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Background: Sodium leak channel non-selective (NALCN), known as a voltage-
independent Na* channel, is increasingly considered to play vital roles in
tumorigenesis and metastasis of human cancers. However, no comprehensive
pan-cancer analysis of NALCN has been conducted. Our study aims to explore the
potential diagnostic, prognostic and therapeutic value of NALCN in human
cancers.

Methods: Through comprehensive application of datasets from Human Protein
Atlas (HPA), The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia
(CCLE), Enhanced Version of Tumor Immune Estimation Resource (TIMER2.0),
Tumor and Immune System Interaction Database (TISIDB), The University of
Alabama at Birmingham Cancer data analysis Portal (UALCAN), cBioPortal,
GeneMANIA and Search Tool for the Retrieval of Interaction Gene/Proteins
(STRING) databases, we explored the potential roles of NALCN in different
cancers. The differential expression, prognostic implications, pathological
stages and grades, molecular and immune subtypes, diagnostic accuracy,
tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair
(MMR) genes, immune checkpoint genes, chemokine genes, major
histocompatibility complex (MHC)-related genes, tumor-infiltrating immune
cells (TIICs), promoter methylation, mutations, copy number alteration (CNA),
and functional enrichment related to NALCN were analyzed.

Results: Most cancers lowly expressed NALCN. Upregulated NALCN expression
was associated with poor or better prognosis in different cancers. Moreover,
NALCN was correlated with clinicopathological features in multiple cancers.
NALCN showed high diagnostic accuracy in 5 caner types. NALCN is highly
linked with immune-related biomarkers, immune-related genes and TIICs.
Significant methylation changes and genetic alteration of NALCN can be
observed in many cancers. Enrichment analysis showed that NALCN is closely
related to multiple tumor-related signaling pathways.

Conclusion: Our study revealed the vital involvement of NALCN in cancer. NALCN
can be used as a prognostic biomarker for immune infiltration and clinical
outcomes, and has potential diagnostic and therapeutic implications.
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Introduction

Most cancer patients die of metastasis process of cancers by which
malignant tumor cells spread to other organs from the primary tumor
(Ganesh and Massagué, 2021). Blocking tumor cell metastasis can greatly
enhance the survival rate of cancer patients, while how the metastasis
process is switched on remains unclear, within the complex network of
tumorigenesis (Massagué and Obenauf, 2016; Dillekas et al., 2019). For a
long time, NALCN was identified as a single ion channel. However, lately
study has revealed that NALCN is essential for the metastasis of cancer
and the transmission of normal cells (Rahrmann et al., 2022).

The NALCN protein contains 1738 amino acids and forms the
integral membrane ion channel complex. NALCN is encoded by just
one gene in Homo sapiens (Liebeskind et al., 2012; Senatore et al., 2013).
NALCN has been shown to control the resting membrane potential by
regulating sodium leak conductance. Moreover, NALCN has been
reviewed to play a key function in excitable tissues, such as neuronal
excitability, circadian and respiration rhythms (Lu et al., 2007; Chua
etal., 2020; Kschonsak et al., 2020). Neurological disorders are related to
NALCN gain-of-function mutations (Bend et al., 2016). In gastric and
colorectal cancers, there was an enriched presence of loss-of-function
mutations of NALCN. Tumor incidence was unaffected by deletion of
NALCN in mouse model, but tumor cell metastasis was markedly
increased (Rahrmann et al., 2022).

From the perspective of the lack of pan-cancer study and further
explore the role of NALCN in cancer, we analyzed NALCN across various
cancer types based on large-scale RNA-sequencing data. In the present
work, we examined the expression of NALCN, the prognostic
implications of NALCN, the potential clinicopathological correlations,
diagnostic accuracy of NALCN, its association with immune-related
markers and tumor-infiltrating immune cells (TIICs), methylation level
of NALCN, mutations and copy number alteration (CNA) in NALCN,
and functional enrichment analysis for NALCN by data mining analyses.
The results showed that NALCN is aberrantly expressed and closely
associated with clinicopathological features in multiple cancers. In some
cancers, upregulated expression of NALCN is detrimental to survival,
while in others, it is beneficial. The receiver operating characteristic
(ROC) tests show high diagnostic accuracy of NALCN. These results
suggested that NALCN has an important impact on the prognosis of
cancer patients and present promising diagnostic value for cancer, while
its role varies according to the type of cancer. Moreover, NALCN is highly
linked with immune-related biomarker, immune-related genes and
TIICs. Significant methylation changes and genetic alteration of
NALCN can be observed in many cancers. Enrichment analysis found
that NALCN is closely related to multiple tumor-related signaling
pathways. Getting these data together, the results suggest NALCN is a
prognostic marker of immune infiltration, as well as clinical outcomes,
and has potential diagnostic and therapeutic implications.

