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Lung cancer is a leading cause of cancer-related deaths worldwide, with a low 5-
year survival rate due in part to a lack of clinically useful biomarkers. Recent studies
have identified DNA methylation changes as potential cancer biomarkers. The
present study identified cancer-specific CpG methylation changes by comparing
genome-wide methylation data of cfDNA from lung adenocarcinomas (LUAD)
patients and healthy donors in the discovery cohort. A total of 725 cell-free CpGs
associated with LUAD risk were identified. Then XGBoost algorithm was
performed to identify seven CpGs associated with LUAD risk. In the training
phase, the 7-CpGs methylation panel was established to classify two different
prognostic subgroups and showed a significant association with overall survival
(OS) in LUAD patients. We found that the methylation of cg02261780 was
negatively correlated with the expression of its representing gene GNA11. The
methylation and expression of GNA11 were significantly associated with LAUD
prognosis. Based on bisulfite PCR, the methylation levels of five CpGs
(cg02261780, cg09595050, cg20193802, cg15309457, and cg05726109) were
further validated in tumor tissues and matched non-malignant tissues from
20 LUAD patients. Finally, validation of the seven CpGs with RRBS data of
cfDNA methylation was conducted and further proved the reliability of the 7-
CpGs methylation panel. In conclusion, our study identified seven novel
methylation markers from cfDNA methylation data which may contribute to
better prognosis for LUAD patients.
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Introduction

Lung cancer is a leading cause of cancer-related deaths worldwide, accounting for 18% of
all cancer-related deaths (Sung et al., 2021). The common histological subtype of lung cancer
is non-small-cell lung cancer (NSCLC, accounting for 80% of lung cancer cases), in which
LUAD is the major subtype and accounts for approximately 60% of NSCLC (Ferlay et al.,
2019). LUAD is usually diagnosed at an advanced stage due to the minimal and non-specific
early symptoms, and the limits of traditional screening methods such as chest radiography,
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sputum cytology, and computed tomography (Seijo et al., 2019). The
average 5-year survival rate of LUAD is less than 20% (Siegel et al.,
2021). Although the newly developed low-dose chest computed
tomography (LDCT) screening technology has been introduced for
the early detection of lung cancer, the increase in the survival rate
seems to be limited (National Lung Screening Trial Research Team
et al., 2011; Oken et al., 2011; Mazzone et al., 2021). Therefore,
improved diagnostic techniques are of great significance for better
outcomes of LUAD.

Considering the high costs of diagnostic techniques like LDCT,
cost-effective and more sensitive non-invasive liquid biopsy methods
have been taken into consideration. Great efforts have been made to
identify potential blood biomarkers for LUAD, including genetic and
epigenetic biomarkers (Spira et al., 2007; Ding et al., 2008; Ni et al., 2013;
Silvestri et al., 2015). However, none of them have been fully established
for the early diagnosis or prognosis of LUAD, due in part to the
inconsistency between the characteristics of tissue and blood samples.
Many biomarkers were found from tissue samples in previous studies,
and they might probably fail when applied to blood samples (Hong and
Kim, 2021). Therefore, it is necessary to identify novel biomarkers
which are effective in liquid biopsy as well as in tissue biopsy.

In recent years, high-throughput genome-wide DNA
sequencing technologies have rapidly developed and applied
largely to discover cancer biomarkers. Many of them can be
applied to the detection of circulating cell-free DNA (cfDNA)
released by cancer cells in the blood. Especially the detection of
cfDNA methylation levels can be achieved by whole-genome
bisulfite sequencing (WGBS), reduced representation bisulfite
sequencing (RRBS), and TET-assisted pyridine borane sequencing
(TAPS) (Feng et al., 2019; Liu et al., 2019). Hence, it is possible to
discover consistent methylation biomarkers directly from cfDNA in
blood compared with that of gDNA in tissue.

In the present study, we aimed to identify clinical methylation
biomarkers from cfDNA by using public RRBS data. By comparing
the genome-wide cfDNA methylation sequencing data between
LUAD patients and healthy donors, we found 725 differentially
methylated CpGs. Then XGBoost algorithm was performed to
identify seven CpGs associated with LUAD risk. In the training
phase, the 7-CpGs methylation prognostic model was established to
classify different prognostic subgroups and showed a significant
association with OS in LUAD patients. Based on bisulfite PCR, the
methylation levels of five CpGs (cg02261780, cg09595050,
cg20193802, cg15309457, and cg05726109) were further validated
in tumor tissues and matched non-malignant tissues from 20 LUAD
patients. Validation of the seven CpGs with RRBS data of cfDNA
methylation was further conducted and supported the reliability of
the 7-CpGs methylation panel. Finally, a hypermethylation CpG
locus (cg02261780) with its representing low-expression gene
(GNA11) was also identified, which may contribute to the
diagnosis and prognosis for LUAD patients (Figure 1).

