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Accumulating evidence suggests that aging and senescence play crucial roles in
tumorigenesis, cancer progression, and treatment. However, the influence of
aging and senescence-related genes (ASRGs) on clinical outcomes and treatment
options in lung adenocarcinoma (LUAD) patients remains unknown. Here, we
developed an aging and senescence-related scoring system, ASRS, by integrating
bulk transcriptome data from 22 LUAD datasets. In 3,243 LUAD samples, higher
ASRS scores were associated with poor tumor stage and pathological grade, as
well as shorter overall survival, disease-free survival, and recurrence-free survival.
Additionally, ASRS was associated with different immune patterns in the tumor
microenvironment (TME). Importantly, ASRS was found to predict therapeutic
efficacy, with patients having a low ASRS benefiting from immunotherapy and
those with a high ASRS responding better to chemotherapy. Therefore, ASRS
represents a previously overlooked characteristic of LUAD that can influence
patient outcomes and treatment success.
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Introduction

Lung cancer is the second most prevalent malignancy worldwide and is responsible for
the majority of cancer-related deaths due to its rapid progression and distant metastasis
(Sung et al.,, 2021). In China, lung cancer accounts for 37.0% and 39.8% of the world’s
incidence and mortality, respectively, with a 5-year survival rate of only 10%-15% (Thai
et al.,, 2021). Among all pathological types of lung cancer, lung adenocarcinoma (LUAD)
currently predominates. Despite recent advances in comprehensive treatments, metastasis
remains a significant obstacle to achieving favorable clinical outcomes (Wu et al., 2021).
Various therapeutic modalities, particularly immunotherapy, have recently emerged as
crucial components of therapy and have demonstrated potent protective effects on
LUAD patients (Brody, 2020). However, there are substantial differences in drug
response even among patients with similar clinicopathological characteristics (Singh
et al,, 2021). This suggests that conventional classifications, particularly the pathological
TNM staging system, are inadequate for accurately predicting therapeutic response.
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Consequently, there is an urgent need to develop a novel molecular
feature that can precisely identify subgroups of LUAD patients who
are more likely to benefit from therapeutic regimens.

Cellular senescence, a state of irreversible cell cycle arrest, has long
been regarded as an antitumor mechanism. This phenomenon was first
observed in the early 1960s by Hayflick and Moorhead in their classical
experiments, where human diploid fibroblasts cultured in vitro ceased
to proliferate after a certain number of divisions. It was speculated that
cellular senescence may play an essential role in suppressing
tumorigenesis, as opposed to the indefinite proliferation exhibited by
cultured tumor cells (Hayflick and Moorhead, 1961). Subsequent
studies showed that overexpression of several oncogenes, such as
RAS signaling pathway genes, RAF, MEK, MOS, and BRAF, can
induce cellular senescence (Serrano et al., 1997; Campisi, 2005; Braig
and Schmitt, 2006; Mooi and Peeper, 2006). Moreover, many
experiments have highlighted the significance of cellular senescence
as an important antitumor defense mechanism and a safe control
mechanism to prevent tumor transformation of cells in the organism
(Prieur and Peeper, 2008; Chandeck and Mooi, 2010). Recently, the use
of aging-related gene signatures as diagnostic and prognostic
attracted considerable attention from cancer
researchers. Nevertheless, the molecular mechanisms and predictive

biomarkers has

functions of aging and senescence-related genes (ASRGs) in LUAD
remain to be elucidated.

In this study, we analyzed the GSVA enrichment of ASRGs in
22 independent LUAD cohorts and uncovered the involvement of
the aging and senescence-related score (ASRS) in LUAD
progression, immune cell infiltration, immunomodulators, and
immunotherapy response. Ultimately, our findings demonstrated
that ASRS, an age and senescence-related scoring system, was a
robust predictor not only of LUAD patient prognosis but also of
immunotherapy efficacy.

