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As the carrier of genetic information, RNA carries the information from genes to
proteins. Transcriptome sequencing technology is an important way to obtain
transcriptome sequences, and it is also the basis for transcriptome research. With
the development of third-generation sequencing, long reads can cover full-length
transcripts and reflect the composition of different isoforms. However, the high
error rate of third-generation sequencing affects the accuracy of long reads and
downstream analysis. The current error correction methods seldom consider the
existence of different isoforms in RNA, which makes the diversity of isoforms a
serious loss. Here, we introduce LCAT (long-read error correction algorithm for
transcriptome sequencing data), a wrapper algorithm of MECAT, to reduce the
loss of isoform diversity while keepingMECAT’s error correction performance. The
experimental results show that LCAT can not only improve the quality of
transcriptome sequencing long reads but also retain the diversity of isoforms.
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1 Introduction

Ribonucleic acid (RNA) is responsible for transferring genetic information fromDNA to
proteins. The genetic information contained in RNA plays an important role in the encoding,
decoding, expression, and regulation of many biological functions. Unlike the double-
stranded form of DNA, RNA is usually present in cells and some viruses in a single-stranded
form as a carrier of genetic information. RNA splicing occurs during the conversion of pre-
RNA to mRNA. RNA can combine exons in various ways through alternative splicing events
at different developmental stages or in different tissues of the same organism. Transcripts
formed by alternative splicing are called isoforms. Alternative splicing widely exists in non-
prokaryotes. It has been shown that alternative splicing is present in more than 95% of
multiple exon genes in the human genome (Wang et al., 2008). Alternative splicing makes
transcripts and proteins more complex and variable in function and structure, which is an
important regulatory mechanism for organisms. In addition, since various isoforms are
produced under specific conditions and tissues, it is possible to associate with the
corresponding tissues, time, or specific environment. Studies have shown that specific
alternative splicing is correlated with various diseases (Deonovic et al., 2017); thus, the
research on alternative splicing is greatly meaningful. Transcriptome sequencing is an
important technique for obtaining complete RNA sequences and is also the basis of many
transcriptome studies. Using the reads obtained by sequencing technology, many
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transcriptome studies can be performed, such as quantifying gene
expression levels, identifying alternative splicing sites, identifying
new transcripts, and quantifying isoform expression levels.
Therefore, obtaining high-quality complete transcripts has
become the basis of research in the transcriptome.

In recent years, third-generation sequencing technologies
represented by PacBio (Rhoads and Au, 2015; Gochez et al.,
2018; Kim et al., 2018) and Nanopore (Senol Cali et al., 2019)
have developed rapidly. Third-generation sequencing reads have the
characteristics of long fragment lengths and a high error rate. For
example, the initial average error rate and the fragment length of
PacBio long reads are approximately 15% and 1.5 kb (Quail et al.,
2012), respectively. With the continuous development of Nanopore
sequencing technology, the error rate and fragment length are also
constantly changing. For instance, the average fragment length of
Nanopore long reads can reach hundreds of kb, and the average
error rate has also been reduced from 15% of 1D to 13% of 2D and
5% of 1D2 technologies (Wang et al., 2021; Jain et al., 2022;
Svrzikapa and Boyanapalli, 2022; Gao et al., 2023; Kovaka et al.,
2023). The average length of full-length transcripts is approximately
1.5 kb. Therefore, some of the long reads can cover the full-length
transcripts without assembly, which reduces the problems and
challenges introduced by transcriptome assembly (Yuwen et al.,
2020). In addition, third-generation sequencing long reads can
better describe the different combinations of exons and introns
to achieve the purpose of identifying isoforms. Long reads have been
increasingly used in transcriptome research due to the development
of third-generation sequencing technologies and their significant
advantages.