Materials and methods

NALCN expression analysis in pan-cancer
The Human Protein Atlas (HPA) (http://www.proteinatlas.org/)

database was used to estimate the mRNA expression levels of NALCN

in normal tissues (Uhlén et al., 2015). Pan-cancer sequencing data of
NALCN from The Cancer Genome Atlas (TCGA) (https://www.
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cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga) were collected for analysis through their portal websites (Tomczak
et al, 2015). Cancer Cell Line Encyclopedia (CCLE) (https://sites.
broadinstitute.org/ccle) database was applied to obtain mRNA
expression levels of NALCN in cell lines (Nusinow et al., 2020). We
further investigated NALCN expression in 33 types of cancer and
normal tissues from TCGA datasets using the enhanced version of
tumor immune estimation resource (TIMER?2.0) (http://timer.cistrome.
org/) (Li et al., 2020). The “Gene_DE” module was explored with input
of “NALCN.” Log2 transformation was conducted on the expression
data. R software and “ggplot2” R package were applied for analysis and
visualization.

Immunohistochemistry staining of NALCN

Using the HPA database, Immunohistochemistry (IHC) images of
tumor tissues were compared with the corresponding IHC images of
normal tissues, to analyze the differential expression of NALCN protein.

Prognostic potential analysis of NALCN in
pan-cancer

In each TCGA cancer type, we conducted Cox proportional hazards
regression models and Kaplan-Meier (KM) analysis to investigate how
NALCN expression correlates with patient’s overall survival (OS),
progression free interval (PFI) and disease specific survival (DSS).
The “forestplot” and “survival” R packages were employed.

Correlation analysis of NALCN and
clinicopathological characteristics

We used the Tumor and Immune System Interaction Database
(TISIDB)  (http://cis.hkuhk/TISIDB/index.php) to explore the
correlation between NALCN and pathological stages, as well as
histological grades of cancers. Using the TISIDB database, we further
evaluated the relationships between the expression of NALCN and
molecular subtypes or immune subtypes in pan-cancer (Ru et al.,, 2019).

Analysis of the diagnostic value of NALCN

To evaluate the diagnostic value of NALCN, the ROC curve
analysis was conducted by the “pROC” R package. The ROC curves
were made using the “ggplot2” R package. The area under the curve
(AUC) more than 0.8 represent high diagnostic accuracy.

Analysis of NALCN expression and immune-
related biomarker

Based on the TCGA data, Spearman’s coefficient was used to
evaluate associations between the expression level of NALCN and
tumor mutation burden (TMB) or microsatellite instability (MSI) in
different cancer types. Using “ggradar” and “ggplot2” R packages,
radar plots were displayed as the final results. Furthermore, the
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correlation between NALCN expression and MMR genes, immune
checkpoint genes, chemokine genes, major histocompatibility
complex (MHC)-related genes in various TCGA cancer types was
investigated using Spearman’s correlation method. The results were
exhibited as heatmaps using “ggplot2” R package.

Immune infiltration analysis of NALCN

We used the “estimate” R package to estimate tumor purity in
33 human cancers. Concretely, it was calculated based on the immune
score and stromal score, which respectively represent the infiltration of
immune cells and the stromal components in tumor tissue. ESTIMATE
score reflects both components integrated and indirectly indicate tumor
purity. Correlations between NALCN expression and these three kinds
of score in the top 3 cancers were shown as scatter plots.

NALCN methylation profile in pan-cancer

In this study, the promoter methylation level of NALCN in
different cancers was examined using The University of Alabama at
Birmingham Cancer data analysis Portal (UALCAN) (http://ualcan.
path.uab.edu/). the association between NALCN
promoter methylation level and tumor stage, as well as nodal

Moreover,

metastasis status was investigated through UALCAN database.

Genetic alteration analysis of NALCN

Using the cBioPortal database (http://www.cbioportal.org/), we
investigated the genetic alterations of NALCN in TCGA pan-cancer
datasets. The “pan-cancer analysis of whole genomes (ICGC/TCGA,
Nature 2020)" dataset, “Oncoprint,” “Cancer Type Summary,”
“Plots,” “Mutations,” and “Comparison/Survival” modules were
used to investigate the mutation landscape and CNA of NALCN
in different cancers.

Gene-related enrichment analysis

GeneMANIA database (http://genemania.org/) was used to obtain
NALCN gene-gene interaction network. We input NALCN (protein
name) and H. sapiens (organism) to query the Search Tool for the
Retrieval of Interaction Gene/Proteins (STRING) database (https://
string-db.org/). Then, the basic parameters were set as: No more
than 50 interactors (maximum number of interactors to show),
medium confidence 0.400 (minimum required interaction score) and
evidence (the meaning of network edges). Finally, the enrichment
analysis was performed with “Cluster Profiler” R package, while
enrichment pathways were visualized with “ggplot2” R package.