Materials and methods
Data collection

In this study, we analyzed 22 independent LUAD cohorts, of
which only the TCGA-LUAD cohort was an RNA-seq dataset
obtained from the USCS Xena website. The other 21 LUAD
cohorts were Microarray datasets retrieved from the GEO
database, including GSE68571, GSE3141, GSE11969, GSE68465,
GSE8894, GSE13213, GSE11117, GSE19188, GSE14814,
GSE29013, GSE31210, GSE26939, GSE29016, GSE37745,
GSE42127, GSE30219, GSE50081, GSE63459, GSE72094, and
GSE31546. We excluded samples without survival status, those
with overall survival (OS) times <30 days, and duplicates,
resulting in the inclusion of 3243 LUAD patients. We retrieved a
total of 667 aging and senescence-related genes (ASRGs) from the
Molecular Signatures Database (http://www.gsea-msigdb.org/),
which are listed in Supplementary Table SI.

Gene set variation analysis (GSVA)

In this study, we performed GSVA enrichment analysis of
667 ASRGs in 22 datasets, and quantified the activation level of
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aging and senescence-related pathway in each LUAD sample for
subsequent analysis. Gene Set Variation Analysis (GSVA) is a non-
parametric and unsupervised analytical approach that identifies
pathways in different samples by
transforming the gene expression matrix of each sample into a

enriched metabolic

gene set expression matrix. GSVA does not require prior differential
analysis between samples as it can directly calculate the variation
fraction of specific gene sets in each sample using the expression
matrix.The following was the parameter settings: pvalueCutoff =
0.05, and pAdjustMethod = BH.

Immune analysis

The expression profiles of different cohorts were entered in the
“IOBR” package to obtain the final immune cell content matrix. In
addition, we performed Spearman correlation analysis between
ASRS and mRNA expression of immunomodulators. GSVA was
also done with the same settings in anti-PD-1, anti-PD-L1, and anti-
CTLA-4 immunotherapy groups, and survival and immune
response were assessed.

Drug prediction analysis

We investigated potential therapeutic drugs in the Genomics of
Drug Sensitivity in Cancer (GDSC) and PRISM databases
using ASRS.

Statistical analysis

For continuous variables with a normal distribution and
homogeneity of variance, a t-test with an independent sample
was utilized. For non-normal distribution parameters, the
Wilcoxon rank-sum test was performed. Via the Pearson
correlation coefficient test, the correlation was analyzed.p values
less than 0.05 were deemed statistically significant (*p < 0.05, **p <
0.01, and ***p < 0.001).

Results

ASRS based on GSVA in the multicenter
study

First, we conducted a GSVA analysis on all sample of
22 independent LUAD cohorts, in which the mean ASRS values
were relatively close in most of the datasets, indicating that the ASRS
levels were relatively close among LUAD patients in each
independent cohort, and only the GSE14814 cohort was
significantly outlier (Figure 1A). To further investigate whether
ASRS is involved in disease progression in LUAD, we compared
samples of different tissues, stages, and grades. In the GSE11117 and
GSE68465 cohorts, the expression level of ASRS in tumor samples
was considerably higher than that in neighboring normal tissues
(Figure 1B). Stage II patients in the GSE13213 and
GSE14814 cohorts had the lowest ASRS in tumor staging, and in
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Relationship between ASRS and clinicopathological features in different cohorts. (A) The expression levels of ASRS in 22 independent cohorts. (B)
Expression levels of ASRS in adjacent non-tumor and LUAD tissues in the GSE11117 and GSE68465 cohorts. Relationship between ASRS and different
LUAD stage (C), grade (D), T-stage (E), N-stage (F), and M-stage (G) in different cohorts.

the other cohorts ASRS increased with increasing staging. However,
the ASRS of stage IV patients was lower in the GSE41271,
GSE42127, and TCGA-LUAD cohorts, which may have been
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caused by the small number of stage IV patients, hence creating
a substantial bias (Figure 1C). In terms of pathological grading,
ASRS increased with increasing pathological grading in the
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ASRS was associated with prognosis. (A) Correlation between ASRS expression and OS, DFS, RFS, DSS, and PFS of different cohorts. (B—H)
Kaplan—Meier curves of OS, and DFS stratified by the low- and high-expression of ASRS in different cohorts.