At present, there have been many studies that perform
isoform annotation based on full-length transcripts obtained
by third-generation sequencing. For example, Thomas et al.
(2014) collected and purified RNA from chicken hearts and
sequenced the cDNA library using third-generation
sequencing technology. Afterward, Aken et al. (2016) mapped
the sequencing reads to the Ensembl annotation library and
found thousands of transcript isoforms. In this study,
hundreds of transcripts have been identified, which improved
the quality of the biological annotation library. However, it also
reflects the limitations of long reads, with over 90% of reads
covering only 42% of the annotation set. The high error rate of
the third-generation sequencing technique limits the accuracy of
long reads in transcriptome studies (Weirather et al., 2017),
especially for the accurate detection of exon boundaries and
the identification of isoforms with high similarity. Unlike
second-generation reads, where the error rate is within 1%
and the majority of errors are dominated by mismatches
(Xingyu et al., 2019), the randomness of sequencing errors in
traditional PacBio and Nanopore long reads (excluding HiFi and
CCS reads) consists of more indels than mismatches (Ye et al.,
2016), and their error rate is much higher than that of the former
techniques. Third-generation sequencing, such as traditional
PacBio and Nanopore, has not only brought unprecedented
opportunities for the acquisition of full-length transcripts but
also brought great challenges to downstream analysis, such as
sequence alignment, isoform detection, and intron–exon
boundary identification, increased the complexity of biological
computing, and affected the accuracy of analysis results.

Error correction of third-generation sequencing reads is
fundamental for improving the quality of transcriptome. At
present, there are three categories of methods for long-read error
correction, namely, biological error correction, hybrid error
correction, and self-error correction. Circular consensus
sequencing (CCS) is a biological error correction technology that
can reduce the error rate of PacBio reads (Travers et al., 2010). In
2019, the accuracy of CCS reads exceeded 99% (Wenger et al., 2019).
The hybrid error correction method utilizes short reads with low
production cost and high throughput to correct and compensate for
the third-generation sequencing long reads with low coverage and
high error rate. In recent years, several hybrid error correction tools
have been developed for third-generation sequencing reads, such as
LSCplus (Hu et al., 2016), proovread (Hackl et al., 2014), and
LoRDEC (Salmela and Rivals, 2014). The self-error correction
method is the most potential of the current three kinds of
methods that corrects long reads by finding the overlapping
relationship between them without any other additional data.

Although the existing self-error correction methods are all
designed for DNA sequencing data, these tools can also achieve
error correction effects on RNA sequencing data. For example,
FALCON (Chin et al., 2016), Canu (Koren et al., 2017), and
MECAT (Xiao et al., 2017) are three famous algorithms for self-
error correction and genome assembly with third-generation
sequencing reads. Among them, FALCON uses DALIGNER
(Myers, 2014) to align all the long reads with each other,
removes high-frequency k-mers during the alignment to reduce
the effect of repeating regions, and uses FALCON-sense to find
consensus sequences. This method simply neglects the high
repetition of the k-mers, which may lead to the loss of correct
overlapping information and reduce the accuracy of alignment. Due
to the repetitive feature of the gene, the number of matched k-mers
does not correspond to the length of the overlap and thus cannot be
used directly as selection criteria for higher quality, more reliable
matches. Local alignment is still required to screen many candidate
matches, which also significantly increases the computational cost of
error correction for the third generation of reads.

Canu constructs a similar read hash table at the alignment stage
and obtains the overlapping relationship of reads by computing the
shared k-mer, which employs a term frequency–inverse document
frequency (tf–idf) (Kim and Gil, 2019) algorithm to weight the
k-mers to reduce the impact of repeated k-mer matches. The
FALCON-sense approach is also used by Canu in the consensus-
finding step. However, Canu performs k-mer matching without
considering the order of k-mer alignment and relative position
relationships, so there are still many overmatches.

