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Reproductive performance is the most critical factor affecting production
efficiency in the cow-calf industry. Heifers with low reproductive efficiency
may fail to become pregnant during the breeding season or maintain a
pregnancy. The cause of reproductive failure often remains unknown, and the
non-pregnant heifers are not identified until several weeks after the breeding
season. Therefore, improving heifer fertility utilizing genomic information has
become increasingly important. One approach is using microRNAs (miRNA) in the
maternal blood that play an important role in regulating the target genes
underlying pregnancy success and thereby in selecting reproductively efficient
heifers. Therefore, the current study hypothesized that miRNA expression profiles
from peripheral white blood cells (PWBC) at weaning could predict the future
reproductive outcome of beef heifers. To this end, we measured the miRNA
profiles using small RNA-sequencing in Angus-Simmental crossbred heifers
sampled at weaning and retrospectively classified as fertile (FH, n = 7) or
subfertile (SFH, n = 7). In addition to differentially expressed miRNAs (DEMIs),
their target genes were predicted from TargetScan. The PWBC gene expression
from the same heifers were retrieved and co-expression networks were
constructed between DEMIs and their target genes. We identified
16 differentially expressed miRNAs between the groups (p-value ≤0.05 and
absolute (log2 fold change ≥0.05)). Interestingly, based on a strong negative
correlation identified from miRNA-gene network analysis with PCIT (partial
correlation and information theory), we identified miRNA-target genes in the
SFH group. Additionally, TargetScan predictions and differential expression
analysis identified bta-miR-1839 with ESR1, bta-miR-92b with KLF4 and KAT2B,
bta-miR-2419-5p with LILRA4, bta-miR-1260b with UBE2E1, SKAP2 and CLEC4D,
and bta-let-7a-5p with GATM, MXD1 as miRNA-gene targets. The miRNA-target
gene pairs in the FH group are over-represented for MAPK, ErbB, HIF-1, FoxO, p53,
mTOR, T-cell receptor, insulin and GnRH signaling pathways, while those in the
SFH group include cell cycle, p53 signaling pathway and apoptosis. SomemiRNAs,
miRNA-target genes and regulated pathways identified in this study have a
potential role in fertility; other targets are identified as novel and need to be
validated in a bigger cohort that could help to predict the future reproductive
outcomes of beef heifers.
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1 Introduction

Reproductive traits are essential for sustainable food production.
Low reproductive capacity in beef heifers is inferred as a failure to
become pregnant during the breeding season or maintain a
pregnancy to calving (Lamb, 2013). The possible causes for
reproductive failure in heifers may be attributed to poor
reproductive and nutritional management, diseases, and genetics
(Houghton et al., 1990; BonDurant, 2007; Larson and White, 2016;
Shao et al., 2021). To overcome this problem, producers often
develop more heifers than required for replacements and perform
additional inseminations or hormonal treatments that consequently
alter the current and subsequent cow-calf production ratio (Shao
et al., 2021). In addition to the cost of artificial insemination (AI) and
treatments, losses are further increased due to the rearing of the
animal from birth to breeding age and then culling and replacing the
animals with poor reproductive performance. Management
practices to select heifers with high reproductive potential
contribute to increasing efficiency; however, some heifers still fail
to conceive. Considering this, the beef production sector is
particularly interested in identifying biomarkers to predict
reproductive efficiency.

In recent years, developments in molecular biology have
provided new insights into the potential candidates and
biomarkers for fertility and predicting reproductive outcomes.
For instance, Binelli et al. (2015) identified transcriptome
signatures in uterine biopsies from pregnant cows at 6 days
post-AI in beef cattle. Forde et al. (2012) identified increased
gene expression in the endometrium of pregnant cattle. Machine
learning approaches have provided opportunities to unravel
genomic signatures for fertility from omics data. These
approaches are powerful in processing and modeling omics
data with vast and diverse volumes (Li et al., 2022). Among
the studies, Rabaglino and Kadarmideen, (2020) identified
50 genes from endometrial transcriptome as predictors of
uterine receptivity to embryo transfer in cattle. Likewise, Diniz
et al. (2022) reported nine potential candidates using a multi-
tiered approach of machine learning and gene co-expression
network on the transcriptome profile of uterine luminal
epithelial cells. Although these studies provided insights into
the different expression levels of potential candidates regulating
fertility or reproductive outcome, the downstream molecular
targets regulating the expression of these genes were not
investigated. They were also unable to predict reproductive
potential at weaning as they were conducted at or near the
time of insemination.