Statistical analysis

In the present work, R software (version 4.2.1) was used for the
analysis. Wilcoxon’s test were used for the comparison between two
groups. The correlation between NALCN expression and interest
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targets was assessed by Spearman correlation test. Cox proportional
hazards regression models were used to calculate the Hazard Ratio
(HR). KM analysis and log-rank test were performed to analyze the
survival outcome. p-value less than 0.05 were considered statistically
significant (*p < 0.05, **p < 0.01, **p < 0.001).

Results

NALCN expression levels in normal and
cancer tissues

Human normal tissues were examined using the HPA database for
NALCN mRNA expression under physiological conditions, based on
HPA and GTEx datasets. NALCN was expressed almost in all normal
tissues, with the exception of the choroid plexus and thymus. The
expression of NALCN was tissue specific. Compared with other
organs, enhanced NALCN expression was detected in brain. The
mRNA expression level of NALCN was highest in white matter
(Figure 1A). Moreover, we examined NALCN mRNA expression in
CCLE cancer cell lines (Figure 1B). Taking TCGA data, compared with
adjacent normal tissues, the NALCN expression level were significantly
downregulated in bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), colon adenocarcinoma (COAD), glioblastoma
multiforme (GBM), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), rectum adenocarcinoma (READ), thyroid carcinoma (THCA),
uterine corpus endometrial carcinoma (UCEC), but upregulated in
cholangiocarcinoma (CHOL), pheochromocytoma and paraganglioma
(PCPG), stomach adenocarcinoma (STAD) (Figure 1C). Furthermore,
using the TCGA datasets, we estimated NALCN expression in paired
cancer and normal tissues. NALCN was significantly lower in BRCA,
KIRP, LUSC, THCA, while higher in CHOL, than in paired normal
tissues (Figure 1D). Besides, we compared the differential expression of
NALCN mRNA in human pan-cancer using the TIMER2.0 database and
found it was consistent with the above analysis (Figure 1E). These results
indicate that the expression of NALCN was aberrant in multiple cancer
types which suggest that NALCN could be a crucial tool for cancer
diagnosis.

NALCN protein expression in pan-cancer

THC results showed NALCN protein localizing in the cytoplasm and
membrane. The expression of NALCN protein was higher in breast,
cervical, colon, endometrial, liver, lung, ovarian, prostate, skin, and
thyroid cancer than in normal tissues (Figure 2). We noted that IHC
staining for NALCN was performed using antibodies with different
clones might produce variable results. There was low consistency
between THC staining and RNA expression data of NALCN.

Prognostic value of NALCN in pan-cancer
Using data from the TCGA database, results from 33 types of

cancer in Cox regression illustrated that NALCN expression level
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between tumor and normal tissues. (D) Comparison of NALCN between paired tumor and normal tissues. (E) Comparison of NALCN between tumor and
04

Differential expression of NALCN. (A) Expression of NALCN in normal tissues. (B) Expression of NALCN in cancer cell lines. (C) Comparison of NALCN
normal tissues in TIMER 2.0. *p < 0.05, **p < 0.01, ***p < 0.001, ns p > 0.05.
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FIGURE 2
Representative immunohistochemical images of NALCN protein expression level in normal and tumor tissues (antibodies for
immunohistochemistry: HPA031958, HPA031890).

was correlated with OS in adrenocortical carcinoma (ACC), a protective factor for ACC and LGG (Figure 3A). KM survival
BLCA, COAD, head and neck squamous cell carcinoma  analysisindicated that higher NALCN expression was associated
(HNSC), KIRP and brain lower grade glioma (LGG). NALCN  with a poorer OS in BLCA, COAD, HNSC, and KIRP, while with
was a risk factor for BLCA, COAD, HNSC and KIRP, while it was ~ better OS in ACC and LGG (Figure 3B). For PFI, increased
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NALCN was a high-risk factor for BLCA, CESC, COAD, and
sarcoma (SARC), and was a low-risk factor for LGG (Figure 3A).
The results of KM curves for PFI indicated that high expression of
NALCN was correlated with a worse PFI in BLCA, CESC, COAD,
and SARC, while low expression of NALCN was correlated with
poorer PFI in LGG (Figure 3C). Moreover, NALCN exhibited a
significant prognostic value in COAD, HNSC, KIRC, KIRP, and
LGG through Cox regression analysis for DSS (Figure 3A). KM of
DSS analysis demonstrated that high NALCN expression had
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shortened DSS in patients with COAD, HNSC, KIRC, and KIRP,
however had lengthened DSS in patients with LGG (Figure 3D).