Materials and methods

cfDNA methylomes

The cfDNA methylomes of lung cancer patients (n = 29) and
healthy donors (n = 74) were downloaded from CFEA (Yu et al.,
2020) (http://www.bio-data.cn/CFEA), which is a cell-free
epigenome atlas for human diseases. These methylomes were
detected by reduced representation bisulfite sequencing (RRBS).
CfDNA Methylomes with covered CpGs < 5M and CpGs with
sequencing depth <4 were removed. Finally, we collected 23 and
41 cfDNA methylomes from lung cancer samples and healthy

FIGURE 1
Workflow indicating study design. By comparing the genome-wide cfDNA methylation sequencing data between LUAD patients and healthy
donors, 725 differentially methylated regions were found. Then XGBoost algorithm was performed to identify seven CpGs associated with LUAD risk. In
the training phase, the 7-CpGs methylation prognostic model was established to classify different prognostic subgroups and showed a significant
association with OS in LUAD patients. Based on bisulfite PCR, the methylation levels of 5 CpGs (cg02261780, cg09595050, cg20193802,
cg15309457, and cg05726109) were further validated in tumor tissues and matched non-malignant tissues from 20 LUAD patients. Additionally, RRBS
data of cfDNA samples from CFEA were analyzed to validate the methylation levels of the seven CpGs. CFEA, Cell-Free Epigenome Atlas; TCGA, the
Cancer Genome Atlas; GEO, Gene Expression Omnibus; LUAD, lung adenocarcinoma.
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donors. The basic information and statistics of RRBS data, including
the mean value of mapped read depths and the percent of covered
CpG, were included in Supplementary Table S1.

DMC and DMR identification from cfDNA in
CFEA

Metilene (v0.2-8) (Juhling et al., 2016) was used to call
differentially methylated regions (DMRs) and sites (DMCs) from
RRBS of cfDNA in CFEA. The command calling DMR was
“metilene -M 300 -m 1 --minMethDiff 0.1 --threads 50 --mode
1 --mtc 2 --groupA normal --groupB cancer”, and the command
calling DMC was “metilene -M 300 -m 1 --minMethDiff 0.1
--threads 50 --mode 3 --mtc 2 --groupA normal --groupB
cancer”. DMCs fell into DMRs were used in the following analysis.

Trimmed RRBS reads were aligned to the reference genome using
Bismark version 0.18.2 with default parameters. The Bismark_
methylation_extractor program in the Bismark toolset was used to
extract methylated CpG from aligned bam files. First, cfDNA
methylomes with covered CpGs < 5M and CpGs with sequencing
depth <4 were removed. Second, we employed metilene (v0.2-8) to
identify DMR. Metilene is a segmentation algorithm to detect DMRs
between single samples as well as in groups of samples (Juhling et al.,
2016). As a distinguishing feature, it does not make assumptions on
underlying distributions or background models and is applicable to
WGBS as well as RRBS data without further parameter adjustments. In
contrast to other approaches, metilene proposes a scoringmodel to find
maximum intergroup methylation differences within a genomic
interval of minimum length in combination with a nonparametric
test. Based on a circular binary segmentation (CBS) (Siegmund., 1986;
Olshen et al., 2004), metilene scans for pairs of change points within the
mean difference signal (MDS), i.e., the difference of CpG-wise mean
methylation level in the groups, delimiting a region with homogeneous
methylation difference. Subsequently, intervals are tested for similarity
using a two-dimensional Kolmogorov-Smirnov test (2D-KS test)
(Fasano and Franceschini, 1987). Initially, the genome is
presegmented to avoid calling DMRs containing long stretches
without methylation information. These regions are recursively
segmented until 1) a region contains less than a user-defined
number of CpGs, or 2) no p-value improvement is achieved. Briefly,
within a region [s, t], a window [a, b] is sought using the scoring
function Zs, t (a, b), such that the MDS attains a maximal change. The
algorithm checks for the existence of short methylation valleys
embedded into longer differentially methylated regions and takes
care of situations in which regions of differential up- and down-
methylation are spatially adjacent. p values were adjusted by
Benjamini–Hochberg (FDR). Finally, DMRs with FDR <0.05 and
minimum mean methylation difference >= 0.1 were considered as
significant DMRs.

