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Pancreatic Ductal Adenocarcinoma (PDAC) is a very lethal disease that typically
presents at an advanced stage and is non-compliant withmost treatments. Recent
technologies have helped delineate associated molecular subtypes and genetic
variations yielding important insights into the pathophysiology of this disease and
having implications for the identification of new therapeutic targets. Drug
repurposing has been evaluated as a new paradigm in oncology to accelerate
the application of approved or failed target-specific molecules for the treatment
of cancer patients. This review focuses on the impact of molecular subtypes on
key genomic alterations in PDAC, and the progress made thus far. Importantly,
these alterations are discussed in light of the potential role of drug repurposing
in PDAC.
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1 Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is the most common form of pancreatic
cancer accounting for more than 90% of all pancreatic malignancies (Kleeff et al., 2016). This
aggressive cancer, with a 5-year survival rate of about 12%, is one of the leading causes of
cancer-related deaths worldwide (Siegel et al., 2022). It is predicted to be the second most
common cause of cancer-related death in the United States by 2030 (Rahib et al., 2014). In
low-to-middle-income countries such as South Africa, it is currently the seventh leading
cause of cancer-related death (Statistics South Africa, 2023). Surgery remains the best
treatment strategy. In recent years, there have been significant technological advancements
which have led to elucidating key molecular mechanisms involved in the progression of
PDAC. Several omics analyses such as genomics, transcriptomics, and metabolomics have
been used to demonstrate the heterogeneity of PDAC between different tumours (inter-
tumour) and within the same tumour (intra-tumour) (Cros et al., 2018; Elebo et al., 2021;
Gutiérrez et al., 2021). The genetic landscape of pancreatic cancer explores the intricate
genetic alterations that drive the initiation, progression and metastasis of pancreatic cancer.
Examples include mutations in key genes such as KRAS, SMAD4, P53, and CDKN2A
observed in pancreatic cancer (Falasca et al., 2016). In this era of precision medicine, these
identified mechanisms can be exploited for diagnosis, treatment and management
(Halbrooks et al, 2023). These emerging therapeutic approaches offer a glimpse into the
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discovery and development of novel effective drugs that could
emerge from our improved understanding of the molecular
subtypes and genetic landscape (Elebo et al., 2020; Nsingwane
et al., 2020; Wang et al., 2021a). However, unlike other solid
tumours, pancreatic cancer continues to show resistance to some
of these novel therapies. This characteristic together with the lengthy
and expensive process of the development of new drugs impedes the
closing of the gap observed between our intricate understanding of
the molecular and genetic landscape of PDAC and clinical benefit to
patients. To leverage this understanding, consideration should be
given to repurposing other well-known drugs for the treatment of
the disease.

Hence this mini-review delves into the current knowledge
regarding the molecular subtypes and genetic landscape of
pancreatic cancer and their clinical impact. Then, we discuss
some drugs that have been demonstrated to have potential
clinical impact when repurposed for PDAC treatment
highlighting recently completed and some ongoing clinical trials.
Ultimately, we highlight the challenges of repurposing drugs for
PDAC treatment and the opportunities for overcoming them.

2 Molecular subtypes of PDAC

Several studies have stratified patients into distinct subtypes using
cutting-edge techniques such as single-cell analyses (Pompella et al.,
2020) (Table 1). For example, Collision et al. classified PDAC into three
subtypes, namely, quasi-mesenchymal subtype which is the most
aggressive, exocrine-like subtype, and the classical subtype with the
best prognosis of all three (Collisson et al., 2011). They employed
microarray gene expression for human and cell line models to pinpoint
the genetic signature underlying each subtype. Bailey et al. (2016)
identified four subtypes of PDAC (pancreatic progenitor, squamous,
aberrantly differentiated endocrine exocrine (ADEX), and
immunogenic) according to an integrated genomic analysis of
456 pancreatic cancer patients using a combination of whole
genome, deep exome sequencing, and transcriptional profile.
Another study used non-negative matrix factorisation to perform
virtual microdissection of microarray results for PDAC
categorization in two tumour-specific groups: classical and basal-like
(Moffitt et al., 2015). Similarly, using integratedmulti-omics profiling of

150 PDAC specimens two subtypes were identified as basal-like
squamous and classical/pancreatic progenitors (Raphael et al., 2017).
Most recently Chan-Seng-Yue and colleagues used a combination of
whole genome and transcriptome sequencing as well as single-cell
sequencing to classify the tumours into Basal-like A and B, hybrid, and
classical A and B subtypes (Chan-Seng-Yue et al., 2020).