Among the factors regulating gene expression, a class of
RNA molecules, microRNAs (miRNAs), are known to regulate
gene expression. Such regulation is mainly based on binding
with messenger RNA (mRNA) targets and destabilizing them,
thereby repressing protein production and translational
silencing (Cannell et al., 2008). A plethora of studies
identified miRNAs as biomarkers for pregnancy outcomes in
humans (Barchitta et al., 2017; Ali et al., 2021; Vashukova et al.,
2021; Xu et al., 2021) and cattle (Ioannidis and Donadeu, 2016;
De Bem et al., 2017; Pohler et al., 2017; Gebremedhn et al., 2018;
Lim H.-J. et al., 2021). Ioannidis and Donadeu reported an
increased level of circulating miR-26a on days 16–24 of

pregnancy in cattle (Ioannidis and Donadeu, 2016). Similarly,
levels of circulating miR-221 and miR320a were increased in
weeks 8, 12 and 16 of pregnancy in cattle (Lim H.-J. et al., 2021).

Collectively, these findings provide critical insights into the
biological mechanisms determining different reproductive
outcomes. However, most of the studies have focused on time
periods in proximity to the breeding season. Considering the
producer has invested time and resources in developing the
replacement heifers, using these potential biomarkers at breeding
is too late. Thus, it would be beneficial to trace back the potential
biomarkers through weaning—when the selection of replacement
animals usually takes place. Therefore, our main objective was to
profile the miRNA levels in the peripheral white blood cells (PWBC)
of beef heifers at weaning that could potentially be used to predict
heifers with a high reproductive outcome following AI. We
hypothesized that the miRNAs are differentially expressed, the
genes regulated by these miRNAs are co-expressed, and the
miRNA-gene networks are rewired in beef heifers at an early
development stage, contributing to a varying reproductive
outcome at maturity.

2 Materials and methods

2.1 Animal handling, sample collection,
phenotyping, and classification

All procedures involving animals were approved by the
Institutional Animal Care and Use Committee (IACUC) at
Auburn University (IACUC protocol numbers 2015-2786 and
2019-3591). Cross-bred heifers (Angus-Simmental, n = 75)
utilized in this study originated from and were housed at an
outlying Alabama agricultural experiment station research and
extension center (Auburn University). The heifers were weaned
~238 days after birth. Phenotypic data, such as weaning age and
weight, were recorded for each heifer. Immediately after
weaning, 10 mL of blood was drawn into
ethylenediaminetetraacetic acid (EDTA) vacutainers (Becton,
Dickinson and Company, Franklin, NJ) from the jugular vein.
The vacutainers were inverted 8–10 times and immersed in ice
until immediate processing. In the laboratory, blood was
processed to isolate peripheral white blood cells (PWBC), as
described elsewhere (Banerjee et al., 2023). The PWBCs were
stored at −80°C until further processing.

For breeding, 72 heifers were selected based on ideal body
condition scores (5–6) and reproductive tract scores (≥4). The
breeding protocol, estrus synchronization and fixed-time
artificial insemination (AI) have been described previously
(Banerjee et al., 2023). In brief, approximately 45 days before
breeding by AI, pre-breeding examinations for each heifer were
performed to evaluate the pubertal status. All heifers underwent
an estrus synchronization and fixed-time AI protocol (7-Day
CO-Synch + CIDR) (Dickinson et al., 2018). Fourteen days
following AI, all heifers were exposed to fertile bulls for a 60-
day natural service breeding season to ensure adequate
opportunities for conception to occur. Pregnancy of the
heifers was evaluated on day 75 post-AI by transrectal
palpation and ultrasound. The presence and gestation age or
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absence of conceptus was confirmed 75 days following AI with
ultrasound and transrectal palpation and was used to classify
heifers as fertile to those that were pregnant to AI (FH, n = 35),
pregnant to natural breeding (P-NB, n = 26) or subfertile that
were not pregnant (SFH, n = 11). Heifers that were pregnant to AI
(FH, n = 7) and subfertile (SFH, n = 7) and with comparable birth
age, weaning age and body weight in both groups were selected
for this study. A schematic representation of the study design and
analysis steps is given in Figure 1.

2.2 RNA extraction from PWBC

Based on the pregnancy classification of heifers, total RNA
was extracted from the 14 PWBC samples (FH and SFH) that
were collected at the time of weaning. The RNA was extracted
using the Trizol reagent (Invitrogen, Carlsbad, CA,
United States) following the manufacturer’s protocol.
Additional RNA purification and DNase digestion steps using
an RNA clean and concentrator kit (Zymo Research, Irvine, CA,
United States) were included in the protocol. RNA was
quantified on a Qubit fluorometer using a Qubit RNA broad-
range assay kit (Life Technologies, Thermo Fisher Scientific
Inc., MA, United States). The RNA integrity was assessed using
the Agilent Bioanalyzer and the Agilent RNA 6000 Nano kit
(Agilent, Santa Clara, CA, United States). The quality of small
RNAs was determined using the Agilent 2100 Bioanalyzer Small
RNA kit (Agilent, Santa Clara, CA, United States). The samples
with average RNA integrity number (RIN) values >6.8 were
further processed for small RNA library construction.

