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Background: High nerve density in tumors and metastasis via nerves (perineural
invasion—PNI) have been reported extensively in solid tumors throughout the
body including pancreatic, head and neck, gastric, prostate, breast, and colorectal
cancers. Ablation of tumor nerves results in improved disease outcomes,
suggesting that blocking nerve–tumor communication could be a novel
treatment strategy. However, the molecular mechanisms underlying this
remain poorly understood. Thus, the aim here was to identify molecular
pathways underlying nerve–tumor crosstalk and to determine common
molecular features between PNI-associated cancers.

Results: Analysis of head and neck (HNSCC), pancreatic, and gastric (STAD) cancer
Gene Expression Omnibus datasets was used to identify differentially expressed
genes (DEGs). This revealed extracellularmatrix components as highly dysregulated.
To enrich for pathways associated with PNI, genes previously correlated with PNI in
STAD and in 2 HNSCC studies where tumor samples were segregated by PNI status
were analyzed. Neurodevelopmental genes were found to be enriched with PNI. In
datasets where tumor samples were not segregated by PNI, neurodevelopmental
pathways accounted for 12%–16% of the DEGs. Further dysregulation of axon
guidance genes was common to all cancers analyzed. By examining paralog
genes, a clear pattern emerged where at least one family member from several
axon guidance pathways was affected in all cancers examined. Overall 17 different
axon guidance gene families were disrupted, including the ephrin–Eph,
semaphorin–neuropilin/plexin, and slit–robo pathways. These findings were
validated using The Cancer Genome Atlas and cross-referenced to other
cancers with a high incidence of PNI including colon, cholangiocarcinoma,
prostate, and breast cancers. Survival analysis revealed that the expression levels
of neurodevelopmental gene families impacted disease survival.
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Conclusion: These data highlight the importance of the tumor as a source of
signals for neural tropism and neural plasticity as a common feature of cancer. The
analysis supports the hypothesis that dysregulation of neurodevelopmental
programs is a common feature associated with PNI. Furthermore, the data
suggested that different cancers may have evolved to employ alternative
genetic strategies to disrupt the same pathways. Overall, these findings provide
potential druggable targets for novel therapies of cancer management and provide
multi-cancer molecular biomarkers.
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1 Introduction

Cancer is one of the leading causes of death worldwide (Ferlay
et al., 2021). Discovery of new and better ways to detect and treat
cancer therefore remains an urgent global health challenge. During
tumor establishment, several features important for the organs’
normal function and homeostasis are hijacked by the tumor to
facilitate its growth and progression. This includes molecular and
cellular changes in the surrounding non-cancerous cells, changes in
the extracellular matrix, and growth and remodeling of the
vasculature (Hanahan, 2022).

In addition to the vasculature, tumors are invaded by nerves,
a phenomenon first documented over 100 years ago (Young,
1897). It has long been observed that at a histopathological level,
tumor nerves are used as a route for metastasis, through a process
referred to as perineural invasion (PNI) (Liebig et al., 2009).
Together, high nerve density and PNI are histopathological
features of a wide range of solid tumors throughout the body,
including pancreas, colon, bile duct, gastric, head and neck,
prostate, breast, skin tumors and others (Amit et al., 2016;
Schmitd et al., 2018; Chen et al., 2019; Eviston et al., 2021;
Yang et al., 2021). These disease features have also been
widely correlated with more aggressive disease outcomes and
are associated with disease stage in a number of cancers (Cui
et al., 2015; Blumenthaler et al., 2021; Lee et al., 2021; Li et al.,
2022). Importantly, studies using a number of cancer animal
models have revealed that chemical or surgical ablation of nerves
supplying tumors results in improved disease outcomes such
as delays in preneoplastic lesions, reduction in tumor growth,
invasion, and metastasis (Zhao et al., 2014; Zahalka and Frenette,
2020). Supporting this, vagotomy (vagus nerve resection) during
gastric cancer surgery in patients resulted in better disease
outcomes (Zhao et al., 2014). Taken together, this evidence
supports the notion that communication between the organs’
endogenous nerves and the tumor microenvironment has an
important pathophysiological role in tumor development and
progression and therefore provides a novel therapeutic target for
disease management. Despite the pathophysiological importance
of nerve–tumor interactions, the molecular pathways underlying
high nerve density in tumors and subsequent PNI remain poorly
understood. This is thought to be a multistep process involving
nerve signaling, activation of neural growth, and branching, in
addition to tropism and migration of the tumor cells to the nerve,
invasion of the nerve by the tumor cells, and metastasis via the

