgAtlas database (Liu
et al., 2017). Furthermore, we also performed treatment effect
predictions for traditional chemotherapeutics using pRRophetic
(R package), such as sorafenib, pyrimethamine, AKT inhibitor
VIII, and embelin (Geeleher et al., 2014).

2.8 Pathway characteristic analysis of the
RiskScore model

We performed GSEA pathway analysis on different RiskScore
groups by using GSEA (R package) (Subramanian et al., 2005). The
candidate background gene sets were obtained from the Hallmark
database. A significant enrichment was defined when FDR < 0.05.
Moreover, the correlations of different biological functions with
RiskScore were also calculated.

2.9 Decision tree analysis to optimize the
RiskScore prediction model

First, a decision tree based on age, sex, stage, T stage, N stage,
and RiskScore of patients with NSCLC in TCGA cohort was
generated. The univariate and multivariate Cox regression
analyses of RiskScore and clinicopathological characteristics were
performed. The reliability of RiskScore was evaluated with decision
curve analysis (DCA).

3 Results

3.1 Transcriptional effects of brain
metastases in NSCLC

To gain insights into the pathogenic mechanism of brain
metastases in NSCLC, we first performed differential analysis of
the transcriptome data of brain metastases in NSCLC patients.
Finally, 472 DEGs were obtained, of which 218 genes were
upregulated in metastatic lung cancer in the brain and 254 genes
were downregulated in metastatic lung cancer in the brain. The GO
and KEGG pathway functional enrichment analyses were carried
out. The results of GO analysis showed that DEGs related to
metastatic lung cancer in the brain were involved in negative
regulation of mitotic cell cycle phase transition and extracellular
matrix disassembly (Figure 1A). Most DEGs involved in cellular
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components that make up the banded collagen fibril, nuclear matrix,
and extracellular matrix (Figure 1B). Moreover, molecular
functional analysis revealed that DEGs were involved in growth
factor binding (Figure 1C). Interestingly, the KEGG pathway
analysis observed that DEGs participated in the TNF signaling
pathway (Figure 1D).

3.2 Functional network of DEGs related to
brain metastases in NSCLC

To understand the role of DEGs in brain metastases in NSCLC,
we further performed PPI analysis using STRING, and the results
showed that these DEGs had four closely related functional
networks. Cluster 1 was closely related to bladder cancer,
ECM–receptor interaction, proteoglycans in cancer, and PI3K-
Akt signaling pathway (Figure 2A and Supplementary Figure S1).
Cluster 2 was involved in regulating the NF-κB signaling pathway
and TNF signaling pathway (Figure 2B and Supplementary Figure
S2). Cluster 3 was related to the regulation of RNA splicing
(Figure 2C and Supplementary Figure S3). Cluster 7 was

associated with cell cycle and FOXO signaling pathway
(Figure 2D and Supplementary Figure S4).

3.3 Identification of prognostic genes
associated with brain metastases in NSCLC

Briefly, the GSE dataset was first divided into two parts
randomly according to the ratio of training: test = 1:1; then, a
univariate Cox regression analysis was performed on DEGs in the
training dataset; and a total of 50 prognostic factors were
identified (p-value < 0.01), which contained 34 “risk” genes
and 16 “protective” genes (Figure 3A). Then, the LASSO
algorithm was used to further narrow down the gene range,
and the change trajectory of each DEG is shown in Figure 3B.
When lambda = 0.0214, the model reached the optimum, so we
selected 24 genes as the next target gene (Figure 3C). Stepwise
multivariate regression analysis was performed on the genes
screened by LASSO algorithm, and finally, 11 prognostic genes
associated with brain metastases in NSCLC were selected
(Figure 3D).

FIGURE 1
Changes in the transcriptome of brain metastases in NSCLC [GSE200563]. (A) Top 10 Gene Ontology (GO) terms at the biological process level. (B)
Top 10 GO terms at the cellular component level. (C) Top 10 GO terms at the molecular function level. (D) Significantly enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway.
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3.4 Construction of the prognostic
RiskScore model

The forest plot showed that among 11 prognostic genes, eight genes
led to poorer prognosis and the others were related to better prognosis
(Figure 4A). We constructed a prognostic model using the following
formula: RiskScore = Σβi × Expi. We divided the samples into two
groups of high and low risk, with the median value of RiskScore as a
cutoff, and drew the KM curve, and the results showed that there were
very significant differences between the different groups (Figure 4B).
The same analysis was performed in GSE and TCGA cohorts which
showed poor prognosis in the high RiskScore group (Figures 4C–E).