2.3 Library preparation and sequencing

The total RNA of each sample was diluted with RNase-free water
to obtain a final concentration of 1 μg as a starting material. This
diluted total RNA was used to prepare libraries using the protocols
by NEXTflex small RNA-Seq kit v3 (Perkin Elmer). Following the
protocol from the kit, the 5′ and 3’ adapters were ligated to the RNA
fragments, which were then reverse-transcribed and amplified
(18 cycles) to generate cDNA libraries. Each cDNA library was
prepared using a different barcode primer for the ease of being
multiplexed for sequencing. Libraries were cleaned using NEXTflex
Cleanup beads (gel-free protocol), and the size distribution of the
final library was assessed by Agilent Bioanalyzer high-sensitivity
DNA assay (Agilent, Santa Clara, CA, United States). The quality-
checked libraries were pooled and sequenced in the NextSeq
500 using the single-end 50 bp chemistry at Discovery Life
Sciences (Hudson Alpha Institute of Biotechnology, Huntsville,
AL, United States).

2.4 Data processing and miRNA expression
profiling

Raw sequence demultiplexed reads obtained from Hudson
Alpha were initially assessed for sequencing quality using FastQC
v0.11.9 (Andrew, 2010) and MultiQC v1.12 (Ewels et al., 2016). The
reads were evaluated for quality based on average read length,
adaptor content, per-sequence GC content, and sequence quality
scores. After that, the 3′ adapter sequence was trimmed using
Cutadapt (Martin, 2011) with the following parameters: -a TGG

FIGURE 1
Schematic representation of the study design and analysis steps.
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AATTCTCGGGTGCCAAGG -minimum length 23. The reads were
further trimmed using Cutadapt (Martin, 2011) to remove four
bases from either side of each read following the small RNA
trimming instructions (cutadapt -u 4 -u -4) (recommended by
NEXTflex small RNA-Seq kit v3 (Perkin Elmer)). Trimmed Fastq
files were checked for quality control with FastQC v0.11.9 and
MultiQC v1.12. To profile both novel and known miRNA
expression in the samples from the cleaned sequence data, the
trimmed reads were processed using the miRDeep2 analysis
workflow (Friedländer et al., 2012). Sequences were aligned to
Ensembl’s ARS-UCD 1.2 Bos taurus reference genome (https://
useast.ensembl.org/Bos_taurus/Info/Index) using the mapper.pl
module in miRDeep2 and were further aligned with B. taurus
precursor and matured miRNAs extracted from miRBase v22.1
(Kozomara et al., 2019). Only the alignments with zero
mismatches in the seed region and those greater than 18 nt of a
read mapped to the genome were retained, producing read counts
for each sample.

2.5 Differential expression analysis

Initially, the mature miRNAs with zero counts were filtered out.
Thereafter, the read counts were transformed to counts per million
(CPM) using edgeR v3.28.1 (Robinson et al., 2010). For quality
control, raw counts with CPM <1 in 50% of the samples were filtered
out. To identify the differentially expressed miRNAs, the raw counts
were analyzed in DESeq2 v1.26.0 (Love et al., 2014). The
differentially expressed miRNAs (DEMIs) identified with a
p-value ≤0.05 and absolute (log2 fold change) ≥ 0.5 were
considered significant. The DEMIs were classified as up or
downregulated based on the sign of log2 fold change in the SFH
group. The up and downregulated miRNAs were visualized using a
volcano plot constructed using the R-package EnhancedVolcano
v1.4.0 (Blighe et al., 2018).

2.6 Target gene prediction

The target genes for DEMIs were predicted using TargetScan
v8.0, which predicts the targets of miRNAs by searching the
conserved 8mer, 7mer and 6mer sites that match the seed region
of each miRNA (Lewis et al., 2005). The search for mRNA targets
was specific to B. taurus. As a feature of TargetScan, the predictions
were ranked based on targeting efficacy estimated using cumulative
weighted context++ scores (Agarwal et al., 2015). The genes with
high confidence (≤−0.4) in the cumulative weighted context++ score
were selected as target genes for each miRNA (Agarwal et al., 2015).