MECAT finds well-matched reads and best-matched base
positions through local alignment and uses a pseudo-linear
alignment scoring algorithm to filter out excessive alignment
sequences, which uses a distance difference factor (DDF) to score
matching k-mers in two steps. The score of the matched k-mer is
determined by DDF, which can represent the matching and distance
relationship between k-mers, thereby determining the alignment
score between reads. After filtering through the DDF score, the
candidate reads are reduced by 50%–70%, of which the quality is
high. MECAT combines FALCON-sense and DAGCon in the
consensus phase. For simple areas, MECAT uses a list voting
method to find consensus while using a construct graph method
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to find paths with the largest weight as the consensus sequence for
complex areas. Compared with other error correction methods,
DDF scores filtering, and alignment is 2–3 times faster. Therefore,
MECAT is also the fastest error correction tool available.

FLAS (Bao et al., 2019) is a self-error correction method
developed based on MECAT. Compared with MECAT, FLAS
mainly made two improvements. First, FLAS finds additional
matches based on MECAT alignment and removes false match
reads, which constructs a string graph of the MECAT match result
and uses the Bron–Kerbosch (David et al., 2010) algorithm to find
the largest clique in the graph. Second, FLAS uses the long reads that
have been modified to perform a second error correction on the
unmodified reads, thereby further improving the throughput of the
results. LoRMA (Salmela et al., 2017) constructs de Bruijn graphs
dynamically during the error correction process. Self-correction

represents the future development direction of third-generation
sequencing long read error correction. However, they are all
designed for DNA third-generation sequencing reads. Although
these methods can also be used to correct RNA long reads, there
are still some limitations.

Some studies have applied DNA self-correction methods to RNA
sequencing reads, and the following conclusions were obtained (Lima
et al., 2020): first, the DNA self-correction tool can be used for RNA
error correction, which can basically complete the improvement in the
base error correction metrics, maintain a certain throughput, and
improve the mapping rate of the corrected reads. Second, DNA self-
correction tools for correcting RNA readings may lose isomer diversity
and tend to bias the major isomers in the correction process. Based on
the limitations analysis of the aforementioned DNA self-error
correction methods, we proposed a new self-error correction

FIGURE 1
Pipeline of LCAT. Parallelogram represents the input data. Rectangles represent data processing steps. Diamonds represent judgments in the
direction of processing execution.

FIGURE 2
Schematic diagram of the sliding window strategy. The black arrow indicates the moving direction of the sliding window, and the framed part is the
alignment area whose identity is not greater than 0.5.
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FIGURE 3
Construction of the consensus table.

FIGURE 4
Determination of the left and right boundaries.

FIGURE 5
Base alignment type determination.
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algorithm based on MECAT, called LCAT, for the error correction of
transcripts obtained through third-generation sequencing. The
proposed method can effectively solve the problem of reducing the
diversity of isoforms in the process of error correction and is more
suitable for transcriptome data than other existing self-correction tools.

2 Materials and methods

LCAT is designed to preserve the structural characteristics
of transcriptome isoforms based on MECAT. Reads aligned

using MECAT assumes the same form of composition, but
transcripts under the same gene can be composed in multiple
ways. LCAT adopts the sliding window strategy to filter the
read areas with low similarity after the alignment step to ensure
that the areas aligned in the consensus stage come from the
same exons. LCAT consists of the following steps: read
alignment, base alignment, sliding window strategy,
determining base alignment type, read partitioning, and
consensus. The flow chart of LCAT is shown in Figure 1.
The detailed principle of LCAT is described in the following
sections.

FIGURE 6
Read area division and simple area correction. If the alignment type is DEL between the two MAT types, this interval is also a simple area. If there is a
non-MAT and non-DEL types between the two MAT types, the interval is a complex area.

FIGURE 7
Principle of consensus generation in DAGCon. The bold path in the graph is the maximum weight path, and it is also the path to generate the final
consensus sequence.
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2.1 Alignment and sliding window-based
strategies

2.1.1 Base alignment
After the template read is obtained and the candidate reads have been

mapped to the template read, LCAT will traverse template read and
candidate reads from the starting base. If the current traversed bases are
the same, the two bases at this point are aligned. If the current position of
the candidate read is different from the template read and the sequence of
the next position is the same, a mismatch error occurs at that base.
Otherwise, LCAT uses ’-’ to cross the base, which is called the insertion or
deletion error. Next, LCAT normalizes the results of the base alignment
by splitting the mismatch errors into insertion errors and deletion errors.
In this way, an accurate alignment result between the template read and
each candidate read canbe obtained. Figure 2 shows the results of the base
alignment. ‘A’ stands for the base, and “tstr” and “qstr” stand for the
results of the base alignment of the template and candidate reads,
respectively.