3.5 The mutation signature between
RiskScore groupings

To explore differences in genomic alterations between different
RiskScore groups in TCGA cohort, we performed tumor mutation
analysis. With a selection threshold of p-value < 0.05, a total of

263 genes showing significantly high frequency mutations were
screened between different RiskScore groups (Supplementary Table
S1). The mutational signatures of the top 20 genes are shown in
Supplementary Figure S5A. Distributions of the number of
segments, fraction altered, tumor mutation burden, and homologous
recombination defects among subtypes were compared; however, these
mutational signatures did not differ significantly across the different
RiskScore groups (Supplementary Figure S5B).

3.6 The immune signature between
RiskScore groupings

Immune cell infiltration in TCGA and GSE cohort patients were
analyzed using gene marker expression in immune cells. The results of
ssGSEA showed that among the 28 types of immune cells, the immune
score of the high-risk group was also high among the RiskScore groups
(Figure 5A). Interestingly, the results of MCP-counter estimates
suggested that even among the high RiskScore group, the immune
score was higher (Figure 5B). The results of ESTIMATE, including

FIGURE 2
Protein–protein interaction (PPI) network of genes involved in regulating brain metastases in NSCLC [GSE200563]. (A–D) PPI network in clusters 1,
2, 3, and 7.
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stromal score, immune score, and ESTIMATE, were in line with those
of the ssGSEA and MCP-counter (Figure 5C). Moreover, it was similar
to TCGA cohort results, while the GSE cohort showed similar trends
(Figures 5E,F).

3.7 Differences in immunotherapy/
chemotherapy between RiskScore
groupings

We further analyzed whether there exist differences in response
to immunotherapy/chemotherapy between different RiskScore

groups. First, the expression level of immune checkpoints
differed between RiskScore groupings (Figure 6A). The results
showed that only some immune checkpoints were differentially
expressed between RiskScore groupings, like LAG3 and CD244
(Figure 6A). We observed no difference in TIDE scores between
high and low RiskScore groups in TCGA cohort (Figure 6B). It was
found that in TCGA cohort, the low RiskScore group was more
sensitive to these four drugs: sorafenib, pyrimethamine, Akt
inhibitor VIII, and embelin (Figure 6C). Moreover, in the
analysis of the GSE cohort, the expression of immune
checkpoints was significantly different (Figure 6D). Interestingly,
the TIDE score was higher in the high RiskScore groups (Figure 6E).

FIGURE 3
Identification of RiskScore model prognostic genes [GSE200563]. (A) Totally 11 promising candidates were identified through the survival analysis of
the genes of the blue module. (B) Trajectory of candidate genes changes as lambda changes. (C) Confidence intervals for different lambda values. (D)
Distribution of LASSO coefficients of the prognostic gene signature.
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Drug analysis showed that the low RiskScore group was more
sensitive to chemotherapy drugs (Figure 6F).

3.8 The pathway signature between
RiskScore groupings

To observe the relationship between RiskScore and biological
function, we performed functional enrichment analysis and correlation
analysis on NSCLC samples in the GSE cohort. The results showed that
these pathways were positively correlated with RiskScore of the samples,
and these pathways were mainly tumor-related pathways, such as
p53 signaling pathway and DNA replication (Figure 7A). In addition,
GSEA results showed that in TCGA cohort, compared with the low
RiskScore group, 15 pathways were activated in the high RiskScore group
and 26 pathways were activated and seven pathways were inhibited in the
GSE cohort (Figure 7B). The active pathways in the high RiskScore group
were mainly tumor-correlated pathways, such as KRAS_SIGNALING_
UP and HYPOXIA, IL6_JAK_STAT3_SIGNALING, and TNFA_
SIGNALING_VIA_NFKB. (Figure 7B).