Correlation analysis between NALCN
expression and clinicopathological features

We examined the relationship between NALCN mRNA
expression level and patient’s clinicopathological features in pan-
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of HNSC, KIRC, LGG, STAD, UCEC, based on the TISIDB database.

cancer using TISIDB tool. The results showed that the expression of
NALCN was significantly associated with tumor stage in BLCA,
COAD, esophageal carcinoma (ESCA), HNSC, KIRC, LUAD,
READ, STAD, testicular germ cell tumors (TGCT), THCA, and
UCEC (Figure 4A). With elevated NALCN expression, higher
histological tissue grades were shown in HNSC, KIRC, and STAD,
while in LGG and UCEC reversely (Figure 4B). Moreover, the
relationship between NALCN expression
molecular subtypes in pan-cancer was investigated. The results
revealed that the expression of NALCN was correlated with
6 immune subtypes in 14 cancer types, including BLCA, BRCA,
CESC, COAD, HNSC, LGG, LIHC, LUAD, LUSC, mesothelioma
(MESO), PCPG, prostate adenocarcinoma (PRAD), STAD, and
UCEC (Figure 5A). Meanwhile, a significant correlation between
NALCN and different molecular subtypes existed in 12 cancer

and immune or
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types, including ACC, BRCA, COAD, GBM, HNSC, LGG, LIHC,
LUSC, ovarian serous cystadenocarcinoma (OV), PCPG, STAD, and
UCEC (Figure 5B).

Diagnostic value of NALCN for cancers

Diagnostic accuracy of NALCN was evaluated with ROC curves.
The AUC of ROC analysis shows that in 5 cancer types, the test has
high diagnostic accuracy (AUC > 0.8), including CHOL, GBM,
KIRP, LUSC and thymoma (THYM); in 6 cancer types, it has
relative diagnostic accuracy (0.7-0.8), including BLCA, BRCA,
esophagus adenocarcinoma (ESAD), STAD, THCA and UCEG;
and in 7 cancer types, it has low diagnostic accuracy (0.5-0.7),
including COAD, ESCA, HNSC, kidney chromophobe (KICH),
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Correlation of NALCN expression and clinicopathological parameters (immune subtype, molecular subtype) across different cancer types. (A)
Correlation of NALCN with immune subtypes (C1: wound healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C5:
immunologically quiet, C6: TGF-b dominant) of BLCA, BRCA, CESC, COAD, HNSC, LGG, LIHC, LUAD, LUSC, MESO, PCPG, PRAD, STAD, UCEC, based on
the TISIDB database. (B) Correlation of NALCN with molecular subtypes of ACC, BRCA, COAD, GBM, HNSC, LGG, LIHC, LUSC, OV, PCPG, STAD,

UCEC, based on the TISIDB database.

LIHC, LUAD and PRAD (Figure 6). AUC more than 0.8 represent
excellent discrimination. Consequently, these results suggested that
NALCN may be a promising diagnostic biomarker for cancers.

Correlation between NALCN and immune-
related biomarker

Both TMB and MSI are mutation biomarkers that relate to the
response of immunotherapy. We investigated the relationship
between the expression of NALCN and either TMB or MSI in all
TCGA tumors. The expression of NALCN was positively connected
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with TMB in PRAD and THYM, whereas negatively connected with
TMB in BRCA, CESC, COAD, KIRP, LGG, LIHC, LUAD, LUSC,
pancreatic adenocarcinoma (PAAD), STAD and uveal melanoma
(UVM) (Figure 7A). Additionally, the expression of NALCN is
negatively related to MSI in KIRC, LUSC, STAD, and UCEC, and
positively related to ACC (Figure 7B). As a result of the discovery
that NALCN expression is associated with TMB and MSI, more
investigation about the relationship between the expression of
NALCN
correlation to MMR deficiencies. Here, we investigated the
correlation between NALCN expression and putative MMR
genes, comprising MLH1, MSH2, MSH6, PMS2, and EPCAM. As

and carcinogenesis was necessary, specifically a
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AUC of ROC curves showed the diagnosis performance of NALCN in the TCGA cohorts.

a consequence, there was a strong correlation between NALCN
expression and MMR genes in 32 cancers, aside from lymphoid
neoplasm diffuse large B-cell lymphoma (DLBC), LUAD, OV, and
UCEC. Especially, MLH1, MSH2, MSH6, PMS2, and EPCAM are all
positively correlated with NALCN in HNSC, LIHC, PCPG, and
UVM (Figure 7C). These results suggest that NALCN expression in
cancer is highly correlated with carcinogenesis and immune
checkpoint blockade (ICB) response.

