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Introduction: Driver mutations play a critical role in the occurrence and
development of human cancers. Most studies have focused on missense
mutations that function as drivers in cancer. However, accumulating experimental
evidence indicates that synonymous mutations can also act as driver mutations.

Methods: Here, we proposed a computational method called PredDSMC to
accurately predict driver synonymous mutations in human cancers. We first
systematically explored four categories of multimodal features, including sequence
features, splicing features, conservation scores, and functional scores. Further feature
selection was carried out to remove redundant features and improve the model
performance. Finally, we utilized the random forest classifier to build PredDSMC.

Results: The results of two independent test sets indicated that PredDSMC
outperformed the state-of-the-art methods in differentiating driver
synonymous mutations from passenger mutations.

Discussion: In conclusion, we expect that PredDSMC, as a driver synonymous
mutation prediction method, will be a valuable method for gaining a deeper
understanding of synonymous mutations in human cancers.
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1 Introduction

Cancer is one of the major diseases threatening human health all over the world (Sung et al.,
2021). During the occurrence and development of tumors, thousands of somatic mutations are
generated, and these mutations are divided into passenger mutations and driver mutations
according to their role in cancer development (Greenman et al., 2007; Stratton et al., 2009).
Specifically, cancer development is caused by driver mutations that trigger tumor growth and
induce subsequent passenger mutations as tumor cells proliferate. There are far fewer driver
mutations than passenger mutations in cancer cells, and it is a significant challenge to distinguish
between driver and passenger mutations across the human cancer genome (Tokheim and
Karchin, 2019; Wang et al., 2020). In recent years, researchers have developed several
computational methods, such as CHASMplus (Tokheim and Karchin, 2019), AI-Driver
(Wang et al., 2020), CHASM (Carter et al., 2009), CanDrA (Mao et al., 2013), PredCID
(Yue et al., 2020), CScape (CS) (Rogers et al., 2017), and CScape-somatic (CSS) (Rogers et al.,
2020a). However, these tools focus primarily on driver missense mutations (Carter et al., 2009;
Mao et al., 2013; Tokheim andKarchin, 2019;Wang et al., 2020) or insertions and deletions (Yue
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et al., 2020), which ignore the impact of synonymous mutations on
cancer, except that CS and CSS focus on the prediction of driver point
mutations.

Although synonymous mutations do not change the encoded
amino acids, they can play a crucial role in a variety of diseases
through mechanisms such as affecting splicing, mRNA structure,
and protein translation (Chamary et al., 2006; Brest et al., 2011;
Sauna and Kimchi-Sarfaty, 2011; Takata et al., 2016; Soussi et al.,
2017). A variety of computational methods based on machine learning
have been proposed to identify pathogenic synonymous mutations in
human diseases, such as SilVA (Buske et al., 2013), TraP (Gelfman et al.,
2017), PrDSM (Cheng et al., 2020), and EnDSM (Cheng et al., 2022).
Studies have found that synonymous mutations also play an essential
functional role in the occurrence and development of cancer (Supek
et al., 2014), and although the methods for predicting pathogenic
synonymous mutations can improve the understanding of driver
synonymous mutations, there is no specific tool for identifying
driver synonymous mutations in cancers.

In this work, we developed a predictor for driver synonymous
mutations in human cancers named PredDSMC. First, we constructed
the datasets according to the mutation frequency (MF) of synonymous

mutations in cancer mutation datasets. Second, each mutation was
encoded with 36 features from splicing, conservation, sequence, and
functional score information. The optimal feature subset was then
selected by the minimum redundancy maximum relevance (mRMR)
method. Last but not the least, we comprehensively evaluated the
prediction performance of six classic classifiers on the training dataset
and chose the random forest (RF) classifier to build PredDSMC. To the
best of our knowledge, PredDSMC is the first cancer driver mutation
prediction method that is dedicated to synonymous mutations. The
results of two independent test sets indicated that PredDSMC
outperformed the state-of-the-art predictors. The overall flowchart
of PredDSMC is shown in Figure 1.