3.9 Combining clinicopathological features
to improve the prognosis model and survival
prediction

A decision tree based on T stage, N stage, age, sex, stage, and
RiskScore of patients with NSCLC in TCGA cohort was developed, but
only RiskScore and T stage remained, and we categorized three risk
subgroups (Figure 8A) with significant overall survival differences
(Figure 8B). The risk subgroups C2 and C3 contained high
RiskScore patients, while the “C1” group contained low RiskScore
patients (Figure 8C). Patients in different risk subgroups had
different survival statuses (Figure 8D). Univariate and multivariate
Cox regression analyses of RiskScore and clinicopathological features
validated RiskScore as the most significant factor for prognosis (Figures
8E,F). To quantify the risk assessment and patients’ survival, other
clinicopathological features were combined with RiskScore to build a
nomogram (Figure 8H). RiskScore showed the greatest influence on the
survival prediction. The model prediction accuracy (Figure 8I) and
reliability were evaluated using RiskScore and DCA, respectively.
Compared with the extreme curves, both RiskScore and nomogram

FIGURE 4
Validation of the RiskScoremodel. (A) Forest diagram ofmultivariate Cox analysis of themodel genes. (B) ROC and KM curves of RiskScore using GSE
training data. (C) Verifying ROC curve and KM curve of RiskScore in “my data queue” in GSE. (D) ROC and KM curves of RiskScore in the GSE cohort. (E)
ROC and KM curves of RiskScore in TCGA cohort.
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FIGURE 5
Immune features between RiskScore groupings. (A) ssGSEA evaluated the subtypes of 28 immune cell scores in TCGA cohort. (B) MCP-counter
evaluated subtype comparison of 10 immune cell scores in TCGA cohort. (C) ESTIMATE subtype comparison of StromalScore, ImmuneScore, and
ESTIMATEScore in TCGA cohort. (D) Subtype comparison of 28 immune cell scores assessed in the GSE cohort with ssGSEA. (E) Subtype comparison of
10 immune cell scores assessed in the GSE cohort with MCP-counter. (F) Subtype comparison of StromalScore, ImmuneScore, and ESTIMATEScore
in the GSE cohort with ESTIMATE.
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FIGURE 6
Immunotherapy/chemotherapy sensitivity analysis. (A) Immunological checkpoint of differential expression between different groups in TCGA
cohort. (B) Difference in TIDE analysis results among different groups in TCGA queue. (C) Box plots of the estimated IC50 for sorafenib, pyrimethamine,
Akt inhibitor VIII, and embelin in TCGA cohort. (D) Differentially expressed immune checkpoints between different subgroups in the GSE cohort. (E)
Differences in TIDE analysis results among different groups in GSE queues. (F) Box plots of the estimated IC50 for sorafenib, pyrimethamine, Akt
inhibitor VIII, and embelin in GSE.
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had significantly higher benefits. Furthermore, RiskScore and
nomogram showed the strongest survival among other
clinicopathological features (Figures 8G,J).

4 Discussion

Brain metastases are a common complication of NSCLC, with an
incidence of more than 30% and often extremely distressing, and most

seriously, a very short survival period (Goldmann et al., 2021; Wang
et al., 2022). Therefore, it becomes important to develop a stable
prognostic indicator. Here, we developed a RiskScore prognostic
model containing 11 prognostic genes for predicting the prognosis of
brain metastases in NSCLC based on data from TCGA and combining
clinicopathological features to further improve the prognostic model and
survival prediction. Interestingly, we found that in TCGA and GSE
cohorts, the high RiskScore groups had a poorer prognosis, while the low
RiskScore groups had a better prognosis. The results of function

FIGURE 7
Relationship between RiskScore and KEGG pathways. (A) Heat map showing the correlation between RiskScore and KEGG pathways. (B) Heat map
demonstrating normalized enrichment scores of Hallmark pathways calculated by comparing high RiskScore with low RiskScore.
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FIGURE 8
Optimization of the RiskScore model. (A) Patients with full-scale annotations including RiskScore, stage, gender, and age were used to build
a survival decision tree to optimize risk stratification. (B) Significant differences in overall survival were observed among the three risk subgroups.
(C, D) Comparative analysis among the different groups. (E, F) Univariate and multivariate Cox analysis of RiskScore and clinicopathological
features. (G) Compared with other clinicopathological features, the nomogram exhibited the most powerful capacity for survival prediction.
(H) Alignment diagram showing the influence of different factors on the prediction results; the top panel shows scores, the middle panel shows
different factors, and the bottom panel shows predictive efficiency. (I) Calibration curves of the 1, 3, and 5 years of the line chart. (J) Decision
curve of the line graph.
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enrichment analysis suggested that the expression changes of the
p53 signaling pathway-related genes were the key to the different
RiskScore groups. Moreover, the differences in the immune profile
were also a factor leading to different RiskScore groups, which is
reported by many studies (Chen et al., 2019; Xie and Xie, 2019).