2.1.2 Sliding window strategy
In the sliding window strategy step, the alignment sequence

“qstr” of the candidate reads is first copied to a new sequence
“newqstr.” Each position of the template reads is traversed, as well as
the candidate reads in the alignment result, and the identity of the
current position is calculated. The formula for calculating the
identity is shown in formula (1).

identify � match base num

window length
, (1)

where “match_base_num” represents the number of matched bases
in the sliding window and “window_length” indicates the length of
the sliding window. When the identity is less than the identity
threshold, this position in ‘newqstr’ is replaced with the character
“N,” which is a potential anomaly. In the LCAT tool, the user can
manually set the length of the sliding window and identity threshold.

Figure 2 shows an example of the sliding window strategy for
processing base alignment results. In this example, the identity
threshold is set to 0.5, the sliding window length is set to 5, and
the red rectangle is the area of potential anomalies.

2.2 Determining base alignment type

2.2.1 Construction of the consensus table
During the process of constructing the consensus table, LCAT adds

new statistics to the number of skips and improves the construction
process of the consensus table. According to the base alignment result
between each candidate read and the template read, a sequence consensus
table of each template read is obtained. Figure 3 shows the consensus table
construction process of the template read “tstr” and one of its candidate
read “qstr.” According to the alignment, the current match type at each
position, whether the four numbers (match, insert, delete, and skip) need
to be increased, and the base of this position are determined.

Figure 3 shows that a “normal” consensus table construction
process is performed based on the template read “tstr” and the
candidate read “qstr” to obtain a consensus table. According to the
template read “tstr” and the new candidate read “newqstr” processed
by the sliding window strategy, the construction process of the
“modify” consensus table is determined, and the consensus table
“new_table” is obtained.

2.2.2 Determination of the left and right boundaries
After traversing all candidate reads to obtain complete

consensus tables of template reads, LCAT calculates the left and
right boundaries of each template read. LCAT obtains the left and
right boundaries by filtering the area where the coverage of the
position is lower than the minimum coverage threshold. The
filtering condition is shown in formula (2).

match + insert + skip≥min coverage, (2)

TABLE 1 Details of raw reads.

Type Mouse Zebra finch Calypte anna Human

data_id ERR2401483 zebra_subreads anna_subreads NA12878

Technology Nanopore PacBio PacBio Nanopore

read_number 740,776 4,812,464 4,144,838 15,152,101

base_number 1,353,969,728 14,168,047,486 11,993,639,660 13,938,188,440

mean_size (bp) 2,011 2,944 2,893.6 932.9

minmum_size (bp) 76 50 50 48

maxmum_size (bp) 98,376 59,135 2,934 16,110

read_map_ratio 86.80% 95.22% 94.35% 97.46%

base_map_ratio 90.95% 86.41% 83.72% 83.49%

error_rate 13.81% 13.36% 12.56% 15.00%

mismatch_rate 3.96% 3.77% 3.31% 4.49%

insert_rate 1.87% 5.91% 5.49% 4.65%

delete_rate 7.99% 3.68% 3.77% 5.86%
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where “match” represents the number of matched bases, “insert”
represents the number of inserted bases, “skip” indicates the number
of skipped bases, and “min_coverage” indicates the minimum coverage.
Unlike the boundary filtering condition ofMECAT, LCAT increases the
statistics of the skip number and regards the sum of insertion, match,
and skip numbers at a position as the coverage number of that position.
Only when the number of base coverage is not less than the minimum
coverage, consensus error correction can be taken for this base. The
results of determining the left and right boundaries are shown in
Figure 4. In the figure, the minimum coverage is set to 4, and the areas
within the dotted lines are the effective areas for final error correction.