Correlation between NALCN and immune-
related genes

In this work, the correlation between NALCN expression and
immune checkpoint genes was analysed. Notably, there was a
significant correlation between NALCN and many immune
checkpoint genes in most cancers, such as BLCA, COAD,
ESCA, KIRP, LIHC, LUSC, OV, PAAD, PRAD, READ, and
THCA, and so forth. (Figure 7D). It’s important to note that
the expression of NALCN was negatively associated with immune
checkpoint genes in LGG and GBM. NALCN expression was
positively associated with majority of chemokine genes in BLCA,
CHOL, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, OV, PAAD,
PRAD, THCA, and UVM, and negatively associated with
chemokine genes in LGG (Figure 7E). Additionally, we can
found NALCN was positively correlated with MHC-related
genes in LIHC, LUSC, OV, PAAD, PRAD, TGCT, and THCA,
while negatively correlated with MHC-related genes in ACC,
CESC, GBM, KIRC, LGG, MESO, skin cutaneous melanoma
(SKCM) (Figure 7F). These findings demonstrated that a
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possible synergy between NALCN and known immune-related
genes for regulation of tumor immune response.

Association between NALCN expression and
immune infiltration in pan-cancer

Initially, we examined the relationship between the expression of
NALCN and tumor purity to determine whether NALCN plays a role
in immune infiltration in pan-cancer, through stromal score, immune
score and ESTIMATE score. The results showed that NALCN
expression significantly related to immune and stromal scores in
most cancer types. Top 3 cancers most significantly related to NALCN
expression were ESAD, READ and STAD (stromal score); ESAD,
LUSC and THYM (immune score); ESAD, READ and COAD
(ESTIMATE score) (Figure 8A). TIICs have a strong relationship
with the development and metastasis of malignant tumors. To further
investigate whether NALCN has an effect on the tumor immune
microenvironment, we analyzed the correlation between NALCN
expression and the level of TIICs from different TCGA cohort
tumors, according to TIMER and XCELL algorithms. It was found
that the expression of NALCN was significantly associated with CD8*
T cells infiltration level among 14 cancer types, CD4" T cells among
17 cancer types, neutrophil among 16 cancer types, DCs among
19 cancer types, macrophages among 19 cancer types, and B cells
among 5 cancer types (Figure 8B). In COAD, ESCA, LUAD, and
PRAD, there was positive correlation between NALCN and all these
6 types immune cells (Figure 8B). The relationship between NALCN
expression and 38 subtypes of TIICs was further confirmed by XCELL
algorithm. The result implied that NALCN expression had a
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significant relation with TTICs for most types of cancer. Especially, the
expression of NALCN was negatively associated with most TIICs
levels in BRCA, LGG, SKCM, PCPG, THCA, and THYM, and
positively associated with most TIICs in COAD, ESCA, LUSC,
PRAD, and READ (Figure 8C). Therefore, it indicated that
NALCN expression was strongly related to the degree of TIICs in
cancer.
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NALCN methylation profile in pan-cancer

Methylation level of NALCN promoter in tumor and normal
tissues was evaluated by UALCAN portal. We found that the
promoter methylation level of NALCN were significantly higher
in BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC,
LUAD, LUSC, PAAD, PRAD, and READ, but lower in PCPG,
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The promoter methylation level of NALCN in cancers. (A) The promoter methylation level of NALCN between tumor and normal samples. (B) The
promoter methylation level of NALCN between tumor with different stage and normal samples. (C) The promoter methylation level of NALCN between
tumor with different lymph node metastasis status and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001.

compared to normal tissues (Figure 9A). It was also observed that
the methylation level of NALCN promoter was increased in each
stage tumor tissues of BRCA, CESC, COAD, HNSC, KIRC, and
READ (Figure 9B), and any lymph node metastasis status of BRCA,
CESC, COAD, HNSC, LUAD, LUSC, PAAD, PRAD, and READ,
than those in normal tissues (Figure 9C). The above findings
indicate that the promoter methylation of NALCN has a negative
relation with its mRNA expression and NALCN might be an anti-
oncogene in cancers.

Genetic alteration of NALCN in pan-cancer

From the TCGA cohorts, NALCN genetic alteration status was
explored in various tumor samples by the cBioPortal database. It
was found that colorectal cancer (CRC) displayed the highest
frequency of NALCN gene alterations, with mutation as the
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primary type. Another major type of gene alterations was
“amplification” of CNA in CRC, with an alteration frequency of
13.46%. NALCN amplification is observed in all cases of
endometrial cancer and head and neck cancer with genetic
alteration (Figure 10A). Genetic alterations of NALCN typically
occur in three forms: amplification, missense mutation, and deep
deletion (Figure 10B). Figure 10C further demonstrated genetic
alterations in NALCN with regard to the types, sites and case
numbers. Missense mutation was the major alteration type,
whereas D704H/Y changes were found in 83 cases of CRC and
200 cases of STAD (Supplementary Table S1). The most frequent
CNA in NALCN was diploid, shallow deletion and gain
(Figure 10D). Compared with the unaltered group, the gene
alteration of CCDC168, TP53, DOCK9, PCCA, FGF14,
SLC15A1, ITGBL1, MYO16, NALCN-AS1, and FGF14-IT1 were
more common in the NALCN altered group (Figure 10E).
Figure 10F illustrates the 3D structure of NALCN protein.
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The genetic alterations of NALCN in different tumors of TCGA. (A) Alterations summary of NALCN for the TCGA tumors. (B) Summary of NALCN
structural variant, mutations, and copy-number alterations. (C) The mutation types, number, and sites of the NALCN genetic alterations. (D) The alteration
types of NALCN in pan-cancer. (E) The alteration frequency of related genes in NALCN altered group and unaltered group. (F) The 3D structure of NALCN

protein.