2 Materials and methods

2.1 Dataset preparation

In this study, we constructed one training set and two
independent test sets. Specifically, the training set was from the
synonymous mutation intersection of the COSMIC (Tate et al.,

FIGURE 1
Flowchart of PredDSMC. (A)Data processing: Data preparation for constructing the training and independent test sets. (B) Feature engineering: Each
of the mutations was encoded by four groups of features, sequence features, conservation features, splicing features, and functional score information.
(C) Model construction: The optimal model was selected through performance comparison using a 10-fold cross validation on the training set. (D)
Performance evaluation: The performance was evaluated in terms of common evaluation indicators and metrics based on high-confidence
classification thresholds on independent test sets.
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2018) database (V92) and The Cancer Genome Atlas (TCGA). The
first independent test set was from those mutations contained in the
COSMIC database (V92) but not in TCGA. The second independent
test set was obtained from the ICGC (Zhang et al., 2011) (V28).
Synonymous mutations were screened from the aforementioned
database and the mutation frequency for each candidate mutation
was counted. The larger the MF value, the greater the possibility of
pathogenicity. Then, mutations were divided into positive samples
(MF is greater than or equal to two) and negative samples (MF is
equal to one). Together, we selected MF from two to nine and
obtained eight different positive datasets. Since the number of driver
mutations was far less than that of passenger mutations, a balanced
dataset was required to avoid the potential bias to negative samples.
For each driver synonymous mutation, we selected a passenger
synonymous mutation to guarantee that the genomic distance
between these two mutations was as short as possible.

2.2 Feature engineering

We quantified each mutation with 36-dimensional features
(Cheng et al., 2022) and grouped them into sequence features,
splicing features, conservation features, and function score features,
as illustrated in Figure 1B. Sequence features were composed of nine-
dimensional values. Specifically, the transcription factor binding site
(TFBS), distance between the mutation location and the nearest
splicing location (DSP), and translation efficiency (TE) features
were obtained from the Encyclopedia of DNA Elements
(ENCODE) (Hoffman et al., 2013), SeattleSeq Annotation 138, and
CodonR (Reis et al., 2004), respectively. Other six-dimensional
features were derived from SilVA (Buske et al., 2013).
Conservation features (seven-dimensional values) were extracted
directly from CADD (Kircher et al., 2014) and derived from three
conservation prediction methods, phyloP (Siepel et al., 2005),
phastCons (Pollard et al., 2010), and GERP++ (Davydov et al.,
2010). The eight-dimensional functional score features were
calculated from eight predictors for deleterious or pathogenic
synonymous mutations, including PrDSM, SilVA, TraP, CADD,
PhD-SNPg (Capriotti and Fariselli, 2017), FATHMM-MKL,
DANN (Quang et al., 2015), and FATHMM-XF (Rogers et al.,
2018). Specifically, we uploaded the mutation information to the
publicly available web servers or ran the stand-alone programs to
acquire the prediction scores. Splicing features (12-dimension values)
were derived from two sources. One was obtained from the SPIDEX
database (Xiong et al., 2015), and the remaining 11-dimensional
features were quantized from SilVA. The details of the features are
listed in Supplementary Table S2.

We filled the missing values using the mean of available values
for each feature on the training set (Tang et al., 2021). We, then,
adopted the min–max method to normalize a numerical value
between 0 and 1 (Wang et al., 2018; Tang et al., 2021). The steps
mentioned previously were all implemented using the scikit-learn
package (Pedregosa et al., 2011). Due to the redundancy between the
features mentioned previously, we adopted the mRMR method for
feature selection (Hanchuan et al., 2005; Zhang et al., 2020).We used
a random forest classifier and sequentially added the sorted features
ranked by mRMR to construct models and observe the performance
influence on the training dataset via a 10-fold cross validation. We

finally selected the least number of features corresponding to the
highest AUC value as the optimal feature subset.