2.7 mRNA-miRNA co-expression and
network analysis

To identify the correlation pattern between the DEMI-gene
targets identified by TargetScan, we also generated PWBC mRNA
expression profiles from the same heifers as reported elsewhere
(Banerjee et al., 2023). In brief, the mRNA profile of the same set of
samples from FH (n = 7) and SFH (n = 7) was sequenced to generate

paired-end 100 bp reads. After a quality check using FastQC
v0.11.9 and MultiQC v1.12, the raw sequences were mapped
using STAR aligner v2.7.5 (Dobin et al., 2013) to Ensemble’s
ARS-UCD1.2 B. taurus genome as the reference. The raw counts
per gene (obtained using the -quantMode function in STAR) were
transformed to CPM using edgeR v3.28.1. The genes identified from
the PWBC mRNA expression profiles were filtered to retain only
those identified as miRNA targets based on TargetScan and were
named ‘PWBC expressed TargetScan genes’. To determine the
miRNA-gene correlation, we used the partial correlation and
information theory (PCIT) approach. The CPM normalized
‘PWBC expressed TargetScan genes’ and DEMIs were used as an
input for PCIT. The PCIT reports the significantly correlated pairs
after comparing the possible trios of genes (Reverter and Chan,
2008), which allows us to build co-expression networks.

The networks were constructed using the correlations identified
by PCIT between DEMIs and ‘PWBC-expressed TargetScan genes’
for each FH and SFH group in Cytoscape v3.8.2 (Shannon et al.,
2003). The network for each group was analyzed using the Network
Analyzer tool in Cytoscape v3.8.2 (Assenov et al., 2008). Next, to
determine the differentially connected genes and miRNAs in each
group, the network connectivity (K) measure for each network was
standardized by taking a ratio of gene connectivity (degree) and
maximum connectivity in each network. The differential
connectivity (DK) measure was calculated as
DKi � KSFH(i) − KFH(i). The DK values were transformed to a
z-score and ±1.96 SD was considered significant (p ≤ 0.05). The
connectivity gain or loss was evaluated for each gene or miRNA in
the SFH group as the reference. The central reference network
comparing both groups was constructed using DyNet (Cytoscape
plug-in) (Goenawan et al., 2016). DyNet allows for identifying and
visualizing nodes and edge rewiring in response to cellular signals
and highlights the most rewired nodes based on the central reference
network constructed with FH and SFH groups (Goenawan et al.,
2016).

2.8 Minimum free energy for miRNA-target
prediction

To cross-validate the specificity of the target genes identified
from TargetScan and correlate to the DEMIs, we used the
RNAhybrid (Rehmsmeier et al., 2004). To this end, we retrieved
the mature miRNA sequence from the miRBase database
(Kozomara et al., 2019) and the cDNA sequence of the genes
from BioMart (Durinck et al., 2005). The minimum free energy
(mfe) was predicted for the miRNA-mRNA sequence; several
miRNAs predicted to have a low mfe indicate a relatively high
affinity for miRNA-mRNA complexes. The cutoff for mfe was set to
less than −20 kcal/mol for evaluating miRNA-mRNA affinity (Yen
et al., 2019; de Lima et al., 2021). Average mfe was calculated for the
genes with multiple transcripts.

2.9 Functional enrichment analysis

The pathway over-representation analysis for the genes
correlated with miRNAs identified by PCIT was carried out using
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ClueGO v2.5.8 (Cytoscape plug-in) (Bindea et al., 2009). The
redundant terms were clustered based on a kappa score of 0.4,
and the B. taurus annotation was used as the background in
ClueGO. The significant pathways were selected based on the
corrected p-value with Bonferroni step-down feature ≤0.05.

3 Results

3.1 Data generation and mapping statistics

We used small RNA-Seq to identify the difference in the
expression of miRNAs from PWBC between two groups, FH and
SFH. The sequencing from all the samples yielded an average of
6.9 million reads. On average, 78.13% of reads were uniquely
mapped to the B. taurus reference genome (Supplementary Table
S1), yielding a dataset of 1,207 miRNAs in 14 samples. Following
filtering to remove the zero counts, 614miRNAs were retained. After
the CPM filter approach, 341 miRNAs in 14 samples were used for
further analysis.

3.2 Differentially expressed miRNAs (DEMIs)

We identified 16 DEMIs between the FH and SFH group out
of 341 miRNAs [(p-value ≤0.05 and absolute (log2 fold
change ≥0.5)] (Figure 2; Supplementary Table S2). The top
5 upregulated miRNAs in the SFH group with the highest fold
change difference included bta-miR-677, bta-miR-1839, bta-
miR-1434-3p, bta-miR-2332 and bta-miR-140, while the

downregulated miRNAs were bta-miR-450b, bta-miR-2419-5p,
bta-miR-92b, bta-miR-574 and bta-miR-2478.