Enrichment analysis of NALCN-related
partners

The gene-gene interaction network of NALCN was obtained using
GeneMANIA. According to the result, the 20 genes most closely
associated with NALCN were identified, in which NALCN
significant physical interactions with UNC80, UNC79, PSMD11 and
CHRMS3 (Figure 11A). Moreover, the functional analysis demonstrated
that NALCN was prominently associated with voltage-gated cation
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channel activity, transmembrane transporter complex and potassium
channel activity. The most relevant 50 NALCN-binding proteins were
obtained by the STRING database. Interaction network of these
proteins is exhibited in Figure 11B. UNC79, UNC80, and
CHRM3 were common members from the intersection analysis of
the above two groups. Enrichment analysis was conducted based on
integrating the two sets of data (Supplementary Table S2). Regarding
the GO terms, the biological process (BP) was mainly enriched in
regulation of membrane potential, cellular divalent inorganic cation
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Gene-gene interaction network and enrichment analysis. (A) Gene-gene interaction network of NALCN from GeneMANIA. (B) Protein network of
NALCN-binding proteins generated using STRING. (C) GO analysis, including the biological processes (BP), cellular components (CC), molecular
functions (MF). (D) KEGG pathway analysis. (E) Representative GO analysis related to tumor. (F) Representative KEGG pathway analysis related to tumor.

homeostasis, calcium ion homeostasis. The cellular component (CC)
was primarily involved in transporter complex, transmembrane
transporter complex, ion channel complex. The primary molecular
function (MF) contained metal ion transmembrane transporter activity,
voltage-gated channel activity, voltage-gated ion channel activity
(Figure 11C). Top 3 KEGG enrichment pathways were adrenergic
signaling in cardiomyocytes, oxytocin signaling pathway, calcium
signaling pathway (Figure 11D). We also found that BP enriched in
regulation of phosphoprotein phosphatase activity, cell-cell junction
assembly, regulation of cell division; CC enriched in spindle
microtubule, protein kinase activator activity, phosphatase regulator
activity; MF enriched in protein kinase activator activity, phosphatase
regulator activity, integrin binding (Figure 11E); KEGG pathway
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enriched in cellular senescence, gastric acid secretion, glioma,
chemical carcinogenesis-receptor activation, inflammatory mediator
regulation of TRP channels and estrogen signaling pathway
(Figure 11F). These results suggested that NALCN is closely related
to tumor-related signaling pathways.

Discussion

Metastasis can occur many years after local cancer resection, or even
without the presence of a primary tumor (Pantel et al., 2008; Kolling et al.,
2019). Some genes promote metastasis, including several ion channels
that regulate gene transcription by affecting transmembrane voltage and
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causing a metastasis-like phenotype (House et al., 2010; Wang et al., 2020;
Sheth and Esfandiari, 2022). NALCN is a voltage-independent Na*
channel and is located in the plasma membrane, which belongs to the
superfamily of four-domain ion channels (Lee et al.,, 1999). NALCN plays
a crucial role in maintaining the resting and excitable membrane
potentials of cells, and is involved in multiple processes, for instance,
sensitivity to volatile anesthetics and locomotive behavior (Lu et al., 2007;
Ren, 2011; Cochet-Bissuel et al., 2014). In addition, NALCN gene may be
a susceptibility locus for a variety of diseases, including alcoholism,
alzheimer’s disease, autism, bipolar disorder, cardiac disease, epilepsy
and schizophrenia (Cochet-Bissuel et al, 2014). Studies reveal that
NALCN is expressed in some cancers, such as glioblastoma, non-
small cell lung cancer (NSCLC), pancreatic cancer, small cell lung
cancer (SCLC) and tumor-derived endothelial cells (Lee et al., 2013;
Cochet-Bissuel et al.,, 2014; Djamgoz, 2020). NALCN was a key gene in
the malignant transformation of human normal liver cell lines (Chen
et al, 2018). Genetic association studies revealed that single nucleotide
polymorphism (SNP) of NALCN gene was associated with NSCLC (Lee
et al, 2013). Mutations of NALCN in human cancer at a similar
frequency of TP53, suggesting that NALCN could act as a tumor
suppressor (Joerger and Fersht, 2016). Recently, Eric P. Rahrmann
et al. found that trafficking of epithelial cells to distant tissues is
regulated by NALCN, and loss of NALCN promotes cancer
metastasis (Rahrmann et al., 2022).