nerves. Through those processes, both the tumor cells and neural
and glial cells of the growing nerve must navigate through
complex tissue environments.

In healthy adults, growth and reorganization of endogenous
nerves occurs to a limited extent, at both structural and functional
levels via neural plasticity. This includes synaptic remodeling,
branching, and growth of existing nerves. While neural plasticity
of established nerves occurs in healthy adults, most neural growth,
remodeling, and innervation occur during embryonic and postnatal
development. Both the growth and development of nerves during
embryogenesis and neural plasticity are directed by distinct
molecular pathways and sculpted neural activity (Cooper, 2002;
Kolodkin and Tessier-Lavigne, 2011; Stoeckli, 2018). This includes
axon guidance pathways which are composed of a wide array of
molecules and processes such as groups of ligand/receptor families;
growth factors such as neurotropic factors and mitogens;
chemokines; and classical axon guidance molecules such as Slit/
Robo, Eph/Ephrin, and Netrin/DCC/Unc pathways among other
molecular classes such as transcription factors, intracellular
signaling, adhesion molecules, extracellular matrix components,
and neural activity (Cho and Miller, 2002; Butler and Tear, 2007;
Li and Ransohoff, 2008; Kolodkin and Tessier-Lavigne, 2011;
Stoeckli, 2018).

A number of classes of neurodevelopmental molecules have
been reported as significantly dysregulated in a wide range of
cancers including neurotrophic factors, chemokines,
transcription factors, classical axon guidance molecules,
extracellular matrix components, and adhesion molecules
amongst other molecules (Duman-Scheel, 2009; Biankin et al.,
2012; Pickup et al., 2014; Ashrafizadeh et al., 2020; Brotto et al.,
2020). Furthermore, studies on several cancers have identified a
number of these molecules in the processes of either tumor nerve
growth or PNI (Liebig et al., 2009; Bapat et al., 2011; Amit et al.,
2016; Liang et al., 2016; Liu et al., 2022). For instance,
neurotrophic molecules such as NGF, BDNF, and GDNF have
been found overexpressed in tumors from the pancreas and
prostate and can promote nerve growth (Liu et al., 2022).
SLIT ligands and their cognate receptors ROBOs have been
observed in pancreatic adenocarcinoma (PDAC), leading to
more aggressive disease and can modulate tumor nerve growth
(Biankin et al., 2012; Göhrig et al., 2014). In a similar way,
dysregulation of the classical axon guidance ligands ephrins,
semaphorins, and their cognate receptors Ephs and
neuropilins/plexins, respectively, have been noted in a wide
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FIGURE 1
Schematic representation of the study design and data analysis. (A) Study population comprising GEO cohorts from three cancers associated with
high nerve density and PNI, HNSCC (four datasets), PDAC (four datasets), and STAD (five datasets) (Table 1). The total number of tumor (T) versus control
(C) samples are indicated. The fold change in gene expression between tumor and control tissue was performed through the software GEO2R. Genes
with |log2FC|>1 and adj. p-val <0.05 were considered differentially expressed genes (DEGs). The number of DEGs for each cancer is indicated. For
each cancer type, DEGs common in at least three datasets from the same cancer type were identified (pink). An intersection between the DEGs common
in at least three datasets for each cancer were subsequently cross-referenced between PDAC, HNSCC, and STAD to identify common genes and gene
ontology performed (pink). (B) The DEGs identified in (A) were cross-referenced with a neurodevelopmental gene signature (QuickGO GO:0007399)
(green). A total of 372 neurodevelopmental DEGs were isolated in HNSCC, 419 in PDAC, and 680 in STAD. Neurodevelopmental DEGs were intersected
among all cancers analyzed (green). (C) DEGs from each cancer type were analyzed for the presence of axon guidance genes. This resulted in
52 individual axon guidance genes across cancers comprising 17 common axon guidance gene families dysregulated in all cancers. (D) These results were
further analyzed using TCGA data cohorts including the same cancers to the GEO analysis in addition to other cancer types associated with high nerve
density and PNI: BRCA, PRCA, CHOL, and COAD. This analysis included gene expression comparison between tumor and control tissue and survival
analysis. Abbreviations: GEO, Gene Expression Omnibus database; HNSCC, head and neck squamous cell carcinoma; PDAC, pancreatic ductal
adenocarcinoma; STAD, stomach adenocarcinoma; DEG, differentially expressed gene; FC, fold change; TCGA, The Cancer Genome Atlas; BRCA, breast
cancer; PRCA, prostate cancer; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma.
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range of cancers, and in some individual cases, expression of
these genes in tumor cells has been found to modulate nerve
growth in in vitro assays (Capparuccia and Tamagnone, 2009;
Pasquale, 2010).