2.2.3 Determining base alignment type
When determining the base alignment type at each position of

the template read, LCAT first judges whether the character “N” to be
replaced in the sliding window strategy should be retained. LCAT
judges whether the regions with a non-zero amount of skip in the
consensus table are regions with different structures. Here, LCAT
uses the coverage to determine whether to retain “N.” If the number
of skips at this position is greater than the total coverage * scov, then
this position is a region where the structure appears different, i.e., the
alignment regions are different exons. For such areas, LCAT uses
“new_table” generated by “newqstr” in the step of constructing the
consensus table to determine the base alignment type of this
position, as shown in Case 1 in Figure 5. Otherwise, LCAT uses
“table” generated by “qstr” in the step of constructing the consensus

table to determine the base alignment type of this position, as shown
in Case 2 in Figure 5; scov is a coefficient used to judge whether
different structures appear in the area, and the user can set it in
LCAT. Then, LCAT determines the base alignment type of each
position.

There are four types of base alignment: match (MAT), insert
(INS), delete (DEL), and undefined (UNDEFINE). In the match-
type prefix, “M” represents that different regions of the structure
appear, while “N” represents that no different regions of the
structure appear. The specific judgment conditions are shown in
Figure 5. In the figure, scov takes the default value of 0.1.

2.3 Read area classification and consensus

2.3.1 Distinguishing the simple and complex areas
After obtaining the base alignment type of the template read,

LCAT divides the read into the simple and complex areas
according to the distribution of the alignment type. The
simple area is the area in which the alignment type is MAT. If
the alignment type is DEL between the two MAT types, this
interval is also a simple area. If there is a non-MAT and non-DEL
types between the two MAT types, the interval is a complex area.
The read area classification process is shown in Figure 6.
Different consensus algorithms are used to correct errors
according to different regions.

2.3.2 Error correction for reads in the simple area
LCAT uses FALCON-sense algorithm to get consensus for

simple area reads. The position of the alignment-type MAT is
still the base of the position after error correction. If the position
with the alignment-type DEL is in a non-complex area, LCAT will
delete the base of this position, as shown in Figure 6. The FALCON-
sense algorithm counts different types of bases. The speed of
FALCON-sense is faster, while the accuracy is not high, which is
suitable for simple area error correction.

2.3.3 Error correction for reads in the complex area
When correcting errors in a complex area, LCAT first judges

whether the area is a structural change area. The judgment is based
on whether the character “N” appears in the base alignment
sequence. If it appears, there are different exon structures in the

TABLE 2 Reference genome and annotation files for four species.

Type Reference genome/annotation file

Mouse Mus_musculus.GRCm38.dna.primary_assembly.fa

Mus_musculus.GRCm38.87.gtf

Zebra finch Taeniopygia_guttata.bTaeGut1_v1.p.dna.toplevel.fa

Taeniopygia_guttata.bTaeGut1_v1.p.99.gtf

Calypte anna GCF_000699085.1_ASM69908v1_genomic.fna.fa

GCF_000699085.1_ASM69908v1_genomic.gtf

Human Homo_sapiens.GRCh38.dna.primary_assembly.fa

Homo_sapiens.GRCh38.94.gtf

TABLE 3 Throughput and size of reads after error correction.

Type Tool #read %read (%) #base %bases (%) Min/max/mean

Anna MECAT 2,419,884 58.383 8,677,586,239 72.352 102/17,276/3,585

LCAT 2,419,889 58.383 8,753,708,454 72.986 101/17,415/3,617

Zebra MECAT 2,776,414 57.692 10,093,872,145 71.244 100/22,106/3,636

LCAT 2,776,418 57.692 10,186,678,335 71.899 100/22,158/3,669

Human MECAT 3,946,295 26.045 4,927,016,110 35.349 100/9,542/1,249

LCAT 3,946,366 26.045 4,953,096,049 35.536 100/9,623/1,255

Mouse MECAT 459,601 62.043 960,574,963 64.482 100/8,510/2,090

LCAT 460,168 62.120 964,718,126 64.760 100/8,564/2,096
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region. LCAT deletes the edge containing “N” and calculates
consensus based on the constructing graph. On the contrary, if
the character “N” does not appear in the base alignment sequence,
LCAT uses the graph method to get consensus directly.