However, no comprehensive pan-cancer analysis of NALCN has
been conducted. There is still much to learn about NALCN’s role in
cancer and whether it can be used as a diagnostic, prognostic or
therapeutic biomarker. Thus, it is crucial to compare NALCN
between different types of cancer, in order to understand how it
differs and similarities through the pan-cancer analysis. In the present
study, the role of NALCN in cancer was thoroughly examined and pan-
cancer analysis was conducted through a comprehensive workflow. Our
work showed that NALCN is aberrantly expressed and is highly
associated with prognosis for most cancer types. NALCN is
significantly related to clinicopathological features, immune-related
biomarkers, immune-related genes and TIICs levels. The AUC show
high diagnostic accuracy of NALCN in various cancers. Moreover,
significant changes in methylation and genetic alteration of NALCN
were found in multiple cancers. NALCN is enriched in multiple pathways
involved in tumor development. Consequently, NALCN play a critical
role in tumor immunity and prognosis, and possesses potential
therapeutic and diagnostic implications.

NALCN were differentially expressed and related to poor prognosis
in CRC patients. NALCN may bind with EMCN and promote the
development of CRC (Huang et al., 2022). In this study, we found that
NALCN was significantly differentially expressed in 16 types of cancer.
NALCN protein levels have been found to be higher in most cancers
based on THC analysis. These findings suggest that NALCN could play
an important role in the development of cancers and offers the prospect
of advancing cancer diagnosis. A genome-wide association study
showed that SNPs located in the genomic regions of NALCN have
prognostic implication in advanced NSCLC (Lee et al, 2013).
Circulating tumor cells (CTCs) and metastases are increased
significantly through NALCN regulates malignant epithelial cells
released into the blood from primary tumors (Rahrmann et al,
2022). Here, survival association analysis was conducted for each
type of cancer using Cox regression analysis and KM survival
curves, to examine the relationship between NALCN expression
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level and cancer prognosis, including OS, PFI, and DSS. According
to the integrated results, we found that increased NALCN expression
negatively impacted the prognosis of BLCA, CESC, COAD, HNSC,
KIRC, KIRP, and SARC, but positively affected the prognosis of ACC
and LGG. Additionally, NALCN expression was investigated in samples
characterized by different clinicopathological features. The results
showed NALCN expression was significantly correlated with tumor
stage, histological tissue grades, molecular and immune subtypes. It is
suggesting that NALCN is involved in the progression of various
cancers with prognostic value. AUC of the ROC curve showed
outstanding diagnostic performance of NALCN in various cancer
types. NALCN proved high diagnostic value for 4 types of cancer
and relative diagnostic value for 6 types of cancer. Consequently,
NALCN may serve as a useful indicator of cancer occurrence and
play a crucial role in assisting tumor diagnosis.

The mismatch repair pathway is important to maintain genome
stability (Baretti and Le, 2018). Deficit of MMR is followed by MSI,
leading to mutation accumulation in cancer-related genes and TMB
aggravation (Yarchoan et al., 2017). TMB, MSI and MMR deficiency
influence tumor initiation and were considered an independent
predictor of treatment effectiveness with ICB (Sahin et al, 2019;
Samstein et al,, 2019; Zhao et al,, 2019; Sha et al.,, 2020). Increasing
studies showed that the prognosis of cancers was correlated with TMB,
MSI and MMR (Germano et al., 2017; Stelloo et al.,, 2017; Yu et al.,
2019). In our study, we examined the association between NALCN
expression and TMB, MSI, and well-known MMR genes in different
types of cancer. Most cancer types show strong correlations between
NALCN expression and TMB, MSI, as well as MMR genes. It was
indicating that NALCN may mediate tumorigenesis through genetic
alterations and as a potential biomarker for predicting ICB responses.
What's more, we explored the relationship between NALCN expression
and over 40 frequently occurring immune checkpoint genes. We found
that there is a positive association between NALCN expression and
many immune checkpoint genes. In addition, NALCN and chemokine
genes or MHC-related genes exhibit a significant positive correlation.
ESTIMATE score represents tumor purity and reflects both immune
and stromal components. Cancer with low purity is considered to be in
an advanced stage and has a poor prognosis (Yoshihara et al,, 2013;
Aran et al, 2015). In this study, NALCN expression is positively
associated with ESTIMATE score in most tumor types, which
indicate NALCN expression was related to tumor purity. It has been
demonstrated that there is a clinical effect of TIICs on malignancy
patients’ outcomes (Becht et al, 2016). Furthermore, immune
infiltration analysis of NALCN was performed. We found that
NALCN expression strongly positively relates the TIICs level. These
findings demonstrate that NALCN highly involved in tumor immunity
and plays a crucial role in tumor immune evasion.