Identification of seven CpGs associated with
LUAD risk and construction of the
prognostic model

In the training phase, CpGs in the 725 LUAD DMRs and DMCs
of the discovery cohort were trained with LUAD cohorts based on

analyses with the Illumina Infinium
HumanMethylation450 BeadChip collected from The Cancer
Genome Atlas (TCGA-LUAD, https://cancergenome.nih.gov/)
and the Gene Expression Omnibus (GEO) dataset. XGBoost
algorithm (Wang et al., 2020; Wu et al., 2020) was performed
subsequently to identify LUAD-specific CpGs with an important
score >0.1. In our XGBoost model, we employed gradient tree
boosting algorithm, a special form of gradient boosting machine
and predicting, by combining the results of multiple weak learners.
XGBoost classifier was introduced as the implementation of gradient
tree boosting algorithm. XGBoost stands for eXtreme Gradient
Boosting, which combines weak learners (decision trees (DTs)) to
achieve stronger overall class discrimination. XGBoost learned a
series of DTs to classify the labeled training data. Each DT comprises
a series of rules that semi-optimally split the training data. Its
sparsity-aware split search approach makes it suitable for our
dataset where missing values commonly appear. Successive trees
that ‘correct’ the errors in the initial tree were learned to improve the
classification of positive and negative training examples. The overall
survival analysis, Time-ROC curve, and multivariate regression
analyses were performed to evaluate the prognostic value of the
7-CpGs methylation panel. The following stringent feature selection
pipeline was used for constructing the prognostic model. 1)
Standard deviation (SD) across all tumor samples should be >0.2.
2) FDR (Benjamini/Hochberg method) for every probe was
calculated via univariate Cox regression in each cancer, and the
probes with FDR <0.05 were remained for further filtration. 3) Log-
rank test p-value of every probe for overall survival time among
tumor samples should be <0.05. 4) Multivariate Cox regression was
performed for the remained probes, and then stepwise regression
was conducted, the probes of multivariate cox regression p-value >0.
05 were removed from the feature set in each iteration. Finally, the
remaining probes were used to fit the prognostic classifier. Python
package lifelines (http://lifelines.readthedocs.io/en/latest/index.
html) and Cox’s proportional hazard model were implemented in
Cox regression analysis.

Processing DNA methylation and gene
expression data

For the correlation analysis of DNA methylation and gene
expression, Entrez Gene ID was used to map sites assigned to a
gene. Pearson’s correlation analysis was performed to obtain the
correlation between DNA methylation and gene expression with
SMART (http://www.bioinfo-zs.com/smartapp/) (Li et al., 2019).
Those having an absolute Pearson correlation coefficient r) >= 0.3, 0.
2–0.3, or 0.1–0.2 and p <= 0.05 were defined as strong, moderate, or
weak correlations, respectively.

RNA-seq data analysis

The R/Bioconductor package DESeq2 (Genome Biol. 2014; 15:
550) was used to normalize raw RNA-seq read count from the
LUAD cohort in TCGA. In total, 526 LUAD samples and 59 normal
lung tissues were included in this analysis. Similar to our previous
study (Li et al., 2021), the false discovery rate (FDR q-value) was
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calculated by adjusting p-values with the Benjamini–Hochberg
method. Genes with FDR q-value <0.05 and |Log2 (Fold change)
| > 1 were considered as DEGs.

Clinical samples

Samples were collected from twenty patients pathologically
diagnosed with LUAD. Matched adjacent normal tissues and
primary tumors were obtained from all twenty patients. All
patients were treatment-naive before tumor resection. The
demographic and clinical characteristics of the patients were
summarized in Table 1.

Bisulfite PCR

Genomic DNA of the tumor and adjacent normal tissues
from LUAD patients were isolated using the QIAamp DNAMini
kit (Qiagen). One microgram of DNA was bisulfite-treated using
the EZ DNA methylation Gold kit (Zymo Research). The
bisulfate-treated and purified DNA was used for PCR or
nested PCR. For bisulfite sequencing, the PCR products were
gel extracted and ligated into a pCE2 TA/Blunt-Zero vector by
using the TA cloning system (Vazyme). At least 10 separate
clones were chosen for sequencing analysis. For bisulfite
pyrosequencing, the PCR products were labeled with biotin
and then conducted to pyrosequencing. PCR was conducted
with EpiArt HS Taq Master Mix (Vazyme) following the
manufacturer’s instructions. Bisulfite pyrosequencing was
conducted with Pyromark Q48 Autoprep (Qiagen). Successful
analysis showed that the percentage of samples with good quality
was all 100%.

The primers for bisulfite PCR or nested PCR were designed by
MethPrimer (Li and Dahiya, 2002) or PyroMark Assay Design 2.0,
and were listed as follows:

cg02261780 (GNA11):
Outer Pair: OF: 5′TTAGGTTTTGGGGTAGTAGGG3’; OR:

5′AAACAATAAACACTATCTAAAAACATCTAT3′
Inner Pair: IF: 5′GGTTTGTAATTAGGTGGAGTA3’; IR:

5′AAAAAACTCCTAACATAAAATAAATAAAAA3′ (374 bp; 58°C)
cg09595050 (PRDM8):
F:5′AAGTTTAGGGATTTGGGTGTGTAGG3′

R:5′CCTTCCCACTCCTATAAAAAACTATAAC3′
(88 bp; 55°C)

cg20193802 (GP1BB/SEPT5):
F:5′ATGAGGTTGTTTTGGGTTAGTTTGT3′
R:5′CCCCCAAAACCTAATCTCCCTA3’ (179 bp; 55°C)
cg15309457:
F:5′GGGGAGTGAAGAGGGTTTTTTATAGT3′
R:5′CAAAATATTTCCATCTAAAATCCTACAC3′

(253 bp; 55°C)
cg05726109 (GP1BB/SEPT5):
F:5′TAGTGGAGGGGATGGGTTAGGTA3′
R:5′CCCCACATACTTCCTCATCCTTC3′ (201 bp; 55°C)
The sequencing primers for bisulfite pyrosequencing were listed

as follows:
cg09595050 (PRDM8): 5′GAGGGTTGGAGTTATT3’;
cg20193802 (GP1BB/SEPT5): 5′GGTTTAGAGTGGGTTG3’;
cg15309457:5′GGGTTTTTGATAGGTGTT3’;
cg05726109 (GP1BB/SEPT5): 5′CCATACCACTATCCTAAA

TCAATT3’.

Statistical analysis

The statistical analysis was done by using Student’s t-test with
Graphpad and p < 0.01 or 0.05 or adjusted p < 0.01 or 0.05 was
considered significant. Outcome variables were tested for normality
using the Kolmogorov-Smirnov test. Levene’s test was used to test
variance equality. The ROC analysis was performed to determine the
area under the curve (AUC) and was analyzed with Graphpad and
SPSS v26. Survival analysis was performed using the log-rank test
with DNMIVD (Ding et al., 2019) (http://119.3.41.228/dnmivd/
index/) or Genpia (Tang et al., 2017) (http://gepia.cancer-pku.cn/
detail.php).

Results

Identification of differentially methylated
regions and sites in cfDNA in LUAD

In the discovery phase, by comparing the genome-wide cfDNA
methylation data of LUAD patients and healthy donors from the
CFEA database, a total of 725 DMRs were identified. 154 of these
CpG loci gained DNA methylation, whereas 571 loci were
hypomethylated in LUAD (Figure 2A). GREAT (McLean et al.,
2010) annotation analysis revealed that those LUAD-specific
methylation changes often affected genes with roles in definitive
hemopoiesis (adjusted p = 8.38E-8), negative regulation of Notch
signaling pathway (adjusted p = 3.04E-6) and genetic imprinting
(adjusted P = 1E-5).

Building a prognostic 7-CpGs methylation
panel

In the training phase, by combined analysis of DNA
methylation profiles of LUAD tissues and adjacent normal
tissues from the TCGA and GEO databases, the 725 DMRs

TABLE 1 The clinicopathologic features of validation cohorts.

Characteristics Category

Gender Male (n = 14), Female (n = 6)

Age <60 (n = 4), ≥60 (n = 16)

Histological type Adenocarcinoma (n = 20)

Tumor size ≤3 cm (n = 14), >3 cm (n = 6)

Stage I/II (n = 10), III/IV (n = 10)

Lymph metastasis N0(n = 7), N1/N2/N3 (n = 13)

Smoking habit Never (n = 12), Smoker (n = 8)
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identified from CFEA database were narrowed down to seven
CpGs using the XGBoost algorithm (Figure 2B). The
corresponding genes might serve as potential biomarker
candidates with diagnostic and prognostic possibilities. The
characteristics of the identified CpGs associated with LUAD
risk were shown in Table 2.

Then the seven CpGs were conducted to predict OS in the
training cohort. We first performed survival analysis for each CpGs
in TCGA, and we found that cg02261780 (adjusted p = 0.0306) and
cg14439622 (adjusted p = 0.0131) are significant (Supplementary
Table S2). Since this 7-CpG panel was identified by using a
diagnostic model, the power of each CpG in prognosis may be