3.3 Target gene prediction and overlapping
with genes expressed in PWBC

The predicted gene targets for 16 DEMIs were retrieved from
TargetScan. The genes with high confidence (≤−0.4) in the
cumulative weighted context++ score were selected as target
genes for each miRNA. We identified 1,365 genes targeted by the
16 DEMIs (Figure 3), out of which 741 were expressed in PWBC
(Supplementary Table S3). Out of the 741 genes, nine were
previously reported as differentially expressed in PWBC from the
same set of FH and SFH heifers (Supplementary Table S3) (Banerjee
et al., 2023). The nine genes and their miRNA targets are as follows:
bta-miR-92b targeted KLF4 and KAT2B, bta-miR-2419-5p targeted
LILRA4, bta-miR-1260b targeted UBE2E1, SKAP2 and CLEC4D,
bta-let-7a-5p targeted GATM, MXD1 and bta-miR-
1839 targeted ESR1.

3.4 miRNA-mRNA co-expression and
network analysis

We used the PCIT algorithm to build two networks (each
from FH and SFH groups) to identify the coordinated
expression patterns and potential regulatory role between
genes and miRNAs. For the network, the correlation of CPM
normalized PWBC-expressed TargetScan genes (n = 741) (see

FIGURE 2
Volcano plot of differentially expressedmiRNAs between FH and SFH groups. Each dot corresponds to amiRNA. The log2fold change is represented
in the x-axis represents, while the negative log (base 10) of the p-value in the y-axis. The horizontal dashed line represents the threshold with a p-value
cutoff <0.05, while the vertical bars represent the absolute log2fold change >0.5. The 16 DEMIs are labeled in the plot. The left panel (0 to −3 of log2fold
change) is downregulated, while the right panel (0–4 of log2fold change) is upregulated miRNAs.
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Methods) and DEMI (n = 16), corresponding to 7 samples in FH
and 6 in the SFH group, was used. One sample was removed
from the SFH group due to the poor quality of the mRNA
sequence. We identified 33,014 and 29,280 correlations in FH
and SFH groups, respectively, consisting of miRNA-gene,
miRNA-miRNA, and gene-gene correlations (Supplementary
Table S4). To retrieve the biologically meaningful miRNAs and

reduce data dimensionality, we only retrieved the miRNA-
miRNA and miRNA-gene pairs (Supplementary Table
S5). We identified 926 and 689 significantly correlated pairs
(r > |0.6|, p ≤ 0.05) in the FH and SFH groups (corresponding to
546 and 409 unique genes) (Supplementary Table S5). The
network for each group was visualized using Cytoscape
(Figures 4A, B). Of the 16 DEMIs, 15 miRNAs were

FIGURE 3
Number of genes targeted by 16 DEMIs (ranked in descending order).

FIGURE 4
Regulatory networks of co-expressed geneswith 16 DEMIs in (A) FH and (B) SFH groups. Nodes are genes significantly correlatedwithmiRNAs, while
edges are positive or negative interactions (correlations) between the miRNA and target genes. The blue diamond represents the DEMIs; green strokes
represent positive correlations, while red strokes represent negative correlations.
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differentially connected with only bta-miR-1260b not having
differential connections. Overall, the SFH group exhibited a loss
of miRNA-mRNA network connectivity (Supplementary Table
S6). Next, we identified the correlation pattern of the miRNA-
gene pair in our study that was identified from TargetScan
(Supplementary Table S7). Of the 741 predicted target genes
with the corresponding miRNA, 48 and 39 genes were
correlated with 12 and 11 DEMIs in the FH and SFH groups,
respectively (Supplementary Table S7; Figures 5A, B). Out of
these pairs, we identified 30 and 27 negative correlations among
the miRNA-gene pairs in FH and SFH, respectively
(Supplementary Table S7). Some correlated pairs included
bta-miR-2478 with SMIM7, bta-miR-574 with TRADD,
HDHD2 and HSF1, and bta-miR-2332 with MAX in the FH
group; and bta-miR-1260b with ERAS, bta-miR-2332 with
SEC63 and HIF1A in the SFH group, exhibited a high
negative correlation (r = 0.9). All the miRNA-gene pairs
exhibited a mfe <−20 kcal/mol, except bta-miR-450b with
SH3YL1 (−18.9 kcal/mol) and with B2M (−19.7 kcal/mol).

3.5 Pathway analysis

To translate the genes targeted by the miRNAs from PCIT into
biologically meaningful processes, we performed pathway
enrichment analysis. The top significant (Bonferroni corrected
Group p-value ≤0.05) KEGG pathways identified in the FH
group include MAPK, ErbB, HIF-1, FoxO, p53, mTOR, T-cell
receptor, insulin and GnRH signaling, apoptosis and pathways
regulating pluripotency of stem cells (Supplementary Table S8).

The top significant KEGG pathways of the SFH group include cell
cycle, p53 signaling pathway and apoptosis (Supplementary Table
S9). Additionally, the biological process in the SFH group includes a
hormone-mediated signaling pathway, cellular response to stress,
negative regulation of growth, inflammatory response to antigenic
stimulus and signal transduction in response to DNA damage
(Supplementary Table S9).