GSE26939 and GSE68465 cohorts (Figure 1D). Similarly, in T-stage
(Figure 1E), N-stage (Figure 1F), and M-stage (Figure 1G), ASRS
significantly increased with disease progression. Taken together,
changes in aging and senescence-related pathways in LUAD may be

involved in disease progression.

ASRS was associated with prognosis

To study further the correlation between ASRS and the
prognosis of LUAD patients, the univariate Cox regression

Frontiers in Genetics

analysis and Kaplan-Meier survival analysis were performed
firstly in the different cohorts and different survival outcomes. In
the OS outcome, ASRS could serve as a prognostic risk factor for
LUAD patients in the GSE31210, GSE30219, GSE50081 and TCGA-

LUAD cohorts; in the DFS outcome, ASRS can be a risk factor for
patients with LUAD in the GSE50081 cohort; in the RFS outcome,
ASRS can be a risk factor for patients with LUAD in the
GSE31210 and TCGA-LUAD cohorts (Figure 2A). In Kaplan-
Meier survival analysis, with OS as the dependent variable, the

04

high ASRS group had shorter survival times in the GSE31210
(Figure 2B), GSE30219 (Figure 2C), GSE50081 (Figure 2D), and
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FIGURE 3

ASRS represents different immune pattern in TME. Correlation analysis between ASRS and different immune cells estimated by xCELL (A),
CIBERSORT (B), EPIC (C), CIBERSORT-ABS (D), MCP-counter (E), ESTIMATE (F), and QUANTISEQ (G).

TCGA-LUAD (Figure 2E) cohorts. In addition, among other
survival outcomes, the high ASRS group was also an indicator of
poor prognosis (Figures 2F-H).

ASRS represents different immune pattern
in TME

In immune cell analysis, we estimated the abundance of immune
cells in different samples using algorithms such as CIBERSORT-
ABS, CIBERSORT, QUANTISEQ, MCP-counter, xCELL, EPIC, and
ESTIMATE. In the majority of data sets, the xCELL algorithm
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revealed that ASRS was positively connected with Macrophages _
M2, Neutrophils, Macrophages_ M1, T _ cells _ CD4 _ memory _
activated and negatively correlated with T _ cells _ CD4 _naive
(Figure 3A). The CIBERSORT (Figure 3B) and EPIC algorithm
(Figure 3C) showed that ASRS in most data sets was positively
correlated with immune killer cells, such as CD8 _ T cells. In the
CIBERSORT_ABS algorithm (Figure 3D), the results were similar to
the CIBERSORT algorithm, and ASRS was positively correlated with
Macrophages_M2, Neutrophils, Macrophages_M1, T_cells_CD*4_
memory_activated, T_cells_CD*8, and Dendritic_cells_activated.
The MCPcounter algorithm (Figure 3E) also showed the positive
correlation between ASRS and Macrophages and CD*8 _ T cells. In
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FIGURE 4

ASRS was associated with immunomodulator-related mRNA expression. Correlation analysis between ASRS and different immunomodulators
estimated by chemokine (A), immunoinhibitor (B), immunostimulator (C), and receptor (D) analysis.

addition, the ESTIMATE (Figure 3F) and QUANTISEQ (Figure 3G)
algorithms also showed the strong indicating ability of ASRS in
immune activation.

ASRS was associated with
immunomodulator-related mRNA
expression

We the between ASRS and
immunomodulators in each cohort. Chemokine analysis showed
that ASRS was positively correlated with CCL2, CCL18, CCLS,
CCL7, CXCL10, CXCL9, CCL4, CCL3, CCL1l, CXCLI3 and
CCL26 in most cohorts (Figure 4A). Immunoinhibitor analysis

showed that ASRS was positively correlated with CSFIR,

analyzed correlation
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PDCD1LG2, LAG3, CTLA4 and CD274 in most cohorts
(Figure 4B). Immunostimulator analysis showed that in most
cohorts, ASRS was negatively correlated with IL6R, HHLA2 and
TNFRSF13B, but positively correlated with IL6, CD86, TNFSF4 and
CXCR4 (Figure 4C). Finally, in receptor, ASRS in most cohorts was
similarly positively correlated with CCR1, CCR5, CXCR6, etc.

(Figure 4D).