Overall, a clear pattern is starting to emerge where a number of
key molecules important during normal neurodevelopment have
been found to be dysregulated in tumors and in some cases,
associated with tumor nerve growth and PNI in a broad range of
cancer types (Capparuccia and Tamagnone, 2009; Pasquale, 2010;
Liu et al., 2022). This has led to the hypothesis examined here that
tumor nerve growth and PNI could be a reactivation of the
molecular pathways normally driving nerve growth, guidance,
and cell migration during embryonic and postnatal development.
Furthermore, we hypothesize that a broad range of cancers could
share common molecular features to achieve this. Discovery of
pathways which underlie nerve–tumor interaction could lead to
treatment strategies which target this process. However, the current
literature has shown that the degree of dysregulation and phenotypic
role of each molecule in tumor nerve growth and PNI varies for
individual molecules and cancer types. Therefore, while individual
studies have brought insight into individual molecules and cancers,
whether different cancer types use common molecular pathways to
promote tumor nerve growth and PNI remains largely unexplored.
The study here, therefore, provides a molecular analysis across
several cancers associated with a high incidence of tumor nerve
growth and PNI by examining the broad landscape of
neurodevelopmental molecular programs. Bioinformatics analysis
of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas

(TCGA) datasets revealed a number of neurodevelopmental
programs including axon guidance genes dysregulated across all
cancers analyzed. Furthermore, a clear pattern has emerged that
different cancers have evolved to disrupt the same molecular
pathways, albeit by dysregulation of differing paralog genes.
Overall, these data support the hypothesis that dysregulation of
neurodevelopmental programs known to be fundamental to the
growth and guidance of neurons during normal development and
involved in neural plasticity is a common feature among the cancers
analyzed.

2 Results

2.1 Study population and examination of the
GEO dataset characteristics

The goal of the study was to identify molecular pathways
underlying nerve plasticity/growth in response to the tumor
microenvironment and subsequent PNI. To this end, microarray
datasets of solid tumors outside the nervous system associated with
high nerve density and PNI were identified in the GEO database.
While a number of cancers have been reported to have a high
incidence of PNI, in this study, we selected cancers where several
high-quality GEO datasets were available. This included a total of
13 datasets from head and neck squamous cell carcinoma (HNSCC),
pancreatic ductal adenocarcinoma (PDAC), and stomach
adenocarcinoma (STAD) datasets (Figure 1A; Table1 and

TABLE 1 GEO dataset study population characteristics. The GEO microarray datasets included in this study are indicated. Of those which met the quality criteria,
four datasets were available for HNSCC, four for PDAC, and five for gastric cancer (referred to as STAD in the manuscript). Samples comprised tumor and adjacent
tissue or healthy biopsy. For the analysis of the dataset GSE138206, control samples consisted of contralateral normal samples; in this study the tissue adjacent to
cancer was excluded. Abbreviations: GEO, Gene Expression Omnibus database; HNSCC, head and neck squamous cell carcinoma; PDAC, pancreatic ductal
adenocarcinoma; STAD, stomach adenocarcinoma; GC, gastric cancer; OSCC, oral squamous cell carcinoma.