2.3 Model construction and performance
evaluation

We comprehensively evaluated the performance of six machine
learning classifiers for predicting driver synonymous mutations on the
training set via the 10-fold cross validation. These classifiers are random
forest, extreme gradient boosting (XGBoost), adaptive boosting (AB),
multilayer perception (MLP), decision tree (DT), and logistic regression
(LR). We first adopted six common evaluation indicators, namely,
sensitivity (SEN), specificity (SPE), precision (PRE), F1-score,Matthews
correlation coefficient (MCC), and accuracy (ACC). The details are
described in Supplementary Methods. In addition, both the area under
the receiver operating characteristic (ROC) curve (AUC) and the area
under the precision-recall (PR) (AUPR) curve were used as evaluation
indicators for the overall performance. The model with the highest
AUC value on 10-fold cross validation was selected as the optimal
model. The aforementioned algorithmswere implemented by the scikit-
learn package using default parameters.

We also employed a clinically relevant high-confidence threshold for
multi-perspective model performance evaluation. The high-confidence
threshold of a 90% confidence level was selected based on the
recommendations of the American College of Medical Genetics and
Genomics (ACMG) and theAssociation forMolecular Pathology (AMP)
(Richards et al., 2015). Following the thresholds used in the prediction of
disease-specific variant pathogenicity (Zhang et al., 2021), we adopted
these thresholds (driver mutation: the probability of pathogenicity (Pr)
that is greater than or equal to 0.9; passengermutation: Pr that is less than
or equal to 0.1; and indeterminate mutation: Pr > 0.1 and Pr < 0.9). We,
then, obtained the corresponding confusion matrix and calculated seven
high-confidence evaluation metrics. Specifically, the metrics are the true
positive rate (TPR), true negative rate (TNR), positive predictive value
(PPV), negative predictive value (NPV), overall accuracy (Ove-ACC),
proportion of mutations classified with high confidence (Pro-HC), and
accuracy of high-confidence classifications (ACC-HC). These metrics
can be calculated as follows:

TPR � TP

TP + FN
(1)

TNR � TN

FP + TN
(2)

PPV � TP

TP + FP
(3)

NPV � TN

TN + FN
(4)

Ove − ACC � TP + TN

n
(5)

Pro −HC � TP + FP + TN + FN

n
(6)

ACC −HC � TP + TN

TP + FP + TN + FN
(7)

where TP, TN, FP, FN, and n refer to the number of true positives
(correctly predicted driver mutations with Pr that is greater than or
equal to 0.9), the number of true negatives (correctly predicted
passenger mutations with Pr that is less than or equal to 0.1), the
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number of false positives (passenger mutations predicted as driver
mutations with Pr that is greater than or equal to 0.9), the number of
false negatives (driver mutations predicted as passenger mutations
with Pr that is less than or equal to 0.1), and the total number of
mutations, respectively.

3 Results and discussion

3.1 Selection of the optimal MF

As mentioned in Section 2.1, eight optional training sets based
on MF were constructed, as shown in Supplementary Table S1. We,
then, selected the optimal MF to construct the final dataset, as
illustrated in Supplementary Method. The results in Supplementary
Figure S1 show that the model achieved the best performance when
the MF equaled six. Additionally, we can see that the model’s ability
to distinguish driver from passenger mutations is not increased
monotonously after the MF was greater than six. Consequently, we
chose mutations where the MF equaled six as the training set and

independent test sets. The final composition of training and
independent test sets is shown in Table 1.

3.2 Selection of the optimal feature subset

This study aims to construct an effective and accurate model for
the prediction of driver synonymous mutations. To this end, it is
critical to identify a set of informative features that can boost
performance and subsequently bring insight into the
understanding of the molecular basis of driver synonymous
mutations. To quantitatively evaluate the performance of the
feature selection algorithm in our method, we sequentially added
the sorted features ranked by mRMR to construct a variety of RF
models and compared the performance in terms of the AUC.
Figure 2 shows the AUC results based on the 10-fold cross
validation on the training dataset. The AUC was increased by
adding one sorted feature at a time and achieved the highest
score (0.890) with the model built on the top 20 features.
Afterward, the AUC changed slightly and the mean value and

TABLE 1 Composition of training and independent test sets.