The classical subtype is characterized by high expression of
adhesion-associated and epithelial genes such as GATA binding
protein 6 (GATA6), KRAS, and SMAD4 in addition to KRAS G12V
high mutational level (Collisson et al., 2011; Moffitt et al., 2015).
Progenitor is similar to the classical subtype and defined by
expressing genes associated with early tumour development like
steroid hormone biosynthesis, fatty acid oxidation, drug
metabolism, and O-linked glycosylation of mucins (Bailey et al.,
2016). The squamous subtype is characterized by inflammation,
hypoxia, TGF-β signalling, metabolic reprogramming, and
activation of the MYC pathway which are linked to poor
outcomes (Bailey et al., 2016). The pancreatic squamous basal-
like tumours were shown to be associated with mutations in
TP53 that are essential in driving epithelial to mesenchymal
transition (EMT) promoting metastasis (Raphael et al., 2017).

3 Clinical impact of molecular subtypes

Recent studies have demonstrated that different subtypes can
impact on clinical outcomes of pancreatic patients (Dreyer et al.,
2022). PDAC patients with the classical subtype were shown to have
a better prognosis than those with the quasi-mesenchymal subtype
after resection which could be due to the elevated expression of
mesenchyme-associated genes and decreased GATA6 levels in the
latter (Collisson et al., 2011). Pancreatic cancer development has
been associated with the overexpression of GATA6 (Fu et al., 2008).
Subtype-associated with long intergenic non-coding RNA
(lincRNAs) may be vital in predicting the overall survival rate in
PDAC via the subtype-specific selection burden on GATA6 (Glaß
et al., 2020). Additionally, GATA6 could be used as a marker of
response to chemotherapy because it regulates EMT and tumour
dissemination (Martinelli et al., 2017; Deng et al., 2020).

The relationship between KRAS dependence and subtypes was
assessed using RNA interference (RNAi) to probe KRAS-mutant

TABLE 1 Impact of the classification of tumour subtypes in the genetic events of PDAC.

Subtypes Impact of Genomic Mutations

Basal-like • Complete loss of CDKN2A Chan-Seng-Yue et al. (2020).

• Elevated frequency of TP53 mutations Raphael et al. (2017).

• KRAS mutation is stage-dependent: Metastatic basal-like tumours are enriched with KRAS mutants Chan-Seng-Yue et al. (2020).

• SMAD4 gene alterations: SMAD4 gene is a key player in TGF-β signalling which is elevated in basal-like tumours.

Squamous • Major KRAS imbalances at the late stage of PDAC Chan-Seng-Yue et al. (2020).

Classical • Elevated frequency of complete loss of SMAD4 Bailey et al. (2016), Chan-Seng-Yue et al. (2020).

• GATA6 amplification Collisson et al. (2011).

ADEX • Upregulation of genes involved in KRAS activation Bailey et al. (2016).

Immunogenic • Elevated levels of genes associated with B and T immune cell populations Maurer et al. (2019), Zhou et al. (2021).
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human PDAC cell lines and it showed classical subtypes are more
dependent on KRAS than quasi-mesenchymal (Collisson et al.,
2011). This suggests that KRAS-directed therapy could be vital in
the classical PDAC subtype. The response of PDAC to
chemotherapy is influenced by their subtypes; quasi-
mesenchymal was shown to be more sensitive to gemcitabine
while erlotinib was more effective in classical PDAC cell lines
(Torres and Grippo, 2018).