FIGURE 2
Identification of methylated genes associated with LUAD risk and construction of a prognostic 7-CpGs methylation panel. (A) Heatmap of the
methylation levels of DMRs from CFEA datasets. The DMRs and DMCs between LUAD patients and healthy donors were analyzed with Metilene and data
downloaded from CFEA, including cfDNA methylomes of LUAD patients (n = 29) and healthy donors (n = 74) by RRBS. CfDNA Methylomes with covered
CpGs < 5M and CpGs with sequencing depth <4 were removed. 23 and 41 cfDNAmethylomes from cancer samples and healthy donors were finally
collected. (B) 7 CpG sites differentially methylated between 460 LUAD tissues and 32 adjacent normal tissues from TCGA and GEO cohorts were
identified with the XGBoost algorithm in the training phase. DNMIVD was employed to build the diagnostic model based on the XGBoost algorithm, and
whether the sample is normal, benign, or malignant was then predicted, and the basic information about the inputted CpGs was obtained, including
methylation status and important scores. The important score for each CpG is calculated by XGBoost. The importance of the seven CpG sites was ranked
by the important scores. (C) Survival analysis of the 7-CpGs methylation panel was conducted with a multivariate proportional hazards regression model
with training cohort. (D) ROC curve analysis of the 7-CpGs methylation panel was conducted with Logistic regression with training cohort. (E) The
interactive unsupervised hierarchical clustering and heatmap associated with the methylation profile of screened CpGs.
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different. So we next conducted multivariate proportional hazards
regression model based on the combo of 7-CpGs, and the result
showed that the 7-CpGs methylation panel was significantly
associated with OS. The low-risk group was associated with
increased OS times compared with the high-risk group
(permutation p = 0.011) (Figure 2C), with DMC analysis in cell-
free blood samples shown in Supplementary Table S3. Finally, the
receiver operating characteristic (ROC) curve analysis showed that
the methylation status of the 7-CpGs methylation panel had
statistically significant power to distinguish people with low-risk
from high-risk (Figure 2D). And the interactive unsupervised
hierarchical clustering and heatmap associated with the
methylation profile of screened CpGs were shown in Figure 2E.
Finally, by further analyzing the prognostic ability of the 7-CpGs
methylation panel in 10 cancer types with methylation data from
tissue samples, we found that the panel also showed great prognostic
roles in some cancer types, such as kidney renal clear cell carcinoma
(KIRC), lung squamous cell carcinoma (LUSC), and thyroid
carcinoma (THCA), in addition to LUAD. And when analyzing
the diagnostic value of the 7-CpGs methylation panel, it exerted the
highest diagnostic power in LUAD compared with other cancer
types (Supplementary Table S6). Considering that these analyses
were conducted with methylation data gained from tissue samples
instead of blood samples, it could not be evaluated whether the 7-
CpGs methylation panel could also be well applied to the blood
samples of KIRC, LUSC, or THCA. Nevertheless, the diagnostic and
prognostic power of the panel in LUAD was clear since the seven
CpGs were discovered from the cfDNA methylation data of LUAD.
Collectively, these results demonstrated the significant power of the
7-CpGs methylation panel for the diagnosis and prognosis of LUAD
in liquid biopsy.

Methylation of cg02261780 and the
representing gene GNA11 in LUAD

By characterizing the seven CpGs associated with LUAD risk, we
found that the CpGs were consistently hypermethylated
(cg14780466, cg02261780, cg09595050, cg20193802, cg14439622,
and cg05726109) or hypomethylated (cg15309457) in LUAD tissues,
which further confirmed the results of the bioinformatics analyses in
plasmas (Figure 3A). Then we analyzed the correlation between the

methylation of the CpGs and gene expression, and we found that
among the seven CpGs, the methylation level of cg02261780 was
negatively correlated with gene expression of GNA11 (Pearson
coefficient r = −0.29; adjusted p = 8.4E-11) (Figure 3B,
Supplementary Table S3), indicating a methylation-dependent
transcriptional regulatory mechanism for GNA11. In addition,
the methylation of the GNA11 promoter was also upregulated in
the LUAD tissues than that in the normal tissues (Figure 3C).
Opposite to the elevated methylation changes, GNA11 expression
was downregulated in LUAD (Figure 3D).

Then the predictive role of cg02261780 methylation was further
analyzed. The median of a ß-value of cg02261780 was used as the
cut-off point to distinguish between the high-risk and middle-risk
groups, and the KM curve could effectively distinguish the >median
and <median groups (log-rank p = 0.013) (Figure 3E). On the other
hand, based on GNA11 expression levels, patients could also be
classified into two distinct prognostic subgroups, in which tumors
exhibiting decreased GNA11 expression levels were associated with
shorter OS time (log-rank p = 0.05) (Figure 3F).

Together these results indicated that GNA11 may serve tumor
suppressive roles in the progression of LUADs, and may represent a
novel biomarker for this disease. The integrated epigenetic and
transcriptional assessment of GNA11 may be useful for optimizing
the risk stratification of LUAD patients.

Validation of seven CpGs by bisulfite PCR
and RRBS

We next attempted bisulfite PCR on tumor tissues and matched
non-malignant tissues from 20 LUAD patients to confirm the
clinical roles of cg02261780, cg09595050, cg20193802,
cg15309457, and cg05726109 methylation in LUAD. Consistent
with the cfDNA data, the methylation levels of the cg02261780,
cg09595050, cg20193802, and cg05726109 locus were indeed
elevated between tumor tissues compared with normal tissues,
while the methylation level of the cg15309457 locus was
decreased in tumor tissues compared with normal tissues
(Figure 4A). ROC curve analysis showed that the methylation
levels of cg02261780, cg09595050, cg20193802, cg15309457, and
cg05726109 all had statistically significant power to discriminate
between normal tissue and tumor tissue (Figure 4B; Table 3).