Dataset Positive samples Negative samples Source

Training set 1,747 1,747 COSMIC

Independent test set I 3,325 3,325 COSMIC

Independent test set II 980 980 ICGC

The training data are from TCGA in the COSMIC; independent test set I is composed of data that are not from TCGA in the COSMIC; independent test set II is from the ICGC.

FIGURE 2
AUC performance by adding one feature at a time using the 10-fold cross validation on the training set.
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the standard deviation were 0.890 and 0.002, respectively. In
addition, we calculated the model performance on the training
set via the 10-fold cross validation using the optimal feature
subset and the whole feature set. The performance comparison is
shown in Table 2. The results indicate that the model built with the
optimal feature subset outperforms the model built with the whole
feature set except for the slightly low AUPR. Consequently, we
selected the first 20-dimensional features as the optimal feature
subset.

The top 20 features obtained from the 36 features were composed
of splicing features (12 of 12), sequence features (6 of 9), and functional
score features (2 of 8), and they are listed in Supplementary Table S2.
The AUC results based on the 10-fold cross validation on the training
dataset increased by 0.150 and 0.020 after the inclusion of SR-protein
motifs lost (SR−) and SR-protein motifs gained (SR+), respectively. By
contrast, the AUC results increased by less than 0.01 after the inclusion
of the remaining 10 splicing features as listed in Supplementary Table
S2. In addition, Figure 2 shows that the performance increases greatly
after the inclusion of three features, that is, the splicing feature SR− and
two sequence features, the mutation, whether it was a change in CpG
(CPG?) or a change in RSCU caused by a mutation (|ΔRSCU|) (for
details on the feature description, see Supplementary Table S2).

Since the same mutation can occur in different cancer tissues,
there were 7,709 entries mapped into 18 cancer tissues in the
COSMIC for positive mutations on the training set (for details
on tissue distributions, see in Supplementary Figure S2). The top
three tissues were 37.6% (large intestine), 26.8% (skin), and 9.1%
(endometrium). For the negative data on the training set, there were
1,747 entries mapped into 18 cancer tissues in the COSMIC. The top
three tissue distributions were 25.2% (skin), 11.8% (large intestine),
and 11.7% (lung). Taking the large intestine as an example, it
contained 846 mutations in positive samples and 206 mutations
in negative samples. Therefore, we focused on the characteristics of
driver synonymous mutations in pan-cancer and had not trained the
model for different tissues.

3.3 Selection of the optimal classifier

To specify the best machine learning algorithm adequate for
predicting driver synonymous mutations, we comprehensively
assessed the performances of RF, AB, XGBoost, MLP, DT, and
LR classifiers. All these classifiers were implemented using the scikit-
learn package with default parameters. The performance
comparison using the 10-fold cross validation is listed in Table 3.
It can be seen that RF outperformed other classifiers in terms of all
eight evaluation indicators. Specifically, in comparison with the
second-best classifier, XGBoost, RF achieves an increase of 1.37%
and 1.71% in terms of the AUC and AUPR, respectively. RF also

outperformed AB and ANN with an increase of 2.42% and 4.22% in
terms of the AUC and 1.95% and 3.85% in terms of the AUPR,
respectively. In addition, the results of classifiers using neural
networks such as MLP and ensemble learning, including RF,
XGBoost, and AB, are superior to those of DT and LR. For
instance, RF outperformed DT with the AUC and AUPR
increasing by more than 0.15 and 0.085, respectively. We also
calculated the standard deviations of the AUC and AUPR. RF
performed robustly with the lowest standard deviations as shown
in Table 3. All the aforementioned findings indicate that RF shows a
better predictive performance compared with AB, XGBoost, ANN,
DT, and LR classifiers. Hence, we chose RF and the optimal feature
subset to build the final model called PredDSMC.