ADEX subgroup identification is vital in the later stages of
pancreatic development and differentiation via the upregulation
of genes that regulate networks, such as NR5A2 involved in KRAS
activation (Bailey et al., 2016; von Figura et al., 2014). The progenitor
subtype is associated with IPMN and better survival than other
subtypes (Bailey et al., 2016) while the squamous subtypes were
significantly associated with poorer survival than ADEX and
immunogenic subtypes (Hong et al., 2021). Furthermore, the
immunogenic subtype is associated with immune cell infiltrates
and cellular programs such as antigen presentation, B cell signalling
pathway, CD4 and CD8 T-cells (Rooney et al., 2015; Bailey et al.,
2016).

4 Key genomic aberrations in PDAC

4.1 Kirsten rat sarcoma viral oncogene
homolog (KRAS)

KRAS pathway has been one of the most characterised pathways
in PDAC. Genetic approaches have demonstrated that KRAS
mutations occur in over 95% of PDAC tumours (Dreyer et al.,
2017). A high mutational level of the KRAS gene in PDAC has been
linked to disease initiation, growth, and progression (Buscail et al.,
2020). They are deactivated when they bind to GDP and activated
when GTP is attached. ActivatedKRAS initiates RAS kinase which in
turn genetically dysregulates multiple pathways in PDAC that could
serve as potential therapeutic targets. Until recently, KRAS has been
tagged undruggable because it lacks a binding site for a competitive
inhibitor (Gillson et al., 2020). Recently, AMG 510 has been
developed as a drug used to maintain a high level of inactive
KRAS by binding to only reactive mutant KRASG12C (Canon
et al., 2019). Phase I/II clinical trials involving 533 patients with
KRASG12C mutations from various cancers were carried out to
investigate the efficacy of AMG510 as monotherapy or in
combination with anti-PD-1 immune checkpoint blockers
showed that 56% partial response and 46% stable disease
(Govindan et al., 2019). About 60% of KRAS wild types have
altered activation of the RAS-MAPK pathway, hence highlighting
the importance of this pathway in therapy development (Martinelli
et al., 2017). A drug called Compound 11 can disrupt KRAS
interaction with Raf effector, inhibiting the MAPK growth
pathway (McCarthy et al., 2019) which could be a potential
therapy for PDAC. Another compound, MRTX849 was used in
phase I clinical trials in patients with advanced cancers, and results
demonstrated a high percentage of partial response (Hallin et al.,
2020). Most recently, KRAS G12D inhibitor MRTX1133 have been
shown to inhibit oncogenic KRAS signalling and reduce tumour
growth via the inactivation of ERK pathway (Mao et al., 2022; Wang
et al., 2022).

4.2 Tumour protein 53 (TP53)

TP53 mutations occur in over 70% of PDAC initiating the
activation of KRAS mutation and are usually associated with
poor outcomes (Masetti et al., 2018; Liu et al., 2021). They result
in the loss of both DNA binding ability and gene transcription
activation (Kern et al., 1992). TP53 is mutated and not deleted in
most cancers which is achieved by p21 gene activation promoting
growth arrest (Morton et al., 2010). It also increases the expression
of cyclin-dependent kinase inhibitor (CDKN1A) which inhibits cell
cycle progression (Cicenas et al., 2017). Class 1 and 2 histones
deacetylases (HDAC1/HDAC2) which have been linked to
metastasis and treatment resistance in PDAC also promote the
expression of P53 in PDAC. Thus, a combined approach
targeting the inhibition of HDAC1 and HDAC2 could be vital in
the development of therapy (Stojanovic et al., 2017). The depletion
of HDAC2 has been proven to induce apoptosis of pancreatic cancer
cell lines (Schüler et al., 2010). Circulating TP53 has been linked to
poor survival in PDAC patients treated with FOLFIRINOX (van der
Sijde et al., 2021). A Phase II clinical trial (NCT02340117) study of
combined targeted P53 gene therapy (SGT-53) with Gemcitabine/
Nab-Paclitaxel for the treatment of metastatic pancreatic cancer is
currently ongoing (Leung et al., 2021).