4 Discussion

Evidence suggests that miRNAs play an essential regulatory role
in several biological processes involving cell proliferation, cell death,
epigenetic changes, and apoptosis (Bartel, 2004; Cupp et al., 2009).
All these processes have the potential to promote phenotypic
variation within the population. Among the traits, phenotypes
associated with reproductive outcome and fertility are of major
interest to cattle producers, mainly because of the high production
loss from a heifer of low reproductive potential. Specifically in
reproductive biology, miRNAs have been demonstrated to be
important regulators of embryonic development in humans and
livestock, such as predicting pregnancy outcomes (Ioannidis and
Donadeu, 2016; Hitit et al., 2022), embryo viability (Pohler et al.,
2017) and implantation (Kose et al., 2022), and endometrial
receptivity (Zang et al., 2021). Moreover, miRNAs regulate the
gene targets by repressing or stimulating their expression (Orang
et al., 2014). Thus, the present study was undertaken to identify the
difference in the miRNA expression and the respective gene targets
in the PWBC of beef heifers at weaning and their potential as
predictors of future reproductive potential in beef heifers.

FIGURE 5
Central reference network constructed using DyNet. (A) Network comparison based on the rewired node in the FH and SFH group. The network
comprises of 650 nodes and 1547 edges. The blue diamond represents the DEMIs. Unique nodes are shown in red (FH) and green (SFH). Shared nodes are
shown in white. (B) Central reference network showing the miRNA-gene correlated pair as identified from TargetScan (Supplementary Table S7). Unique
nodes are shown in red (FH) and green (SFH). Shared nodes are shown in white. For ease of visualization, eachmiRNA-target gene pair is labeledwith
the same color.
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We identified five miRNAs (bta-miR-92b, bta-miR-2419-5p,
bta-miR-1260b, bta-miR-1839 and bta-let-7a-5p) targeting
differentially expressed genes from PWBC of the same beef
heifers. Among them, bta-miR-92b is the most significant
miRNA downregulated in the SFH group. Expression of miR-92b
was significantly upregulated in the porcine placenta on day 90 of
gestation (Su et al., 2010). In a study reported in cattle, miR-92b
(downregulated expression) was associated with endometritis, an
inflammatory response in the endometrium that causes
reproductive disorder (Jiang et al., 2021). The authors further
reported that over-expression of miR-92b significantly suppressed
the activation of the toll-like receptor in lipopolysaccharide-
mediated bovine endometrial cells, thereby reducing pro-
inflammatory cytokines and inhibiting cell apoptosis (Jiang et al.,
2021). Interestingly, in a separate study, miR-92 has been identified
to regulate KLF4 (Hamik and Jain, 2012). In female fertility,
KLF4 mediates the anti-proliferative effects of progesterone
during the G0/G1 arrest in endometrial epithelial cells in humans
(Shimizu et al., 2010). In our study, KLF4was identified as one of the
potential targets of bta-miR-92b from TargetScan and associated
with pathways involved with post-embryonic development, cell-cell
adhesion, and immune system development in the FH
group. Another target gene associated with bta-miR-92b in our
study was KAT2B. With the pathway analysis, we identified KAT2B
underlying negative regulation of serine/threonine kinase activity
and phosphorylation pathways in the FH group. Interestingly, KLF4
and KAT2B have been identified as downregulated in the PWBC of
non-pregnant heifers compared to pregnant heifers (Banerjee et al.,
2023). Furthermore, from the PCIT network analysis, we identified
bta-miR-92b as more connected with genes/miRNA targets in fertile
heifers (68 targets) than in subfertile heifers (31 targets). Among the
common genes from TargetScan and PCIT, we found that the bta-
miR-92b was correlated with the BTG2, REV3L, FOXN2 and NSMF
genes in the FH group and DUSP10 in the SFH group. DUSP10 is
associated with negative regulation of growth, phosphorylation, and
transferase and kinase activity.DUSP10 plays a significant role in the
innate and adaptive immune response by regulating the mitogen-
activated protein (MAP) kinase modulated by kinase and
phosphatase (Zhang et al., 2004). Despite these findings, further
mechanisms of bta-miR-92b and its gene targets need to be explored
for fertility and reproductive outcome in bovines.