3.4 Performance comparison with other
methods

To further demonstrate the model performance of differentiating
driver synonymous mutations from passenger mutations, we
compared PredDSMC with TraP, EnDSM, CS, and CSS on two
independent test sets. As mentioned before, Trap and EnDSM are
designed for predicting pathogenic synonymous mutations; CS and
CSS are developed to differentiate driver single-point mutations from
passengers in human cancers. The details of these methods are
described in Supplementary Table S3. Figure 3 shows the ROC
curve and PR curve, and Supplementary Table S4 describes the
evaluation indicators of different methods on independent test set
I. The AUC (0.856) and AUPR (0.880) of PredDSMC are significantly
higher than those of TraP, EnDSM, CS, and CSS, as shown in Figure 3.
In comparison with the second-best method, CSS, PredDSMC
achieves an increase of 19.4% and 22.1% in terms of the AUC and
AUPR, respectively. Meanwhile, PredDSMC can identify 76.9% of the
positive samples (SEN = 0.769), and 79.1% of the predicted driver
synonymous mutations were true positive samples (PRE = 0.791), as
shown in Supplementary Table S4.

Figure 4 and Supplementary Table S5 display performance
comparisons of different methods on independent test set II. The
results are similar to the results on independent test set I. In
comparison with the other four methods, the AUC (0.816) and
AUPR (0.784) of PredDSMC are still better. As indicated in Figure 4,
the AUC and AUPR are 10.9% and 6.3% higher than those of the
second-best method, CSS, respectively. Moreover, PredDSMC has
an excellent ability (Supplementary Table S5) of identifying positive
samples (SEN = 0.929), and 68.0% of the predicted driver
synonymous mutations are true positive samples (PRE = 0.680),
with contribution of features with missing values.

The 20-dimensional features in the optimal feature subset had a
certain proportion of missing values. Therefore, we evaluated the

TABLE 2 Performance comparison based on whole and optimal features.

Feature set SEN SPE PRE F1 MCC ACC AUC AUPR

Whole feature set (36) 0.793 0.834 0.827 0.809 0.628 0.813 0.889 0.892

Optimal feature subset (20) 0.800 0.834 0.828 0.813 0.634 0.817 0.890 0.890

The digital in parentheses indicates the feature dimension.
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impact of missing values on the model performance. Among
optimal features, the proportion of missing values in five features
was greater than 20%, which were all from splicing features: dPSIZ,
FAS6−, FAS6+, PESS−, and PESS+. We adopted two processing

methods: the first method was that the missing values were retained
and filled with the mean values of the corresponding features on the
training set, and the second method was that these five splicing
features were deleted. The model performance on the training set is

TABLE 3 Performance evaluation of models built on different machine learning methods on the training dataset.

Classifier SEN SPE PRE F1 MCC ACC AUC AUPR

RF 0.800 0.834 0.828 0.813 0.634 0.817 0.890 (0.008) 0.890 (0.015)

XGBoost 0.792 0.810 0.806 0.799 0.602 0.801 0.878 (0.012) 0.875 (0.016)

AB 0.784 0.796 0.793 0.788 0.579 0.789 0.869 (0.013) 0.873 (0.024)

ANN 0.750 0.803 0.792 0.770 0.554 0.777 0.854 (0.018) 0.857 (0.029)

DT 0.745 0.736 0.737 0.740 0.480 0.740 0.740 (0.018) 0.805 (0.023)

LR 0.691 0.664 0.673 0.680 0.355 0.676 0.737 (0.022) 0.703 (0.042)

The maximum value of each evaluation indicator and the optimal value are marked in bold. The digital in parentheses indicates the standard deviation.

FIGURE 3
Performance comparison of different methods on independent test set I. (A) ROC curve and (B) PR curve.

FIGURE. 4
Performance comparison of different methods on independent test set II. (A) ROC curve and (B) PR curve.
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shown in Table 4. In comparison with the performance of the model
built with missing values retained, the AUC of the model built on
features without the five splicing features decreased by 0.6%. As a
result, we maintained the five features to construct the final model.