ASRS reflects immunotherapy response
Considering that ASRS can reflect the immunemodulator and

immune infiltration landscape, we next sought to determine whether

ASRS could predict patients’ responses to immunotherapy in the
immunotherapy cohort. In Anti-PD-1 cohort, patients with high
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ASRS reflects immunotherapy response. The low ASRS is associated with a better response to immunotherapies in an anti-PD-L/PD-L1 cohort (Kim
cohort 2019, (A), an anti-PD-L1 cohort (IMvigor210 cohort 2018, (B), and two anti-CTLA-4 cohorts (Nathanson cohort 2017, (C); VanAllen cohort

2015, (D).

ASRS had shorter survival time (Figure 5A). Anti-PD-L1 cohort has
the same prognostic indicator effect (Figure 5B). In addition, ASRS
also has the same risk stratification ability in anti-CTLA-4 cohort
(Figures 5C,D).

ASRS could guide drug selection in LUAD
patients

The GDSC database analysis demonstrated that high ASRS in
each cohort may indicate resistance to various drugs, such as
SB505124 _ 476, SB52334 _ 304, Amuvatinib _ 293,
NSC319726 _ 461, BMS-536924 _ 1091, CP724714 _ 255, A-83-
01 _ 477, and Dacinostat _ 200, while being sensitive to other drugs
including 5-Fluorouracil_179, AICA Ribonucleotide_1001, Ara-G_

Frontiers in Genetics

427, and Axitinib_1021, as shown in Figure 6A. Similarly, the
PRISM database analysis revealed that high ASRS in each cohort
may indicate resistance to certain drugs, such as
4—aminohippuric—acid, acalabrutinib, ABT-239, and 3-CPMT,
other
10—deacetylbaccatin,

while  being  sensitive  to drugs such as

(R)—(-)—apomorphine, and
1-(Z)-3—chloroallyl)-1, 3, 5, 7-tetraazaadamantan—1—-ium, as

shown in Figure 6B.

ASRS reflects different gene alteration status

To further explore the reasons why different ASRS patients have
different prognosis and drug response, we analyzed genomic
differences among different ASRS patients in TCGA-LUAD
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ASRS could guide drug selection in LUAD patients. Correlation analysis between ASRS and different drugs estimated in GDSC database (A) and PRISM

database (B).

cohort. Somatic mutations showed that TP53, TTN, CSMD3 and
LRP1B were significant differences in patients with different ASRS.
SNV amplification showed that 3q26.2, 7q31.2, 11q13.3, 12q14.1,
and 14q13.3 were significant differences in patients with different
ASRS. SNV deletion showed that 3p21.31, 8p23.2, 10p15.3, 16q23.1,
16q24.3 were significant differences in patients with different ASRS
(Figure 7).

Discussion

The field of oncology gained tremendous momentum in the
2000s as Hanahan and Weinberg distilled the complexity of
cancer as a disease their
groundbreaking review of “hallmarks of cancer” (Hanahan and
Weinberg, 2000). The hallmarks of cancer has recently been

into six key features in

expanded to twelve, with cellular senescence being one of the
latest findings (Hanahan, 2022). Cellular senescence is driven by
multiple mechanisms, such as replication failure due to telomere

Frontiers in Genetics

shortening, oncogene activation, genotoxicity, nutrition and
oxidative stress. Therefore, it is imperative to elaborate the
impacts of the senescence on tumors for better cancer
prevention and therapy. In fact, despite the fact that
preclinical studies including cellular experiments and animal
models have indicated broad effects of senescence on cancer
(Mathon and Lloyd, 2001; Jochems et al., 2021; Liu et al., 2021), it
is unknown whether senescent features of LUAD patients may be
employed as biomarkers to guide clinical prognosis and
treatment.

In this study, we established the senescence scoring to evaluate
the senescence level of tumor tissues, termed as ASRS. Integrated
analysis indicated a substantial correlation between ASRS and the
prognosis and pathological characteristics of patients. Moreover,
ASRS can function as a predictive indicator in a significant majority
of LUAD cohorts. In the GSE11117 and GSE68465 cohorts, for
instance, the expression level of ASRS in tumor samples was
considerably higher than in neighboring normal tissues. Stage II
patients in the GSE13213 and GSE14814 cohorts had the lowest
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ASRS reflects different gene alteration status.