Bta-miR-1260b was significantly downregulated in the SFH
group. In previous studies, miR-1260 has been associated with
infertility in humans (Butler et al., 2021). From TargetScan, we
identified UBE2E1, SKAP2 and CLEC4D as predicted genes targeted
by bta-miR-1260b. These genes were differentially expressed in the
PWBC of beef heifers at weaning (Banerjee et al., 2023). SKAP2 and
CLEC4D were associated with regulating the immune response
pathway in the FH group. SKAP2 is a substrate of Src family
kinase and regulates cellular processes, including proliferation,
adhesion, migration and stress response (He et al., 2017). In a
previous study, SKAP2 was detected in all developmental stages of
mouse oocytes and depletion of SKAP2 caused the failure of spindle
migration, polar body extrusion and cytokinesis defects (He et al.,
2017). In a separate study in sheep, SKAP2 was differentially
expressed in the granulosa cells from superstimulated lamb and
ewe follicles and was associated with cellular growth, proliferation,
and migration (Wu et al., 2016). CLEC4D was found to play

important roles in immunity and homeostasis (Graham et al.,
2012). Besides SKAP2 and CLEC4D, bta-miR-1260b had a high
correlation (r > |0.9|) with ERAS and NSG1 in the SFH group,
identified from the network analysis. Furthermore, ERAS was
identified with a mfe of −30.5 kcal/mol confirming as a predictive
target of bta-miR-1260b. In bovines, lipopolysaccharide treatment of
bovine endometrial epithelial cells caused differential methylation of
the NSG1 gene associated with inflammation and endometrial
function (Jhamat et al., 2020). These studies suggest the role of
the genes targeted by bta-miR-1260b with inflammation and
immune response. Inflammation and immune response are
connected at many levels with fertility and reproductive outcome
in cattle (Fair, 2015); however, the detailed mechanisms still need to
be explored.

Bta-miR-1839 was upregulated but had less miRNA-gene
network connections (64 targets) in the SFH group compared to
the FH group (69 targets). In a microarray-based mice study, an
increase in the expression of miR-1839 was observed during the
implantation periods (day 5) in the luminal epithelium and
endometrium (Li et al., 2015). We identified ESR1 (estrogen
receptor 1) targeted by the bta-miR-1839 through TargetScan.
Interestingly, ESR1 was downregulated in the non-pregnant beef
heifers compared to the pregnant group (Banerjee et al., 2023). In
humans, ESR1 gene expression and protein abundance were
disrupted in the endometrium of patients with severe
preeclampsia (Garrido-Gomez et al., 2021). Likewise, the role of
ESR1 with the cAMP signaling pathway was identified as critical in
decidualization (Kaya Okur et al., 2016). Moreover, an association of
genetic variants in ESR1 has been identified with recurrent
pregnancy loss in women (Pan et al., 2014; Bahia et al., 2020).
Previous studies reported ESR1mediating the biological activity and
proliferative effects of estrogen on the reproductive tissues,
including ovarian follicular cells (Hewitt and Korach, 2003).
Moreover, ERα (ESR1) knockout female mice were sterile and
preovulatory follicles did not ovulate upon superovulation
treatment (Hewitt and Korach, 2003). In our study, ESR1 was
associated with the activation of immune response and pattern
recognition receptor signaling pathway, further supported by
previous human studies (Kovats, 2015).

The SFH group heifers exhibited bta-miR-2419-5p as
significantly downregulated and with low miRNA-gene
connectivity (29 targets) in our study and associated with
LILRA4 identified by TargetScan. In a study on super stimulatory
response in cattle, plasma miR-2419-5p was identified as
downregulated in unstimulated low ovarian response heifers
compared to high response heifers (Gad et al., 2020). LILRA4 is
a member of leukocyte immunoglobulin-like receptors (LILR) that
regulate innate and adaptive immune functions (Hogan et al., 2012).
LILRA4was significantly downregulated in the subfertile beef heifers
at weaning compared to the heifers conceived to AI during the first
breeding season (Banerjee et al., 2023). This was supported by the
findings in a study on blood transcriptome in Holstein cows where
LILRA4 was downregulated in the miscarriage cow group compared
to the pregnant group (Zhao et al., 2019).

The importance of miRNA function is not only for regulating
adaptive and innate immune response but also for cellular
proliferation, trophoblast invasion and cellular differentiation
(Hayder et al., 2018), which are important for a successful
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pregnancy. We identified bta-let-7a-5p as downregulated in the SFH
group heifers. Expression of let-7a-5p in the placenta during the first
trimester has been involved with low cytotrophoblast proliferation
(Smith et al., 2021). In a similar context in humans, let-7a was
downregulated in the blood plasma of females with recurrent
pregnancy loss compared to controls (Jairajpuri et al., 2021). In a
transcriptome study with human plasma and placenta, let-7a-5p was
upregulated at 11–23 weeks of gestation compared to the
6–10 weeks group (Smith et al., 2021). For further insight, we
identified bta-let-7a-5p with more miRNA-gene connectivity in
the SFH group (33 targets) than in the FH group (29 targets).
Furthermore, GATM andMXD1 genes were regulated by bta-let-7a-
5p identified by TargetScan. GATM, a gene that encodes L-arginine
and catalyzes the rate-limiting step in the synthesis of creatinine, was
associated with the amino acid biosynthesis pathway in our study.
This is further supported by a previous study where GATM is
expressed during development and is imprinted in mouse
placenta and yolk-sac (Sandell et al., 2003).