3.5 Performance evaluation based on high-
confidence classification thresholds

The aforementioned methods used a single threshold to distinguish
between driver and passenger mutations. However, these methods were
inconsistent in the choice of the classification threshold. For example,
TraP is based on a threshold of 0.459; EnDSM, CS, and CSS are based
on a threshold of 0.5. It is unfavorable to control false positives and false
negatives of different methods based on different thresholds. To
increase the reliability of the clinical interpretation, we classified
mutations using high-confidence thresholds in line with the
recommendations of the ACMG/AMP (Richards et al., 2015; Zhang
et al., 2021).

To validate the performance based on high-confidence
classification thresholds, we compared PredDSMC with other
methods on two independent test sets. Table 5 displays the high-

confidence evaluation metrics of different methods on independent
test set I. It can be found that TPR, TNR, PPV, and NPV indicators
of PredDSMC are 0.932, 0.911, 0.963, and 0.842, respectively. The
Ove-ACC of PredDSMC, which is the second best among these
methods, is only 0.038 smaller than that of TraP. Nevertheless, the
TPR of TraP is 0.002, while the TPR of PredDSMC is 0.932. TPR
tends to achieve a relatively high value at the times when the TNR
achieves a relatively low value and vice versa among these methods
except PredDSMC, which attained high values in terms of both TPR
and TNR. In addition, PredDSMC achieved a high accuracy rate
(0.926), and the ACC-HC of other methods is not higher than 0.779,
indicating that our method can identify more samples with high
confidence.

Table 6 shows high-confidence evaluation metrics of methods
on independent test set II. The TPR, TNR, PPV, and NPV indicators
of PredDSMC are 0.985, 0.352, 0.752, and 0.923, respectively, and
the TNR indicator is relatively low, indicating that our method has a
slightly lower ability to identify passenger synonymous mutations
on independent test set II. Overall, PredDSMC assigned high
confidence to 56.7% of driver and passenger synonymous
mutations based on these high-confidence thresholds (mutations
referred to as drivers with Pr that is greater than or equal to 0.9 and

TABLE 4 Performance evaluation of different processing methods of missing values.

Missing values SEN SPE PRE F1 MCC ACC AUC AUPR

Retained (20) 0.800 0.834 0.828 0.813 0.634 0.817 0.890 0.890

Removed (15) 0.806 0.821 0.818 0.811 0.626 0.813 0.884 0.887

20-dimensional features with missing values retained, including features with a five-dimensional missing value ratio greater than 20%; 15-dimensional features with missing values removed,

excluding features with a five-dimensional missing value ratio greater than 20%.

TABLE 5 High-confidence performance evaluation indicators of different prediction methods on independent test set I.

Method TPR TNR PPV NPV Ove-ACC Pro-HC ACC-HC

PredDSMC 0.932 0.911 0.963 0.842 0.342 0.369 0.926

TraP 0.002 0.992 0.167 0.491 0.380 0.777 0.490

EnDSM 1.000 0.000 0.192 0.000 0.002 0.008 0.192

CS 0.007 1.000 1.000 0.592 0.033 0.055 0.594

CSS 0.942 0.401 0.784 0.750 0.082 0.105 0.779

The maximum value of each evaluation indicator and the optimal value are marked in bold.

TABLE 6 High-confidence performance evaluation indicators of different prediction methods on independent test set II.

Method TPR TNR PPV NPV Ove-ACC Pro-HC ACC-HC

PredDSMC 0.985 0.352 0.752 0.923 0.439 0.567 0.774

TraP 0.000 1.000 0.000 0.508 0.370 0.728 0.508

EnDSM 1.000 0.000 0.250 0.000 0.001 0.002 0.250

CS 0.059 0.949 0.500 0.536 0.020 0.038 0.534

CSS 0.992 0.113 0.833 0.750 0.125 0.150 0.830

The maximum value of each evaluation indicator and the optimal value are marked in bold.
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mutations referred to as passengers with Pr that is less than or equal
to 0.1). Notably, PredDSMC achieves the second-best accuracy
(0.774), while the ACC-HC of CSS is 0.830. However, the TNR
of CSS is 0.113 and is lower than that of PredDSMC.