We noticed that after the occurrence of brain metastasis, the
transcriptional expression profile of NSCLC patients also changed
greatly, and we obtained a total of 472 DEGs. The KEGG pathway
analysis showed that the disorder of the TNF signaling pathway was one
of the causes of the emergency of brain metastases. Many studies
showed that TNF and its receptors were widely expressed in NSCLC,
and themechanism of action was very complex (Gong et al., 2021). The
high expression of TNF in NSCLC patients determined its poor
prognosis (Gong et al., 2021). Moreover, PPI analysis suggested that
the DEGs were related to the PI3K-Akt signaling pathway. Zhou et al.
(2021) reported the abnormal expression of the PI3K-Akt signaling
pathway, which caused tumor growth and metastasis in NSCLC.

Through univariate Cox and LASSO regression analyses, we
identified 11 prognostic genes as RiskScore model building genes:
MRPL41, LRP5, KCNG2, ARL6IP1, TPM1, BHLHE40, ATP8B3,
MDK, TACC2, MAN2B2, and PGRMC1. MRPL41 encodes a
mitochondrial protein, and it can arrest the cell cycle and induce
apoptosis (Goldschmidt-Reisin et al., 1998; Yoo et al., 2005). The
study reported that the proliferation rate of NCI-H211 cells
decreased after overexpression of MRPL41 (Yoo et al., 2005). LRP5
is associated with activation of the Wnt signaling pathway, and in
NSCLC, LRP5 polymorphisms play a role in NSCLC susceptibility
(Williams and Insogna, 2009;Wang et al., 2016). In one study, PGRMC1
was found to induce erlotinib resistance, triggering crosstalk of theWnt/
β-catenin and NF-κB pathways in lung adenocarcinoma cells (Ma and
Hottiger, 2016). As early as 2006, TACC3 was reported as a prognostic
marker for NSCLC (Jung et al., 2006). In two independent
epidemiological genetic characterization surveys in all locations, the
incidence of FGFR–TACC gene fusions was extremely high in NSCLC
(Zheng et al., 2020). Survival analysis was an excellent method to verify
the validity of model predictions (Han et al., 2021; Jiang et al., 2021). In
our survival analysis, we found that in the low RiskScore group, survival
was significantly longer. Therefore, we have reason to believe the validity
of our RiskScore model.

We noticed that there were differences in the tumor immune
microenvironment between different RiskScore groups, which was
manifested in the higher immune score in the high
group. Significantly, we found the immune infiltration of CD4+

T cell and CD8+ T cell. In the high RiskScore group, it was higher
than that in the low RiskScore group. Different types of immune cells
played different roles in the process of anti-tumor and tumor immune
escape. The growth, invasion, and metastasis of tumors were all related
to the immune microenvironment (Chen et al., 2021; Mao et al., 2021;
Qiao et al., 2021). Moreover, the results of sensitivity analysis to
immunotherapy suggested that low RiskScore patients were more
sensitive to chemotherapy drugs. Based on the aforementioned
results, we speculated that in this case, despite showing substantial
immune cell infiltration, they may not be able to penetrate the tumor
parenchyma efficiently to eliminate tumor cells. Therefore, it was not
surprising that high RiskScore groups tend to have poorer outcomes.

Moreover, we combined RiskScore with clinicopathological
features using decision tree models to further improve prognostic

models and survival predictions. In conclusion, our results
demonstrated that our RiskScore model has good predictive
power for the prognosis of brain metastases in NSCLC.

5 Conclusion

In this work, the 472 DEGs related to brain metastases in NSCLC
were obtained. Significantly, based on brain metastasis-related genes, we
constructed the RiskScore clinical prognosismodel which showed strong
robustness, is independent of clinicopathological characteristics, and had
stable predictive performance in independent datasets.
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