4.3 Cyclin-dependent kinase 2A (CDKN2A)

CDKN2A is a gene located at chromosome 9 which encodes
proteins that control cell proliferation and their mutation increases
the risk of pancreatic cancer (Hu et al., 2018). Germline CDKN2A
variants are present in over 3% of pancreatic tumours which
demonstrates their importance in carcinogenesis (Kimura et al.,
2021). The inactivation of CDKN2A is mediated by the methylation
of its promoter region. CDKN2A encodes two proteins; p14 and
p16 which are responsible for cell cycle arrest, DNA repair
constraints cyclin-dependent kinase 6 (CDK6) and cyclin-dependent
kinase 4 (CDK4) which triggers the activation blocks G1 to S phase
(Knudsen et al., 2016). Alterations of CDKN2A induce cyclin-
dependent kinase 4 and 6 (CDK4/6) activity and lead to cell
proliferation (Kimura et al., 2021). Consequently, inhibition of
CDK4/6 could be a potential target in anti-tumour therapy in
PDAC patients. Clinical studies targeting CDK4/6 inhibition in
PDAC patients with CDKN2A loss or mutation (Clinical trials:
NCT02501902, NCT02897375) have been demonstrated to be
crucial in PDAC therapy (Al Baghdadi et al., 2019; Hidalgo et al., 2020).

4.4 Mothers against decapentaplegic
homolog 4 (SMAD4)

SMAD4 is a tumour suppressor protein also known as DPC4
(deleted in pancreatic cancer 4). SMAD4 mutations occur in over
50% of PDAC cases promoting invasion, metastasis and poor
prognosis via the inhibition of TGF-β signalling pathways by
affecting cell arrest, apoptosis, invasion and metastasis (Huang
et al., 2020). The correlation between SMAD4 gene inactivation
with survival time suggests a poor prognosis in PDAC
(Blackford et al., 2009; Singh et al., 2012). Resistance to PDAC
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treatment has been associated with SMAD4 loss limiting the
vulnerability of pancreatic cancer cells to complex I inhibition via
the promotion of mitophagy (Ezrova et al., 2021). Genomic and
transcriptomic profiling analyses demonstrated that classical and
progenitor subtypes are enriched with SMAD4mutations compared
to other subtypes (Chan-Seng-Yue et al., 2020).

5 Repurposing drugs in PDAC
treatment

Drug repurposing also known as drug redirection and
therapeutic switching involves the process of identifying new
therapeutic use for old or existing drugs. It provides a solution to
the time-consuming, laborious, expensive, and high-risk process of
traditional drug discovery (Pushpakom et al., 2019; Nweke et al.,
2021). These drugs can target single or multiple aberrations in
targets or pathways which may in turn circumvent resistance
(Sarmento-Ribeiro et al., 2019) (Figure 1; Table 2).

5.1 Aspirin

Notably, drugs such as aspirin, a non-steroidal anti-inflammatory
(NSAID) medication have been shown to have anti-neoplastic effects
because of their ability to inhibit the prostaglandins precursors, COX-1
and COX-2 enzymes that regulate inflammatory processes (Sleire et al.,
2017). Acetylation of aspirin inhibits activation of the transcription

factor NF-κB that regulates the expression of genes involved in
apoptosis and metastasis (Sleire et al., 2017). Risch and colleagues
demonstrated an inverse relationship between the use of Aspirin and
the risk of pancreatic cancer in a Chinese cohort (Risch et al., 2017).
Zhang’s team demonstrated the anticancer effects of Aspirin on PDAC
cell lines. This study recorded the multifunction of Aspirin to alter the
expression of reprogramming factors, increase the efficacy of
gemcitabine, inhibit tumour growth, and reduce the production of
extracellular matrix components such as collagen and fibronectin
(Zhang et al., 2015). Aspirin can inhibit neuraminidase-1 (Neu-1)
which regulates the activation of toll-like receptors, several receptor
tyrosine kinases, and their signalling pathways (Haxho et al., 2016).
Targeting Neu-1 by using repurposed drugs could be of potential for
inhibiting proliferation and tumorigenesis in PDAC (Qorri et al., 2022).
Recent studies showed that a combination of Aspirin, Oseltamivir
Phosphate and Gemcitabine could promote the inhibition of
survival pathways required for progression in Pancreatic cancer cell
lines (Qorri et al., 2020).