Apart from these miRNA-gene pairs, we identified bta-miR-
574 with a high negative correlation (>0.85) with FKBP4 and N4BP1
in the SFH group and with TRADD, HDHD2 and HSF1 in the FH
group. Bta-miR-574 exhibited a loss of gene connectivity in the SFH
group. Interestingly, miR-574 was identified to be upregulated in
women with preeclampsia and involved with endothelial
dysfunction (Lip et al., 2018). Furthermore, miR-574 in porcine
cumulus cells has been shown to suppress oocyte maturation (Pan
et al., 2018). In our study, bta-miR-574 was correlated with the
FKBP4 gene that was associated with response to lipid and steroid
hormone and female pregnancy pathways. In humans, FKBP4
mRNA expression was decreased in the endometrium with
endometriosis compared to controls (Yang et al., 2012). In fertile
heifers, bta-miR-574 was correlated with TRADD, which was over-
represented for apoptosis pathways. Furthermore, bta-miR-574 was
correlated with HSF1, which was over-represented for nucleic acid
transport. In previous studies, TRADD has been reported as
regulating perinatal development and adulthood survival in mice
(Dowling et al., 2019), while HSF1 was essential for reproductive
success in pre-implantation embryos (Abane and Mezger, 2010).
MiRNA bta-miR-2332 was negatively correlated with MAX in the
FH group and with HIF1A, SEC63 and COX7B in the SFH
group. HIF1A, in response to gonadotropins, activates
steroidogenesis and cell proliferation in granulosa cells critical for
ovulation (LimM. et al., 2021), thereby exhibiting a potential role in
fertility. We identified bta-miR-2478 downregulated with a loss of
gene connectivity in the SFH group. Supporting our results, previous
studies found that the expression of bta-miR-2478 was
downregulated in bovine cumulus cells that did not cleave
compared to ones that cleaved to form a blastocyst, thereby
serving as an indicator of oocyte quality (Uhde et al., 2017).
These miRNAs and miRNA-gene targets open up further
avenues for research to be explored in relation to fertility and
reproductive outcome in heifers.

From the network connectivity, we identified bta-miR-92b, bta-
miR-574, bta-miR-1839, bta-miR-450b, bta-miR-2419-5p, bta-miR-
874, bta-miR-2478 and bta-miR-1434-3p with a loss in network
connectivity with the target genes and miRNAs, while bta-miR-
2332, bta-miR-677, bta-let-7b, bta-let-7a-5p, bta-miR-1306, bta-
miR-140 and bta-miR-6119-3p with a gain in network

connections in the subfertile heifer group. This suggests that the
loss of connectivity in heifers with low reproductive outcome is due
to the rewiring of the major regulators. A potential explanation for
the heifers not becoming pregnant could be attributed to the
difference in the connectivity between the miRNAs and their
target genes.

Some miRNAs and their targeted genes were previously
reported to be associated with fertility and pregnancy
outcomes in cattle and other species; herein, we reported
novel miRNA-gene pairs that warrant further investigation.
Combining the gene prediction of miRNAs from TargetScan
and the genes differentially expressed in our previous study,
we identified bta-miR-92b targeted KLF4, KAT2B, bta-miR-
1839 targeted ESR1, bta-let-7a-5p targeted GATM and MXD1,
bta-miR-1260b targeted UBE2E1, SKAP2 and bta-miR-2419-5p
targeted LILRA4. Additionally, with the PCIT network analysis
approach, we identified genes with high negative correlation
targeted by the miRNAs, such as DUSP10 correlated with bta-
miR-92b, ERAS with bta-miR-1260b, FKBP4 with bta-miR-
574 and HIF1A with bta-miR-2332 in the SFH group. Most of
the previously reported studies revealed a difference in the
miRNA and target gene levels during pregnancy; however,
there is a possibility that these miRNAs and genes have been
dysregulated for a long time without any visible symptoms until
identified with pregnancy complications. Therefore, our study
provides insights into the differential expression of miRNAs and
genes in beef heifers as early as weaning that might play a role in
predicting future reproductive performance. Thorough
knowledge of the interactions will likely be needed to improve
our understanding of female fertility issues and potentially
develop therapeutic targets. One of the limitations of this
study was the sample size, i.e., 14 heifers (7 in each group).
Therefore, confirming these targets in a bigger cohort and
following-up with additional time points including post-
weaning, before AI and during pregnancy in heifers is
required to further validate these targets and determine their
potential benefit to the beef cattle industry.
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