LCAT adopts DAGCon to get consensus, as shown in
Figure 7. DAGCon traverses the candidate reads of complex
regions, continuously adds paths to the graph, and selects the
path with the largest edge weight as the final consensus sequence.
Due to the need for constructing the graph, DAGCon algorithm
is slower but has a higher accuracy, which is suitable for complex
areas. Usually, the length of the complex area is small, i.e., less
than 10 bp, so this step is not time-consuming. The time
consumption is much less than using all reads to construct the
graph and get the consensus.

2.3.4 Merging error correction results
LCAT combines the consensus results of the simple and

complex areas to obtain the final error correction result of the
template read.

2.3.5 Implementation of the LCAT algorithm
LCAT software is implemented in C++ for the Linux platform.

The input of LCAT is the initial long reads, and the output is the
error correction results. LCAT is freely accessible at https://github.
com/Xingyu-Liao/LCAT.

3 Evaluation

3.1 Experimental design

To evaluate the error correction performance of LCAT on
third-generation sequencing reads of the transcriptome, we ran
LCAT and MECAT on four datasets of long reads from species:
Mouse, Zebra finch, Calypte anna, and Human. In addition, we
compared and analyzed the performance of LCAT and MECAT
from two perspectives: basic read properties and transcriptome
properties.

3.2 Datasets and performance
measurements

3.2.1 Datasets
The long reads ofMouse, Zebra finch, Calypte anna, andHuman

were used in our experiments. The mouse and human data are
sequenced by Nanopore technology, while zebra finch and Calypte
anna are sequenced by PacBio technology. Datasets can be
downloaded from the NCBI SRA database (https://www.ncbi.nlm.
nih.gov/sra/), GitHub (https://github.com/nanopore-wgs-
consortium/NA12878/blob/master), and PacBio sequencing
platform. Table 1 shows the basic characteristics of the four

TABLE 4 Number of unmapped reads and error rates after error correction.

Type Tool #umr %umr (%) #umb %umb (%) %err (%) %mis (%) %ins (%) %del (%)

Anna MECAT 1,075 0.044 497,881,319 5.738 1.220 0.278 0.303 0.639

LCAT 1,106 0.046 519,338,138 5.933 1.230 0.304 0.304 0.622

Zebra MECAT 7,038 0.253 284,406,970 2.818 2.049 0.898 0.331 0.820

LCAT 7,175 0.258 287,569,929 2.823 2.102 1.032 0.301 0.769

Human MECAT 32,407 0.821 161,109,780 3.270 2.695 0.207 0.119 2.369

LCAT 32,423 0.822 162,907,329 3.289 2.701 0.341 0.072 2.288

Mouse MECAT 108 0.023 27,537,416 2.867 4.398 0.214 0.081 4.103

LCAT 108 0.023 28,082,945 2.911 4.416 0.275 0.041 4.100

TABLE 5 Number of genes in different isoforms after error correction.

Type Tool -(3) -(2) -(1) (0) +(1) +(2) +(3) Sum

Anna MECAT 12 34 234 9103 5 0 0 9,388

LCAT 8 28 207 9153 5 0 0 9,401

Zebra MECAT 94 303 1,565 8747 39 1 0 10,749

LCAT 74 263 1,401 8980 48 1 0 10,767

Human MECAT 4891 1866 2,331 3400 29 1 1 12,519

LCAT 4334 1920 2,517 3821 43 0 0 12,635

Mouse MECAT 1,391 1602 2,779 4511 103 2 0 10,388

LCAT 1,105 1486 2,788 4889 131 11 0 10,410
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datasets, including species, read size, sequencing technology, base
size, length, read/base mapping rates, and error rates. In addition,
the corresponding reference genomes and annotation files were

downloaded from the NCBI (https://www.ncbi.nlm.nih.gov/) and
Ensembl websites (ftp://ftp.ensembl.org/pub/). The version number
of genomes and the annotation files are shown in Table 2.