ASRS in tumor staging, and in the other cohorts ASRS increased
with increasing staging. In terms of pathological grading, ASRS
increased with increasing pathological grading in the GSE26939 and
GSE68465 cohorts. Similarly, in T-stage, N-stage, and M-stage,
ASRS significantly increased with disease progression. In the OS
outcome, ASRS could be a prognostic risk factor for LUAD patients
in the GSE31210, GSE30219, GSE50081, and TCGA-LUAD cohorts;
in the DFS outcome, ASRS can be a risk factor for LUAD patients in
the GSE50081 cohort; and in the RFS outcome, ASRS can be a risk
factor for LUAD patients in the GSE31210 and TCGA-LUAD
cohort. The high ASRS group had shorter survival times in the
GSE31210, GSE30219, GSE50081, and TCGA-LUAD cohorts. In
addition, among other survival outcomes, the high ASRS group was
also an indicator of poor prognosis.

Recent research has demonstrated that cellular senescence
profoundly modifies the TME by promoting the aggregation of
numerous types of immunosuppressive cells (Lasry and Ben-
Neriah, 2015), which has far-reaching implications on the TME
and tumor progression (Eggert et al., 2016). In particular, cellular
senescence can change the fitness of immune cells and,
influence treatments,

eventually, the efficacy of cancer
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particularly immunotherapy (Choi et al., 2021). However, the
associations between cellular senescence and TME remain
unclear, and the utility of cellular senescence-related genes in
assessing the immune infiltration of tumors requires additional
study. In this work, the abundance of immune cells in different
samples was estimated using different algorithms. We found
ASRS as a characteristic of LUAD linked with an unique TME
and immunological profile. Consequently, the discovery of the
ASRS offers a new perspective on malignancies.

ASRS s
immunomodulator, immunotherapy response, drug selection,
and genomic alterations. In the

Furthermore, the associated with different
majority of cohorts,
immunoinhibitor analysis revealed that ASRS was positively
correlated with CSF1R, PDCDI1LG2, LAG3, CTLA4,
CD274. Immunostimulator analysis showed that in most
cohorts, ASRS was negatively correlated with IL6R, HHLA2 and
TNFRSF13B, but positively correlated with IL6, CD86,
TNFSF4 and CXCR4. Several studies have demonstrated that
patients with low-senescore are more inclined to dramatic

and

responses to immunotherapy such as ICIs (Lin et al., 2021a; Lin
et al., 2021b). We next sought to determine whether ASRS could
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the
immunotherapy cohort. In Anti-PD-1 cohort, patients with
high ASRS had shorter survival time. Anti-PD-L1 cohort has
the same prognostic indicator effect. In addition, ASRS also has

predict patients’ responses to immunotherapy in

the same risk stratification ability in anti-CTLA-4 cohort.
Consistent with our previous data, it was shown that patients
with a low ASRS were more likely to benefit from immunotherapy.
More importantly, ASRS could guide drug selection in LUAD
patients.

Despite the promising results, several issues need to be
addressed. Firstly, it should be noted that the retrospective
generation of the ASRS using publicly available databases may
To establish the
robustness and generalizability of the findings, large-scale
prospective and multicenter clinical studies are essential.

have introduced inherent selection bias.

Additionally, it should be noted that certain critical clinical
variables, such as chemoradiotherapy and surgery, were
unavailable for analysis in some of the datasets, potentially
affecting the accuracy of aging and senescence state analyses.
To validate the expression of ASRS, a larger number of clinical
pathology samples are required. Furthermore, to fully elucidate
the roles of ASRS in the context of the disease, further in vivo
and in vitro experiments are imperative.

Conclusion

In conclusion, this is the first thorough analysis of aging and
senescence in LUAD, leading to the identification of ASRS that are
strongly linked with distinct TME and survival outcomes. Our
research revealed that the ASRS can be used to identify not only
individuals with varying OS and RFS risk levels, but also patients
who would benefit from immunotherapy.
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