3.6 Performance evaluation on different
genes and tissues

We summarized the tissue distributions on independent test set
I. Concretely speaking, there were 20,082 entries mapped into
29 cancer tissues in the COSMIC for positive mutations on test
set I (for details on tissue distributions, see Supplementary Fig. S3).
The top five tissue distributions were 17.7% (lung), 16.7% (stomach),
16.3% (hematopoietic and lymphoid tissue), 13.2% (skin), and 9.8%
(large intestine). For the negative data on test set I, there were
3,325 entries mapped into 31 cancer tissues in the COSMIC. The top
five tissue distributions were 25.8% (skin), 22.1% (large intestine),

9.7% (lung), 9.1% (stomach), and 5.8% (hematopoietic and
lymphoid tissue).

The prediction accuracies mapped onto different tissues based
on the tissue information obtained from the COSMIC were also
calculated. The results in Figure 5 indicate that the accuracy across
different tissues varies. Specifically, there are seven tissues with their
accuracies being equal to 1, including the adrenal gland, eye, genital
tract, peritoneum, pituitary, pleura, and thymus. However, these
seven tissues occurred with low distributions, including 0.04%
(adrenal gland), 0.02% (eye), 0.02% (genital tract), 0.01%
(peritoneum), 0.02% (pituitary), 0.03% (pleura), and 0.01%
(thymus). The top five tissues with high distributions are the
large intestine (15.4%), lung (15.2%), hematopoietic and
lymphoid tissue (14.0%), skin (13.3%), and stomach (12.9%).

We further evaluated the mutation distributions among the
aforementioned tissues. The prevalence of these putative driver
mutations across tissues is shown in Figure 6. It can be seen that
hematopoietic and lymphoid, lung, stomach, large intestine, breast, and
skin tissues achieve higher distributions compared to the other
26 tissues. This fact indicates that synonymous mutations occurring
in hematopoietic and lymphoid tissue have the highest chance to be
drivermutations. On the other hand, synonymousmutations that occur
in the pleura, genital tract, thymus, peritoneum, and parathyroid tissues
have the lowest chance of serving as drivermutations. By comparing the
prevalence of driver missense mutations across tissues reported in (4),
we found that mutations in four types of tissues, including the lung,
stomach, breast, and colon, had a high prevalence for both synonymous
and missense mutations.

The genes with mutations containing more than 50 were TTN,
MUC2, MUC4, KDM6A, CSMD1, MXRA5, RELN, SCN10A, and
ZFHX3. We tried to remove these genes with mutations more than
the thresholds of 60, 50, 40, 30, 20, and 10, respectively, since there
may be localized mutation processes (e.g., AID hypermutation;
APOBEC3A and DNA stem-loop structures) that generate
recurrent but non-causal mutations. Then, we calculated the
corresponding prediction accuracy for each aforementioned
threshold. As shown in Figure 7, the accuracy ranges from
0.783 to 0.788, while the threshold decreases from 60 to 10. The
results indicate that the prediction performance is changed slightly
with different thresholds.

FIGURE 5
Accuracies on different tissues on independent test set I. The
tissues include the lung (LUNG), stomach (STCH), hematopoietic and
lymphoid tissue (HAUE), skin (SKIN), large intestine (LANE), breast
(BRST), biliary tract (BICT), esophagus (OEUS), liver (LIER),
prostate (PRTE), upper aerodigestive tract (UPCT), pancreas (PAAS),
soft tissue (SOUE), central nervous system (CEEM), urinary tract
(URCT), NS (NSNS), salivary gland (SAND), bone (BONE), thyroid
(THID), ovary (OVRY), kidney (KIEY), endometrium (ENUM), meninges
(MEES), adrenal gland (ADND), pleura (PLRA), small intestine (SMNE),
eye (EYYE), testis (TEIS), genital tract (GECT), pituitary (PIRY), thymus
(THUS), and peritoneum (PEUM).