TABLE 2 Characteristics of the 7-CpGs methylation panel.

CpG Gene symbol Group Relation to island Methylation statusa Score

cg14780466 GDF7 Body Island hyper 0.17,244,898

cg02261780 GNA11 Body Island hyper 0.16671449

cg09595050 PRDM8 5′UTR Island hyper 0.16359529

cg20193802 GP1BB/SEPT5 TSS1500/Body Island hyper 0.13393398

cg15309457 NA NA Island hypo 0.12630065

cg14439622 GATA6 Body Island hyper 0.12089247

cg05726109 GP1BB/SEPT5 TSS1500/Body Island hyper 0.1161142

aMethylation levels of the CpG locus in the datasets.
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Therefore, the methylation levels of cg02261780, cg09595050,
cg20193802, cg15309457, and cg05726109 could be potential
diagnostic markers for LUAD.

According to the progress of LUAD, we divided the patients into
the early stage (stage I-II) and advanced stage (stage III-IV) groups.

The methylation levels of cg02261780 and cg09595050 in patients
with advanced stages were highly elevated compared with the
patients in the early stages. And the methylation levels of
cg05726109 in patients in advanced stages were decreased
compared with the patients in early stages (Figure 4C). ROC

FIGURE 3
Prognostic significance of GNA11 expression and methylation in LUAD. (A) The methylation levels of cg14780466, cg02261780, cg09595050,
cg20193802, cg15309457, cg14439622, and cg05726109 between normal and LUAD tissues were analyzed with DNMIVD, and the results were shown
with the scatter plot. (B) The correlation between cg02261780 and GNA11 expression was analyzed with SMART across all transcriptome (Pearson
coefficient r = −0.29; adjusted p = 8.4E-11). (C) The methylation levels of the GNA11 promoter between adjacent normal and LUAD tissues were
analyzed with DNMIVD and were shown with the boxplot (NNormal = 32, NTumor = 460, adjusted p = 1.30e-03). (D) The mRNA levels of GNA11 between
adjacent normal and LUAD tissues were analyzed with DNMIVD, and the results were shown with the boxplot (NNormal = 59, NTumor = 526, adjusted p =
7.61e-24). (E) Kaplan-Meier plots were produced by DNMIVD and showed the discriminatory power of cg02261780 methylation by the median of a ß-
value (p = 0.013, log-rank test). (F) Survival analysis by Genpia showed the association of GNA11 expression levels with OS time (p = 0.05, log-rank test).
The dashed lines indicated the 95% confidence interval information of the Cox proportional hazard ratio in the survival plot. The cohorts were analyzed
from each website annotated above.
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FIGURE 4
Diagnostic significance of cg02261780, cg09595050, cg20193802, cg15309457, and cg05726109 methylation levels. (A) The methylation levels of
the cg02261780 (p =1.9E-4), cg09595050 (p = 1.4E-6), cg20193802 (p = 2.0E-9), cg15309457 (p =4.0E-4), and cg05726109 (p = 6.9E-9) loci in adjacent
normal tissues and LUAD tumor tissues from 20 LUAD patients were detected by bisulfite PCR, and the results were shownwith the scatter plot asmean ±
SEM. (B)ROC curve analysis shows the sensitivity and specificity for discrimination between normal tissuewith tumor tissue by themethylation levels
of cg02261780, cg09595050, cg20193802, cg15309457, and cg05726109. (C) The methylation levels of the cg02261780, cg09595050, cg20193802,
cg15309457, and cg05726109 loci in tumor tissues in 20 LUAD patients with different stages. (D) ROC curve analysis shows the sensitivity and specificity
for discrimination between the early stage and advanced stage by themethylation levels of cg02261780 and cg09595050. (E) The cfDNAmethylomes of
lung cancers (n = 6) and healthy donors (n = 33), which were detected by RRBS, were downloaded from CFEA, and the methylation levels of these CpG
sites were analyzed.
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curve analysis showed that the methylation levels of cg02261780 and
cg09595050 had statistically significant power to discriminate
between advanced stage and early stage. The area under the ROC
curve of cg02261780 and cg09595050 was 0.780 and 0.760, with a
sensitivity of 80% and 80%, specificity of 70% and 70%, and 95% CI
of 0.566–0.994 (p = 0.0343) and 0.539–0.981(p = 0.0494),
respectively (Figure 4D). These results suggested that the
methylation levels of cg02261780 and cg09595050 might be used
to discriminate between different stages of LUAD.

Additionally, we analyzed the methylation levels of the markers
in the cfDNA with published data from CFEA. As indicated by
Figure 4E, the methylation levels of cg14780466, cg02261780,
cg09595050, cg20193802, cg14439622, and cg15309457 from
cfDNA of LUAD patients and healthy donors were consistent
with those in our discovery phase and training phase, which
further supported the reliability of our 7-CpGs methylation panel.