DNA methylation is a novel predictor among the epigenetic
mechanisms involved in tumorigenesis. Hong-qiang Chen et al.
revealed the methylation level of NALCN is upregulated in the
malignant transformation of human hepatocyte cell line (Chen et al,
2018). In the present work, we observed increased NALCN promoter
methylation level and decreased NALCN mRNA expression appeared
simultaneously across cancers. These results suggest that NALCN may
mediate DNA methylation to regulate tumor progression. In addition to
DNA methylation, downregulated of NALCN was also regulated by a
genetic alteration (Chen et al., 2018). Fontanillo et al. found that the
malignant state of glioblastomas was highly correlated with CNA of
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NALCN, with decreased expression level of NALCN (Fontanillo et al.,
2012). NALCN mutations cause severe developmental and neurological
disease (Bend et al,, 2016; Fukai et al., 2016; Bramswig et al., 2018).
Missense mutations generally result in gain-of-function phenotypes
(Kschonsak et al., 2020). NALCN is affected predominantly by non-
synonymous mutations which enriched in colorectal, gastric, lung,
prostate, head, and neck cancers (Weinstein et al, 2013;
Martincorena et al,, 2017; Rahrmann et al., 2022). NALCN channel
is closed by these cancer-associated mutations. Mutations in NALCN
could facilitate cancer progression in the parallel and linear models
(Klein, 2009). NALCN loss-of-function mutations could help to reveal
some enigmatic characteristics of human cancer (Rahrmann et al,
2022). In this study, we found that NALCN mutation and CNA were
found in most cancer types. Missense mutation and amplification were
the major alteration type. The alteration event frequency of some
cancer-related genes was significantly increased in the NALCN
altered group, such as TP53, FGF14, SLC15A1. NALCN was also
related to pathological stage and grade. These results show that
NALCN could affect the malignant status and progression of cancer.
In addition, the incidence of CRC, melanoma and esophagogastric
adenocarcinoma is the highest top 3 cancers, which suggest that we
should be concerned about the association between genetic mutations
in NALCN and digestive system tumors.

Antimetastatic therapies have been difficult to develop due to the
difficulty in identifying the primary tumor targets that drive metastasis
(Ganesh and Massagué, 2021). NALCN deficiency resulted in abundant
and persistent cell shedding, even without the primary tumor. Loss of
NALCN promotes cancer metastasis. A dramatic increase in cancer
metastasis with the deletion of NALCN in mice validates NALCN loss-
of-function is a significant cancer metastasis driver (Rahrmann et al,
2022). Deleting NALCN from normal gastric stem cells, upregulation of
epithelial-mesenchymal transition and invasion genes were observed
within 72h (Rahrmann et al, 2022). It is suggesting that NALCN
regulate gene transcription which is similar to the reported calcium ion
channel (Barbado et al., 2009; Wang et al., 2020). In this work, NALCN
RNA and protein were aberrantly expressed and NALCN closely
associated with clinicopathological features in multiple cancers, such
as stage, grade, molecular and immune subtypes. The alteration event
frequency of CCDC168, TP53, DOCK9, PCCA, FGF14, SLC15Al,
ITGBL1, MYO16, NALCN-ASI, and FGF14-IT1 were significantly
increased in the NALCN altered group. These results further verify the
previous studies. However, more studies are needed to clarify the
mechanisms that how NALCN regulates gene expression and cell
shedding. Rahrmann EP et al. reveal that function manipulation of
NALCN is a promising novel strategy to prevent cancer metastasis.
Especially, drugs that can reopen the NALCN channel may be an
effective antimetastatic therapy (Rahrmann et al., 2022). Therefore, in
the future, targeted therapies can be developed for NALCN, and may
enhance tumor treatment efficacy by combining with immunotherapy.

This study has some limitations need to be considered. Firstly,
despite we gained some important insights about NALCN in tumors
from bioinformatic analysis, our results need to be validated by
additional biological experiments. Secondly, although NALCN
expression in human malignant tumor was associated with
immunity, as well as clinical survival, how NALCN affected
clinical survival through the immune route still unsure. Thirdly,
systematic bias exists given the multiple sources of information
retrieved for the analysis. More studies are required to further
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investigate the role of NALCN in tumor and the potential
therapeutic value of NALCN as an anticancer target.

In our first pan-cancer analysis of NALCN, we observed a
significant differential expression of NALCN, association between
NALCN and prognosis, clinicopathological features, diagnostic
accuracy, immune-related biomarkers and genes, TIICs, DNA
methylation, genetic alteration and tumor-related signaling pathways,
which assist us understand NALCN’s role in tumorigenesis and
metastasis. Taken together, our study revealed the vital involvement
of NALCN in cancer and developed a framework for further study of
NALCN in cancer. NALCN can be used as a prognostic biomarker for
immune infiltration and clinical outcomes, and has potential diagnostic
and therapeutic implications.
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