FIGURE 8
Transcription loss under different relative coverages after correction. Subgraphs (A–D) show the number of genes that have undergone isoform
species of four species changes after correction using MECAT and LCAT, respectively.
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FIGURE 9
Proportion of transcription loss under different relative coverages to the total number of transcripts with this relative coverage after correction.
Subgraphs (A–D) show the proportion of transcription loss of four species under different relative coverages to the total number of transcripts with this
relative coverage after correction using MECAT and LCAT, respectively.
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3.2.2 Performance measurements
We aligned the corrected long reads and raw reads to the

corresponding reference genomes to assess their quality. The
aligner Minimap2 was used for these alignments because it is a
typical aligner for transcriptome sequences with fast speed and
relatively high sensitivity.

We made a comparative analysis from two perspectives of
basic read properties and transcriptome properties using the
LR_EC_analyser (Myers, 2014). Basic read properties include
the following measurements: 1) #read is the number of
corrected reads, and %read is the number of reads over the
total number of raw long reads. #base is the number of corrected
bases, and %bases is the number of bases over the total number
of raw long bases; 2) max size is the maximum read size, min size
is the minimum read size, and the mean size is the average size
of reads; 3) #umr is the number of unmapped reads, and%umr is
the number of unmapped reads over the total number of
outputted reads. #umb is the number of unmapped bases,
and %umb is the number of unmapped bases over the total
number of outputted bases; 4) error rate is the number of non-
matches bases over the number of corrected bases, and
mismatch rate, delete rate, and insert rate are the number of
mismatch bases, delete bases, and insert bases over the total
number of outputted bases, respectively.

Transcriptome properties include the following
measurements: 1) we measured the number of genes with
reduced, unchanged, and increased number of isoforms to
assess the ability of the correction tool to retain isoforms.
There are multiple isoforms under the same gene. The
smaller the number of genes whose isoform type decreases,
the greater the number of genes that remain unchanged and
increase after error correction, indicating that the error
correction tool has a strong ability to retain isoforms; 2) we
counted the loss of transcripts with different relative coverages
in the raw reads after error correction to reflect the ability of the
error correction tool to retain the isoforms and explained that
the error correction tool is biased toward transcripts of
different expression levels. A detailed instruction for using
the LCAT, as well as the tools, and corresponding
commands used during the evaluation is found in
Supplementary Sections S1, S2.

4 Results

4.1 Results of basic read properties

The throughput information after correcting four species is
listed in Table 3. For the four datasets, LCAT retained slightly
more reads than the MECAT reads or keeps them consistent. The
ratio of reads corrected by LCAT to the raw reads is also higher than
that corrected by MECAT. In terms of the number and proportion
of bases after error correction, LCAT performed better thanMECAT
in the four species. Both MECAT and LCAT specify the minimum
output size of the read in the tool. In this experiment, we set the
minimum output size to 100, which is also close to theminimum size
of the raw read. The maximum and average size of the reads
corrected by LCAT is higher than MECAT. LCAT adopts the
read alignment algorithm mecat2pw, which is also used in
MECAT, so that the template and candidate reads produced by
the two tools are consistent. However, LCAT determines the left and
right boundaries by calculating the sum of matching, insertion, and
skip and judging whether the sum is greater than the minimum
coverage. MECAT does not generate skip types in this process.

Table 4 shows the unmapped and error rates of reads corrected
by LCAT and MECAT. In the mouse dataset, the mapping rate of
LCAT is slightly higher than that of MECAT. In the other three
datasets, the mapping rate of reads corrected by LCAT is slightly
lower than that of MECAT. The unmapped rate of the four species
data after using LCAT error correction is higher than that of
MECAT. The deletion error of the reads after error correction is
the main error type of the reads. After using LCAT, the read error
rate is slightly higher than that of MECAT. Among the three types of
errors, LCAT retains more mismatch errors relative to MECAT,
while insert and delete error types have a lower proportion than
those in MECAT. LCAT is improved based on MECAT, which can
achieve the purpose of correcting RNA long reads and has improved
data throughput and read length.