Discussion

In the present study, we used the whole genome methylation
data in a discovery cohort and got 725 significant DMRs by
comparing the methylation levels of cfDNA from LUAD patients
and healthy individuals. Subsequently, we performed the XGBoost
algorithm similar to our previous study (Wang et al., 2020) to
identify seven CpGs associated with LUAD risk. We also reported a
novel prognostic model for LUAD based on the DNA methylation
levels of the seven CpGs by analyzing the association with OS.
Among the seven CpG loci, we found that the methylation of
cg02261780 and the expression of its representing gene
GNA11 were negatively correlated and were associated with the
OS of LUAD patients. The new seven CpGs methylation feature and
hypermethylation of GNA11 exhibit particularly promising
significance for LUADs. Finally, based on bisulfite PCR, the
methylation levels of five CpG loci (cg02261780, cg09595050,
cg20193802, cg15309457, and cg05726109) were further validated
in tumor tissues and matched non-malignant tissues from 20 LUAD
patients. DNA methylation levels of the five CpG loci have
significant diagnostic value to discriminate normal tissue from
tumor tissue. DNA methylation levels of the cg02261780 and
cg09595050 loci could discriminate early stage from the advanced
stage. The methylation levels of the markers in cfDNA samples with
published data from CFEA further validated the reliability of our 7-
CpGs methylation panel.

Of the seven methylation markers in the prognostic panel
associated with LUAD risk, the methylation of cg02261780 and

the expression of the related gene GNA11 demonstrated
particularly promising significance for LUAD diagnosis and
prognosis. GNA11, one of the Guanine nucleotide-binding
protein subunit a (GNA) family members, can encode
G-protein activating subunits binding to G protein-coupled
receptors (GPCRs) and play central roles in cellular signaling
transduction (Pierce, Premont, and Lefkowitz, 2002). G-proteins
and GPCRs are ubiquitously expressed in various types of tissues
and cells, and GNA11 plays an important role in multiple cell
functions, including transcription, motility, and secretion
(O’Hayre et al., 2013). In recent years, advances in whole
genome sequencing technology have unearthed a previously
unappreciated widespread role of GNA11 in melanomas
(O’Hayre et al., 2013). GNA11 aberrations were found to
exhibit the strongest association with ocular melanoma and
appendiceal cancer across a range of malignancies (Van
Raamsdonk et al., 2010; Danielli et al., 2011; Parish et al.,
2018). Besides mutations, the GNA11 gene promoter was also
found to be hypermethylated in hepatocellular carcinoma (HCC)
and was proposed as a promising biomarker for diagnosis and
targeted therapy (Livingstone et al., 2020). Together, these results
indicated that epigenetic and transcriptional abnormalities in
GNA11 were commonly implicated in the tumorigenesis of
human cancer. However, the specific roles of GNA11 in
regulating tumorigenesis and the relevant mechanisms still
need further study, and whether GNA11 is regulated by the
DNA methylation mechanism is still unknown (Larribère and
Utikal, 2020). In the current study, we found that the methylation
level of the cg02261780 locus was elevated in LUAD compared
with normal tissue, and the methylation level was negatively
correlated with GNA11 gene expression. Hypermethylation of
the GNA11 probe cg02261780 was correlated with a poorer
prognosis in LUAD patients.

Collectively, these results suggested that hypermethylation of
the GNA11 probe cg02261780 downregulated GNA11 expression
and was associated with poor survival outcomes in patients with
LUAD, which offered new insights into the role of GNA11 in
tumorigenesis. We also noticed that there was no
GNA11 aberration observed in LUAD, suggesting that a
methylation-dependent transcriptional regulatory mechanism
for GNA11 plays an important role in the occurrence of
LUAD, but not GNA11 aberration (Supplementary Figure S1).
We further investigated the association between GNA11 and
tumor stage, and found that the expression level of GNA11 in
early and advanced stages was significantly lower than that in
normal tissue (Supplementary Figure S2). However, no

TABLE 3 ROC curve analysis of the diagnostic efficiency of the five CpGs.

CpG AUC Sensitivity (%) Specificity (%) 95% CI p-Value E)

cg02261780 0.811 55 100 0.664–0.958 8.0–4

cg09595050 0.930 90 90 0.838–1.022 3.0–6

cg20193802 0.998 100 95 0.989–1.006 7.3–8

cg15309457 0.858 100 95 0.712–1.003 1.0–4

cg05726109 0.988 95 95 0.963–1.012 1.3–7
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significant differences were observed at different tumor stage,
indicating that dysregulation of GNA11 may mainly contribute to
the tumorigenesis of LUAD, but not progression.