Cancer type Dataset Tumor/
normal

Tumor/normal type Platform (#
probes)

Author, year

Head and neck squamous cell carcinoma cancer
tumor: 114/control: 106

GSE138206 6/6 OSCC tumor/contralateral normal GPL570 (54,675) Pan H. et al., 2019

GSE23036 63/5 Pre-treatment HNSCC biopsy/healthy
tissue

GPL571 (22,277) Pavon et al. (2012)

GSE31056 23/73 OSCC tumor/adjacent tissue GPL10526 (17,788) Reis et al. (2011)

GSE6631 22/22 HNSCC tumor/adjacent tissue or
contralateral normal

GPL8300 (12,625) Kuriakose et al.
(2004)

Pancreatic ductal adenocarcinoma tumor: 189/
control: 161

GSE15471 39/39 PDAC tumor/adjacent tissue GPL570 (54,675) Badea et al. (2008)

GSE16515 36/16 Pancreatic tumor/adjacent tissue GPL570 (54,675) Pei et al. (2009)

GSE28735 45/45 PDAC tumor/adjacent tissue GPL6244 (33,297) Zhang et al. (2012)

GSE62452 69/61 PDAC tumor/adjacent tissue GPL6244 (33,297) Yang et al. (2016)

Gastric cancer tumor: 203/control: 84 GSE103236 10/9 GC tumor/adjacent tissue GPL4133 (45,220) Economescu et al.
(2010)

GSE33651 40/12 GC tumor/healthy biopsy GPL2895 (56,448) Park et al. (2011)

GSE54129 111/21 GC tumor/healthy biopsy GPL570 (54,675) Lui B. et al., 2014

GSE65801 32/32 GC tumor/adjacent tissue GPL14550 (42,545) Li et al. (2015)

GSE79973 10/10 GC tumor/adjacent tissue GPL570 (54,675) He et al. (2016)
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FIGURE 2
Identification of differentially expressed genes and genes common in head and neck squamous cell carcinoma (HNSCC), pancreatic ductal
adenocarcinoma (PDAC), and stomach adenocarcinoma (STAD). (A–C) Volcano plots displaying the distribution of upregulated and downregulated
genes when comparing gene expression between tumor and control tissues in selected datasets GSE138206 for HNSCC (A), GSE15471 for PDAC (B), and
GSE54129 for STAD (C). All datasets are shown in Supplementary Figure S14. The X-axis indicates the log2FC and the Y-axis the −log10 (adj. p-value).
Each dot represents a gene. Red depicts upregulated genes with log2FC > 1 and adj. p-value <0.05; blue depicts downregulated genes with a
log2FC < −1 and adj. p-value <0.05. Black depicts genes that were either not significant or where the fold change was below the threshold. (D–F) Venn
diagrams of DEGs in the indicated datasets showing the intersection between different datasets from the same cancer type. Each dataset has a distinct
color and is labeled with the dataset identification number for HNSCC (D), PDAC (E), and STAD (F). (G) Intersection analysis of DEGs between HNSCC,
PDAC, and STAD. DEGs common in at least three datasets for the same cancer were intersected between each cancer examined. Significantly
downregulated and upregulated DEGs are delineated with blue and red, respectively. Genes that are either down and upregulated depending on the