FIGURE 6
Prevalence of these putative driver mutations across tissues on independent test set I.
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We also analyzed the performance of genes in the Cancer Gene
Census (CGC) with a total of 733 genes (GRCh37, COSMIC v96).
Then, the genes in independent test set I were divided into two
groups, the genes included in CGC and non-CGC genes. The
accuracy of the mutations within genes in CGC and non-CGC is
0.772 and 0.784, respectively. Due to the dataset construction based
on mutation frequency, there were only 132 CGC genes in test set I.

4 Discussion

Here, we assume that the recurring synonymous mutations
are potential driver mutations and rare mutations are potential
passenger mutations based on the following evidence. First, the
single-point driver predictors, CSS (Rogers et al., 2020a), also
utilized the MF to construct positive and negative data.
Specifically, the authors selected the MF with eight and seven
for non-coding and coding regions, respectively. The authors
emphasized that the experimental results illustrated in their
study justified the hypothesis (Rogers et al., 2020a). Second,
although synonymous driver mutations have different effects in
oncogenes and tumor suppressor genes, recurrence is a common
feature (Supek et al., 2014; Rogers et al., 2020b). Finally, a
statistical analysis in the functional annotation tool of non-
coding sequence variants, GWAVA, revealed that recurrent
somatic mutations achieved an average value significantly
higher than that of rare mutations (Ritchie et al., 2014). In
the study, both GWAVA and another functional tool (Schwarz
et al., 2010) identified recurrent mutations as functional
mutations.

The results of both independent test sets illustrate that the methods
for predicting cancer driver mutations outperform the methods for
predicting pathogenic synonymous mutations. Therefore, the higher
prediction accuracy reflects the advantage of PredDSMCas a specific tool
for predicting driver synonymous mutations in cancers. In our study, we

focused on the characteristics of driver synonymous mutations in pan-
cancer due to the limited number of validated driver mutations in each
specific cancer. Nevertheless, PredDSMC is readily utilized to develop
cancer type-specific models with the increasing number of driver
synonymous mutations validated in any specific cancer type.

Splicing features dominate the top 20 list, indicating that
splicing descriptors are more predictive than other features in
distinguishing driver synonymous mutations. It is worth noting
that although conservation features were not included in the top
20 features, the functional score of CADD that ranked first in the
top 20 features had utilized conservation metrics such as
phastCons and phyloP. On the other hand, despite the
dominant role of splicing features for driver synonymous
mutations, not all splicing features contribute equally to
performance improvement. Considering that splicing events
are tumor specific (Sun et al., 2018), it makes sense to add
tumor-specific splicing features for constructing models in
future studies.

The accuracy of mutations within genes in the CGC and
non-CGC indicates that there is no significant difference
between the causal synonymous mutations in cancer genes
and non-cancer genes. We also found that most of the genes
with causal synonymous mutations are not classified as known
cancer genes, which is similar to the previous study (Rogers
et al., 2020b).

5 Conclusion

Disease-specific models could improve prediction accuracy
and facilitate the development of precision medicine. To this
end, we developed a model, PredDSMC, which can accurately
predict driver synonymous mutations in human cancers. First,
we obtained synonymous mutations from cancer-related public
databases and divided the positive and negative samples based
on the MF. Then, we quantified each mutation with 36 features
and selected the optimal feature subset to train the model.
Finally, PredDSMC was built based on 20-dimensional
features and RF. The evaluation of two independent test sets
indicated that cancer driver mutation predictors outperformed
general predictors for pathogenic synonymous mutations.
Moreover, PredDSMC achieved superior performance
compared to the state-of-the-art methods. We anticipate that
PredDSMC will facilitate the development and evaluation of
computational methods for predicting the effects of cancer
mutations and the exploration of the mechanism for
mutation–cancer association. In the future, we will improve
the prediction performance using increasingly high-quality
samples validated by experiments. Meanwhile, pre-trained
models with deep learning (Ji et al., 2021) may also be a
promising way for sequence feature representation.
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