5.2 Metformin

This is an oral biguanide used to treat diabetes but is associated
with decreased overall cancer incidence (Gandini et al., 2014). The
anti-neoplastic effect of metformin could be due to the inhibition of
mTOR and ROS (Candido et al., 2018). It is also associated with
DNA damage and activation of AMPK (Algire et al., 2012).
Metformin has been demonstrated to have an antitumour effect

FIGURE 1
Drug Repurposing Therapy in Pancreatic Ductal Adenocarcinoma Targeting Genomic Alterations and Molecular Subtypes. The Tumor
microenvironment of PDAC is complex and heterogeneous. Several molecular subtypes such as classical, basal-like, squamous, immunogenic and ADEX
have been identified thus far with diverse molecular perturbations. Repurposed drugs such as hydroxychloroquine, chloroquine, Nitroxoline,
Perbendazole, Nitraparib, and Rucaparib are used in targeting genomic mutations in PDAC.
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TABLE 2 Some repurposed drug for PDAC treatment.

Drug Original Indication New Indication Preclinical/Clinical Studies

Cucurmin Colouring agent in food Curcumin has been shown to modulate various
pathways which are dysregulated in PDAC,
they have an anticancer effect either as a single
agent or in combination with other
chemotherapy drugs Hosseini et al. (2017).

A phase I/II gemcitabine-based chemotherapy
in combination with curcumin for treating
Pancreatic cancer patients showed that the
drug is well tolerable with increased efficacy
Kanai et al. (2011).

Antiproliferative effect by induction of
apoptosis and inhibition of both angiogenesis
and oxidative stress Bimonte et al. (2016),
Nagaraju et al. (2019).

Genistein Phytoestrogen is used in the dietary
management of skin health Irrera et al. (2017).

Exerts antitumour activity in pancreatic cancer
cells via regulation of STAT3, cell cycle arrest,
and ROS-mediated apoptosis Bi et al. (2018).

Both in vivo and in vitro studies showed that a
combination of 5- Fluorouracil and genistein
have more antitumour effects on human
pancreatic cancer cells than when compared
with either 5- Fluorouracil or genistein alone
Suzuki et al. (2014).

Phase I clinical trial of AXP107-11, a crystalline
component form of genistein in combination
with gemcitabine for unresectable pancreatic
cancer patients showed that 44% of the patients
survived longer than 6 months and 19% were
alive after one year Löhr et al. (2016).

Spironolactone Treatment of hypertension and heart failure
Kosmas et al. (2018).

Inhibits DNA repair and acts as a
chemosensitizer in combination with DNA-
damaging reagents such as cisplatin Gold et al.
(2019).

Decreases resistance to Gemcitabine and
Osimertinib in pancreatic cancer cell lines
Sanomachi et al. (2019).

Reducing survivin expression which is an anti-
apoptotic protein Sanomachi et al. (2019).

Parbendazole and
Mebendazole

Anti-parasitic agents Son et al. (2020). Promotes Apoptosis, DNA damage, and
impairs cell migration Florio et al. (2019).

A phase 2a clinical study on the safety and
efficacy of using mebendazole in treating
gastrointestinal cancer showed high tolerability
of the drugs Mansoori et al. (2021).Reduces pancreatic tumour size and inhibits

liver metastasis Williamson et al. (2021).

Berberine Reduce blood glucose and insulin levels in type
2 Diabetes mellitus patients Cicero and
Baggioni (2016).

Inhibits pancreatic cancer cell viability and
metastases by regulating citrate metabolism Liu
et al. (2020).

Clinical trials (NCT03281096) using Berberine
Hydrochloride in Colorectal cancer patients
are still ongoing.

The proliferation of PDAC cells, retarding the
development of their cycle in G1 and DNA
synthesis inhibition Rauf et al. (2021).

Clinical trials (NCT03333265) Primary
chemoprevention of Familial Adenomatous
Polyposis with Berberine Hydrochloride.

Niclosamide Treating tapeworm infections Kadri et al.
(2018).

Exerts anticancer effects by inhibiting
proliferation Kaushal (2021).