(Continued )
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Supplementary Figures S1–S14). The quality and characteristics of
the 13 selected datasets were first analyzed using expression density
and box plots (Supplementary Figures S1A, B–S13A, B). This
analysis showed that the datasets were appropriate for differential
expression analysis given their median center distribution. In
addition to this and given that five datasets had an unbalanced
tumor/control sample composition (HNSCC-GSE23036 and
GSE31056, PDAC-GSE16515, GC-GSE33651, and GSE54129), a
group composition equalization analysis was performed. This
equalization analysis revealed that a large number of differentially
expressed genes (DEGs) for each unbalanced datasets overlapped
with the DEGs identified in the datasets with a balanced sample
composition (Supplementary Figures S1–S5). This demonstrated
that the datasets with unbalanced composition were suitable to
include in the analysis. Next, all datasets were analyzed by
unsupervised clustering to determine if samples clustered into
tumor and control groups. Approximately half the datasets
broadly clustered into tumor and control groups, while others
did not (Supplementary Figures S1–S13). Of note, datasets where
disease-free adjacent control tissue was used clustered less well than
those using contralateral or healthy donor as control tissue
(Supplementary Figures S1–S13). Taken together, these data
showed that the 13 GEO datasets representing PDAC, STAD,
and HNSCC consisted of good-quality data cohorts with some
caveats.

2.2 Extracellular matrix remodeling is highly
enriched across all cancers examined

In order to identify candidate genes differentially expressed in
PDAC, STAD, and HNSCC, next the limma package in GEO2R was
used to compare gene expression values between the tumor and
control tissue of GEO datasets. Here, DEGs were defined as having
an expression log fold change of more than 2 (|log2FC|>1) and
adjusted p-value (adj. P. val) <0.05 (Figure 1A, 2A–C,
Supplementary Figure S14; Supplementary Table S1). Through
this analysis, the combined number of DEGs for all datasets from
a particular cancer type was found to be 3,063 for HNSCC, 2,696 for
PDAC, and 5,487 for STAD (Figure 1A; Supplementary Table S2).

Next, to identify common pathways and potential biomarkers
for HNSCC, PDAC, and STAD, an intersectional analysis between
datasets within the same cancer type was performed. This revealed
314 DEGs for HNSCC, 323 for PDAC, and 190 for STAD common
in at least three datasets from the same cancer type, of which
18 genes were common to all cancers analyzed (Figures 2A–H;
Supplementary Tables S2, S3), which were BGN, CDH11, COL1A1,
COL1A2, COL3A1, COL5A2, ECT2, FAP, FN1, HPGD, IGF2BP3,
INHBA, MMP11, NOX4, PLAU, SPARC, SULF1, and THBS2. To
identify potential dysregulated processes and pathways in PDAC,

HNSCC, and STAD, a Gene Ontology (GO) analysis was performed
using DEGs common in at least three datasets for each cancer type.
From this analysis, cellular components, molecular functions, and
biological processes associated with extracellular matrix were highly
enriched in all three cancers examined as well as the genes common
to all cancers. This included terms for extracellular matrix
organization (biological process), external encapsulation structure
organization (biological processes), collagen-containing
extracellular matrix (cellular component), and extracellular
matrix structural constituent (molecular function) (Figures 2I–K,
Supplementary Figure S15). Overall, this analysis led to the
identification of extracellular matrix components and
organization as commonly dysregulated among the cancers
analyzed.

2.3 Neurodevelopmental genes are highly
dysregulated in PDAC, HNSCC, and STAD

The transcriptomic datasets analyzed were derived from bulk
tumor samples which are composed of numerous cell types.
Therefore, the transcriptome of the tumor samples represents
multiple molecular and cellular processes. We, therefore, next
designed a strategy to isolate candidate pathways that direct the
plasticity/growth of tumor nerves and PNI. A previous study in
gastric cancer constructed a list of 104 genes, which had been
implicated in PNI in the research literature (referred to here as
the “gastric cancer PNI gene list”) (Jia et al., 2019). From this gastric
cancer PNI gene list, we noted that many of the genes were
associated with the development of the nervous system in the
embryo, a period when neurons normally grow. We, therefore,
next aimed to ask if disruption of neurodevelopmental programs
could be a core feature of nerve/tumor interactions. To test this
hypothesis, a neurodevelopmental gene signature consisting of
2,193 genes (GO:0007399) was constructed (Supplementary
Figure S16, Supplementary Tables S4–6). Strikingly, cross-
referencing this neurodevelopmental gene signature with the
gastric cancer PNI gene list revealed that 47% of the genes in the
gastric cancer PNI gene list were neurodevelopmental genes
(Figure 3A; Supplementary Table S5).