4.2 Results of transcriptome properties

We used evaluation tools such as AlignQC (Jain et al., 2022) and
LR_EC_analyser (Myers, 2014), as well as the additional gene

TABLE 6 Loss of transcripts with different relative coverages after error correction.

Type Tool 0.1 0.2 0.3 0.4 .0.5 0.6 0.7 0.8 0.9 1.0

Anna MECAT 299 28 6 7 2 3 2 2 2 0

LCAT 248 24 5 6 1 3 1 2 2 1

Zebra MECAT 1,888 322 124 66 37 33 14 17 15 8

LCAT 1,648 280 110 54 38 31 13 17 15 8

Human MECAT 28,436 2,119 723 269 130 94 33 14 17 13

LCAT 25,392 1,978 686 267 118 87 32 13 16 17

Mouse MECAT 8,238 2,240 706 229 119 92 27 16 21 14

LCAT 7,310 1,967 620 198 110 88 29 14 22 11
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annotation file to count the degree of loss of isoform diversity.
Table 5 and Figure 8 show the number of genes that have undergone
isoform species of four species changes after correction using
MECAT and LCAT. The number of isoform changes is the
difference between the number of isoforms under each gene in
the raw reads and the corrected reads. After error correction using
LCAT, the number of genes with reduced isoform species was
significantly less than MECAT, while the number of genes with
increased isoform species was slightly more than MECAT, and the
number of genes with unchanged isoform species under the gene
was also significantly more than MECAT. This shows that LCAT
can better preserve the diversity of isoforms in genes. We also
analyzed the degree of expression of the lost read isoform in the raw
read after the error correction tool corrected the error. The relative
coverage of transcripts refers to the ratio of the number of the same
type of isoforms mapped to the raw read to the number of all
transcripts on the gene of this isoform, as shown in Formula (3).

relative _ coverage � isoform _ num
transcript _ num

, (3)

where “relative_coverage” represents the value of relative coverage,
“isform_num” represents the number of isoforms, and “transcript_
num” indicates the number of transcripts. The low relative coverage rate
indicates that the expression level of the transcript in the gene is low and
vice versa. Table 6 shows the number of transcripts with different
relative coverages lost after error correction. The loss refers to the
number of transcripts lost after error correction at this relative coverage.
Transcripts with low relative coverage have a large number of losses
after error correction. This phenomenon is applicable to both LCAT
andMECAT. In addition, transcript loss corrected by LCAT is less than
MECAT, especially in low relative coverage transcripts.

Figure 9 shows the proportion of transcripts lost under different
relative coverages to the total number of transcripts with this relative
coverage. During the error correction process, the reads tend to filter
the low expression isoforms, and the transcripts corrected tend to be
the main isoforms. The LCAT method loses fewer transcripts than
MECAT under each relative coverage, and the total number of
discarded isoforms is less than MECAT. LCAT is more capable of
retaining isoforms than MECAT.

5 Conclusion

This study introduces LCAT, a wrapper long-read error
correction algorithm for transcriptome sequencing data, to
reduce the loss of isoform diversity while keeping MECAT’s
error correction performance. LCAT uses the sliding window
strategy to filter low identity rate regions with a certain coverage
in the alignment step. According to the different categories of the
candidate-read areas, the consensus reads are obtained. As a result,
LCAT not only improves the quality of reads but also retains the
diversity of isoforms, which is more suitable for the error correction
of RNA sequencing data. In the future, we will expand this work in

the following two directions: 1) the sliding window strategy is
combined with other self-correcting algorithms to improve the
throughput and accuracy of reads after error correction; 2) the
error correction and assembly algorithms are combined to increase
the read length and construct more full-length transcripts.
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