Reduces immune evasion and induces GSK-β
mediated β-catenin degradation to promote
gemcitabine activity which suppresses
pancreatic cancer progression Guo et al.
(2022).

Elevated levels of Niclosamide induce apoptosis
of pancreatic cancer cells via the mitochondrial
apoptotic pathway Guo et al. (2022).

Ritonavir Protease inhibitors for controlling HIV
infection Cameron et al. (1998).

Inhibition of E2F and AKT pathways promotes
the induction of apoptosis and cell cycle arrest
Batchu (2014).

Potential use of ritonavir in combination with
chemotherapy in human pancreatic tumour
cell lines Batchu (2014).

Itraconazole Antifungal infections Piérard et al. (2000). Induced apoptosis via ROS generation Jiang et
al. (2019).

Activates apoptosis via inhibition of TGF-β
/SMAD2/SMAD3 signaling in pancreatic
cancer cell lines Chen et al. (2018).

Disulfiram Treatment of Alcoholism Chick et al. (1992). Inhibition of the NF-κB pathway
downregulates the stem genes Cong et al.
(2017).

Disulfiram synergises with SRC inhibitors to
suppress the growth of PDAC cells in vitro and
in vivo Li et al. (2021).

Bazedoxifene Treatment of osteoporosis Yavropoulou et al.
(2019).

Activates IL-6 and IL-11 which mediates
inhibition of STAT3 Wu et al. (2016).

Bazedoxifene is a potential new therapeutic
option for PDAC treatment that is safe to use
and at a low cost Burkhardt et al. (2019).
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on PDAC cells by suppressing hepatic nuclear factor gamma
(HNF4G) activity and could be a target for precision treatment
(Wang et al., 2021b). A phase 2 trial (NCT01210911) and recent
meta-analysis studies have shown the significant role of metformin
in improving the overall survival rate in advanced pancreatic cancer
patients (Dulskas et al., 2020; Shi et al., 2020). Although many
studies have suggested that metformin might improve survival in
PDAC (Amin et al., 2016; Cerullo et al., 2016), several are contrary
(Kordes et al., 2015; Chaiteerakij et al., 2016; Reni et al., 2016) hence
further prospective and clinical trials are essential to confirm these
findings.

5.3 Vitamins

Vitamin D is a fat-soluble steroid that can be gotten from sun
exposure diet and dietary supplements, and are responsible for
increasing intestinal absorption of calcium, magnesium, and
phosphate. Vitamins D2 and D3 are the most important
compounds in this group. Studies have demonstrated that
Vitamin D reduces the risk of pancreatic cancer by regulating
cell cycle and differentiation. Although the effect of Vitamin D
on the molecular mechanism underlying pancreatic cancer
development is not well understood, Vitamin D receptors (VDR)
are involved in several metabolic pathways, immune responses, and
malignancies (Cannon et al., 2016). Treating PDACmice with a high
dose of calcipotriol, an analogue of Vitamin D has demonstrated
that VDR could modulate inflammatory cytokines and growth
factors and reduce inflammation and fibrosis (Sherman et al.,
2014). Several clinical trials (NCT03472833 and NCT00238199)
have been carried out to investigate the use of high-dose Vitamin D/
Calcitriol in PDAC and results showed that Vitamin D could be used
as standard therapy in pancreatic cancer patients (Ng et al., 2019;
Katayama et al., 2020).

Vitamin C is water-soluble vitamin commonly gotten from
fruits and vegetables. Ascorbic acid can act as an antioxidant,
immunomodulator, and anti-cancer. Hence, Vitamin C
derivatives have been repurposed for cancer therapy as shown in
several PDAC clinical studies in which they are either used alone or
in combination with conventional chemotherapy (Hirschfeld and
Bruckner, 2016; Polireddy et al., 2017).