To determine if neurodevelopmental gene dysregulation was
associated with PNI in different cancers, datasets where the data
had been segregated based on the presence or absence of PNI
were analyzed (Supplementary Table S7; Supplementary Figure
S17). Among the cancers analyzed, the PDAC GEO dataset
GSE102238 (Yang et al., 2020), HNSCC GEO dataset
GSE86544 (Warren et al., 2016), and a HNSCC published
dataset (referred to here as Eviston dataset) (Eviston et al.,
2021) were analyzed. Analysis of the PDAC dataset
GSE102238 (Yang et al., 2020) revealed low statistical

FIGURE 2 (Continued)
cancer type are depicted in yellow. The number of genes in each dataset is indicated. (H) List of the 18 DEGs common in at least three datasets in
each cancer. (I–K) Gene Ontology analysis of DEGs common in at least three different datasets for the same cancer. Enriched terms for the top
10 biological processes ranked by their count and gene ratio are presented for HNSCC (I), PDAC (J), and STAD (K). Abbreviations: DEG, differentially
expressed gene; HNSCC, head and neck squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma; STAD, stomach adenocarcinoma; s.
p, signaling pathway; TGF-B, transforming growth factor beta adj. p-value, adjusted p-value.
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FIGURE 3
Identification of neurodevelopmental DEGs in head and neck squamous cell carcinoma (HNSCC), pancreatic ductal adenocarcinoma (PDAC), and
stomach adenocarcinoma (STAD). (A) A Venn diagram showing the intersection analysis between a gastric cancer PNI gene list constructed from Jia et al.
(2019) and a neurodevelopmental gene signature in this paper. (B) A Venn diagram showing the intersection analysis between a HNSCC PNI gene list
constructed from Eviston et al. (2021) and a neurodevelopmental gene signature in this paper. (C) DEGs from all cancer datasets were cross-
referencedwith the neurodevelopmental gene signature. An intersection analysis of neurodevelopmental DEGs from PDAC, HNSCC, and STAD is shown.
372 neurodevelopmental DEGswere found in HNSCC, 419 in PDAC, and 680 in STAD. There were 126 neurodevelopmental DEGs common to all cancers
in any dataset from each cancer. Significantly downregulated and upregulated DEGs are delineated with blue and red, respectively. Genes that are either
down or upregulated depending on the cancer type are depicted in yellow. (D) A hierarchical clustering heatmap of the 126 DEGS common to PDAC,
HNSCC and GC in (C) is shown. Genes that were not annotated for a given dataset are shown in gray. The expression fold change values are depicted by
the intensity of color along a red (upregulated) to blue (downregulated) scale as indicated on the diagram. Abbreviations: DEG, differentially expressed
gene; HNSCC, head and neck squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma; STAD, stomach adenocarcinoma; PNI, perineural
invasion.
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significance when comparing samples designated as PNI/no PNI
tumors (Supplementary Figure S17B). Interestingly, cross-
referencing the neurodevelopmental list with the
144 significant HNSCC DEGs from the Eviston dataset
revealed that 30% of the genes were neurodevelopmental
(Figure 3B). For the HNSCC dataset (GSE86544) (Warren
et al., 2016), we identified 11% of the DEGs between PNI/no
PNI tumors were neurodevelopmental genes (Supplementary
Table S8). These data supported the idea that
neurodevelopmental genes were associated with PNI.