Evaluation of DNA methylation profiles is a promising
strategy for the diagnosis and prognosis of not only lung
cancer but also other cancer types, including breast cancer,
colon cancer, liver cancer, and so on (Hao et al., 2017; Luo
et al., 2021). And previous studies have revealed the
advantages of cfDNA detection over traditional tumor biopsy
(Wan et al., 2017). First, detection with cfDNA from blood
sample is more convenient and non-invasive, which is more
beneficial for clinical application. Second, we can find the
most significant differential methylation sites in blood with
cfDNA methylome. Third, plasma cfDNA can be used for
dynamic monitoring of efficacy or prognosis. In addition,
cfDNA might carry DNA methylation information from
metastases, which is hard to acquire with tissue biopsy. Hence,
it is possible to trace the metastatic state of LUAD patients with
cfDNA methylation information. Finally, cfDNA can provide a
full view of the molecular landscape of primary cancer, avoiding
the bias with tissue biopsy caused by tumor heterogeneity.
Therefore, great efforts have been made in discovering cfDNA
biomarkers, especially cfDNA methylation markers. In most
previous studies, DNA methylation markers were found by
comparing the differential methylation regions between tumor
tissue and normal adjacent tissue (Liggett et al., 2011; Langevin
et al., 2012; Ooki et al., 2017; Xu et al., 2017; Vrba and Futscher,
2018). However, such a strategy might encounter a problem that
tissue-originated DNA biomarkers might not be able to be
detected in plasma since tumor-originated circulating tumor
DNA (ctDNA) might only account for a minimal part of
cfDNA (Pantel and Alix-Panabieres, 2019). Hence some high-
risk methylation sites in tumor tissue might be missing in the
ctDNA/cfDNA. In recent years, some studies have been trying to
discover DNA methylation markers from cfDNA with high-
throughput technologies to compensate for such inconsistency
between cfDNA and gDNA of tumor tissue. For instance, novel
cfDNA methylation markers for breast cancer were discovered
with the joint analysis of methylation profiles from cfDNA and
tumor tissues. And it was found that combining the DNA
methylation characteristics with traditional diagnostic imaging
can improve the current clinical practice for breast cancer (Liu
et al., 2021). Although few similar strategies have been introduced
to lung cancer, yet it has been reported that a stacked ensemble
model has been established using cfDNA fragmentation features
with superior sensitivity for detecting early-stage lung cancer
with WGS data from cfDNA (Luo H et al., 2020).

Based on these successful attempts, we tried to explore the
possibility of finding novel DNA methylation markers for LUAD
from cfDNA methylome data. And our bisulfite PCR data from
LUAD tissues and matched non-malignant tissues was highly
consistent with the methylation feature of cfDNA, which further
suggested the effectiveness of the strategy by combining the
differential methylation profile between cfDNA from healthy
people and LUAD patients to discover novel DNA methylation
biomarkers. However, two of the seven CpGs, cg14780466, and
cg14439622, were not validated by experiments because of
technological constraints in PCR primers design. Our further

study will continue to track the diagnostic and prognostic
efficiencies of these seven CpGs associated with LUAD risk with
high throughput technologies in a multicenter study for
further validation. Nevertheless, the seven CpGs associated with
LUAD risk are promising diagnostic and prognostic biomarkers
for LUAD.

Additionally, the methylation states of DNA are universally
altered in the early stage of various cancer types and such changes
can be carried by cfDNA released from tumor cells (Feinberg,
Ohlsson, and Henikoff, 2006). Hence, the detection of cfDNA
methylation could be a promising approach for the early
detection of various cancer types (Warton and Samimi, 2015).
Similar strategies combined methylome analysis of cfDNA and
tissues in cancer patients to identify less-invasive cancer-specific
cfDNA markers have been reported in other cancer types, including
breast cancer (Liu et al., 2021) and hepatocellular carcinoma (Li
et al., 2021). It is reported that by utilizing specific analysis methods,
ultrasensitive and robust cancer detection can be achieved by
integrating DNA sequence and methylation information in
plasma cfDNA from hepatocellular carcinoma (HCC) patients
and healthy donors (Li et al., 2021). Not only cfDNA from
plasma, but cfDNA from cerebrospinal fluid could be conducted
to WGBS for discovering DNA methylation markers for
medulloblastoma (Li et al., 2022). Together, these studies
confirmed the feasibility of discovering DNA methylation
markers by the joint analysis of cfDNA from plasma and
genomic DNA from tissue for various cancer types, not only
for LUAD.

In conclusion, the methylation levels of the 7-CpGs panel are
promising biomarkers for diagnosing and predicting the OS of
LUAD. And one of the seven CpGs, cg02261780, and its
representing gene (GNA11) could not only be potential
diagnostic and prognostic biomarkers, but also the potential
therapeutic target of LUAD.
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