5.4 Beta blockers

These are drugs that prevent the stimulation of adrenergic
receptors. Beta adrenoreceptors are G-protein coupled receptors
that are expressed by pancreatic cancer cells (Weddle et al., 2001)
and have been demonstrated to prolong overall survival (Udumyan
et al., 2017; Renz et al., 2018). They play an important role in tumour
growth, proliferation, and inhibition of apoptosis via protein kinase
A (PKA) pathways (Upadhyaya et al., 2020). The effects of beta-
blockers on cancer prognosis were reported to be associated with
improved overall survival among pancreatic cancer patients (Na
et al., 2018). Long-term use of beta-blockers such as Atenolol,
Propranolol, and Carvedilol is correlated with decreased risk of
pancreatic cancer (Saad et al., 2020). Atenolol, a beta blocker used
for treating hypertension (Wadworth et al., 1991) could be

potentially repurposed to inhibit pancreatic cancer cell growth
via the modulation of NF-κB using functional network analysis
(Hermawan et al., 2020). Propanolol is also another example of a
beta-blocker used for treating hypertension, tremors, and other
cardiovascular disorders (Hardison et al., 2016) which has been
demonstrated to be a potential repurposed PDAC therapy drug.
Phase II randomised placebo-controlled PROSPER trial is currently
ongoing to assess the safety of the administration of propranolol and
etodolac in resectable PDAC (Hüttner et al., 2020).

5.5 Hydroxychloroquine and chloroquine

These are aminoquinoline compounds that are used to treat
malaria (Rebelo et al., 2021). Hydroxychloroquine is also used in
treating rheumatoid arthritis and lupus (Rebelo et al., 2021). These
drugs have been shown to have anti-cancer effects. Chloroquine
inhibits autophagy by enhancing the ability of ERK inhibitors to
mediate antitumour activities in KRAS-driven PDAC (Bryant
et al., 2019). Autophagy is essential in maintaining homeostasis
and neutrophil extracellular traps (NETs) formation whereby
damaged organelles and other intracellular components are
recycled (Boone et al., 2015). Autophagy has also been shown
to be vital for PDAC growth and progressions in tumours with
P53 alterations (Yang et al., 2014). Also, chloroquine has been
demonstrated to inhibit NETs formation thereby reducing the
hypercoagulability of murine PDA cells (Boone et al., 2018).
Clinical phase II trials (NCT01494155) using
hydroxychloroquine and chemoradiation for resectable PDAC.
Patients were given hydroxychloroquine in addition to
chemoradiotherapy with photons before surgery while only
hydroxychloroquine was administered to them afterwards and
results showed that about 26 patients survived over 18 months
(Raldow et al., 2020). Several clinical trials are currently ongoing or
have been carried out (NCT04386057, NCT01978184,
NCT04524702, and NCT01273805) to evaluate the role of
chloroquine or hydroxychloroquine in combination with other
chemotherapy regimens with some results showing that the
combination therapy was well tolerated and could be further
explored.

5.6 Nitroxoline

Nitroxoline is an antibiotic used in treating bacterial and fungal
infections such as urinary tract infections (Shim and Liu, 2014).
Nitroxoline has been shown to inhibit angiogenesis and tumour
growth by promoting the acetylation of P53 (Zhang et al., 2000) and
has shown an anticancer effect on pancreatic, leukaemia, and
ovarian cancer (Jiang et al., 2011). More recently, Nitroxoline
treatment has been shown to downregulate Na+/K+ ATPase and
increases intracellular ROS which further suppresses cell migration
and invasion via the inhibition of the P13K/AKT pathway in AsPC-1
pancreatic cancer cell lines (Veschi et al., 2020). Combination
therapy involving Nitroxoline, Nelfinavir, and chemotherapy
agent erlotinib has shown great potential in improving the
treatment of PDAC, hence future studies and trials could be vital
(Veschi et al., 2018).

Frontiers in Genetics frontiersin.org06

Elebo et al. 10.3389/fgene.2023.1170571

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1170571


5.7 Perbendazole

Widely, Parbendazole is used in treating parasite infections in
animals. This drug has been shown to possess antiproliferative
effects because it has been shown to inhibit growth, promote
apoptosis, and induced DNA damage response in pancreatic
cancer cell lines (Florio et al., 2019). Perbendazole drastically
interferes with cell cycle progression by promoting G2/M arrest
in two pancreatic cancer cell lines AsPC-1 and Capan-2 cells
(Florio et al., 2019). P53 mutant AsPC-1 showed decreased
cyclin B1 levels, a key component in the control of cell cycle
progression from G2 to M phase after Perbendazole treatment
(Vogel et al., 2004).

5.8 Niraparib and Rucaparib

These are poly ADP ribose polymerase (PARP) inhibitors used
as maintenance treatment for advanced ovarian, fallopian tube, or
peritoneal cancer responding to platinum-based chemotherapy
(Musella et al., 2018; Akay et al., 2021). They induce cytotoxicity
by inhibiting PARP enzymatic activities which stimulate the
formation of PARP-DNA complexes resulting in DNA damage,
apoptosis, and cell death (Lee, 2021). PARP inhibitors target somatic
or germline mutations of DNA repair genes such as BRCA1/2, and
PALB2 (Akay et al., 2021). Phase II clinical trial studies are currently
ongoing including; (NCT03553004) which treats metastatic PDAC
patients after previous chemotherapy (NIRA-PANC) with
Niraparib, and (NCT03601923) treats patients with a mutation in
a DNA repair gene with Nariparib (Kasi et al., 2019). Furthermore,
phase 2 trials of PARP inhibitor Rucaparib in pancreatic cancer
patients with somatic BRCAmutations or deleterious germline have
been done (NCT02042378) and some are still ongoing
(NCT03140670) (Domchek et al., 2016; Binder et al., 2019).
Rucaparib provided clinical benefits to advanced PDAC patients
with BRCA mutation and may be an option earlier in the treatment
course (Domchek et al., 2016).

6 Challenges and limitations of drug
repurposing in PDAC treatment

Drug repurposing capitalises on matching the established
mechanisms of existing drugs with the disease profile. Although,
the past years have shown a leap in our understanding of the
inception and progression of PDAC, the molecular
underpinnings are still being unravelled. Hence matching the
right drug with the right molecular subtype becomes a big
challenge when the intricacies of the disease are only partially
understood. Pancreatic cancer is characterised by its high degree
of complexity and intra-tumoural heterogeneity (Hayashi et al.,
2021). Different molecular subtypes may coexist within a single
tumour and the genetic landscapes vary between patients (Cros
et al., 2018). This heterogeneity poses a challenge when attempting
to identify drugs that can effectively target multiple subtypes or
mutations. Additionally, there is still an insufficient number of
clinical trials assessing the efficacy of repurposed drugs against
PDAC therefore available evidence is limited in terms of patient

populations, dosing regimens, and long-term outcomes. The
development of drug resistance is a common challenge in cancer
treatment (Kurt Yilmaz and Schiffer, 2021) and repurposed drugs
might not have been optimised for long-term efficacy in the context
of pancreatic cancer. Resistance mechanisms that arise due to the
unique genetic landscape of pancreatic cancer could undermine the
initial benefits of repurposed therapies (Dagogo-Jack and Shaw,
2018). Also, repurposing drugs can introduce the risk of
unanticipated side effects or adverse reactions that were not
previously observed in their original use. Ensuring patient safety
and minimising these risks becomes a critical concern in
repurposing efforts. Finally, drug repurposing often involves
using existing medications that are already under patent
protection (Talevi and Bellera, 2020). Navigating the complexities
of intellectual property rights and licensing agreements can pose
significant barriers to repurposing potentially limiting access to
certain drugs.

7 Conclusion and future perspectives

With the preponderance of enigmatic drug resistance in cancer
treatment, there is an unmet need to delve into a new trajectory of
therapeutic strategies. Stratification of PDAC into clinically and
genetically associated groups could open a gateway for discovering
novel biomarkers. New technologies such as single-cell-RNA-
sequencing and single-cell-omics could be explored to provide a
more comprehensive classification of PDAC patients in the different
subtypes based on their biology, prognosis, therapeutic targets, and
pharmacologic response to drugs. Strikingly, drug repurposing has
been implemented for cancer research to facilitate the drug design
process and cost. Repurposing drugs to target genomic alterations in
PDAC subtypes is the future perspective that should be leveraged for
personalized medicine. Hence more future clinical studies targeting
repurposed drugs in PDAC could be beneficial in identifying
effective treatments.
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