Next, to determine the extent to which neurodevelopmental
genes were dysregulated in PDAC, HNSCC, and STAD, the
neurodevelopmental gene signature was cross-referenced with the
DEGs from the PDAC, HNSCC, and STAD datasets derived from
bulk tumor samples (Figure 1B, 3C; Supplementary Table S5). By
combining all datasets for each individual cancer, this analysis
revealed that the 372 neurodevelopmental DEGs identified in
HNSCC, 419 in PDAC, and 680 in STAD represented
approximately 12%, 16%, and 12% of the total DEGs for
HNSCC, PDAC, and STAD, respectively (Figure 1B; Figure 3C;
Supplementary Table S5). Intersection of the neurodevelopmental
genes identified from PDAC, HNSCC, and STAD revealed
126 neurodevelopment DEGs common in all cancer types
examined (Figures 3C, D; Supplementary Table S6). This analysis
supported the notion that neurodevelopmental genes were highly
dysregulated in the cancers analyzed and supported the notion that
neurodevelopmental programs were dysregulated in cancers with a
high incidence of PNI.

2.4 Common axon guidance pathways
dysregulated in PDAC, HNSCC, and STAD

The finding that neurodevelopmental genes were
dysregulated in all the cancers analyzed was of particular note
given the role of these pathways in endogenous nerve growth
during neural development and nerve plasticity in adults. Further
analysis revealed that a number of the most common
neurodevelopmental DEGs in PDAC, HNSCC, and STAD
were classical axon guidance genes including members of the
semaphorin, Eph/ephrin, laminins, Robo, and Wnts. Therefore,
we next determined the extent to which axon guidance pathways
were dysregulated in PDAC, HNSCC, and STAD (Figure 1C). An
axon guidance gene signature was constructed (GO:0007411) and
cross-referenced with the DEGs from the PDAC, HNSCC, and
STAD datasets (Supplementary Tables S9, S10). The number of
dysregulated axon guidance genes was 50 for HNSCC, 58 for
PDAC, and 79 for STAD (Figures 1C, 4). Twelve individual axon
guidance genes were dysregulated in all three cancers examined,
namely, BOC, CXCL12, EDNRA, EFNA5, EPHA2, FLRT3,

FIGURE 4
Axon guidance differentially expressed genes in head and neck
squamous cell carcinoma (HNSCC), pancreatic ductal
adenocarcinoma (PDAC), and stomach adenocarcinoma (STAD).
DEGs defined as genes with |log2FC|>1 and adj. p-val <0.05 from
all GEO datasets examined were cross-referenced to the axon
guidance gene signature (GO:0007411) (Supplementary Table S9).
DEGs present in at least one dataset are depicted as gray boxes. Genes
are arranged in alphabetical order. Genes belonging to the same
family are shown in bold and bordered by blue boxes. A heatmap
comparing the expression level in all datasets examined is shown in
Supplementary Figure S19. Abbreviations: DEG, differentially
expressed gene; HNSCC, head and neck squamous cell carcinoma;

(Continued )

FIGURE 4 (Continued)
PDAC, pancreatic ductal adenocarcinoma; STAD, stomach
adenocarcinoma; FC, fold change and adj. p-value, adjusted p-value;
GEO, gene expression omnibus.
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PLXNC1, RAC2, SEMA3C, TRIO, UNC5B, and WNT5A. By
grouping ligand/receptor genes from the same pathway
together, we noted that the individual gene paralog disrupted
often differed between different datasets or different cancers.
From this, a common theme emerged where several pathways
were consistently disrupted by dysregulation of at least one
paralog/family member in different datasets and cancers.

Comparison of dysregulated axon guidance molecules in
datasets from PDAC, HNSCC, and STAD revealed a total of
52 different dysregulated genes belonging to 17 different gene
families (Figure 4). This included the ephrin–Eph,
semaphorin–neuropilin/plexin, Slit–Robo, laminins, FLRTs,
Uncs, and Wnt axis in addition to other signaling molecules.
Taken together, these findings support the notion that axon

FIGURE 5
TCGA dataset analysis revealed axon guidance genes were dysregulated in a broad range of cancers associated with PNI. (A) Awheel chart depicting
dysregulated axon guidance genes in the TCGA datasets. Cancer types are depicted as concentric circle layers and individual genes depicted as slices.
Paralog genes are grouped with a bold outline. Significantly upregulated (red), downregulated (blue), and genes which did not reach statistical
significance (gray) between tumor and control tissues are depicted. (B)mRNA expression of selected gene EFNA5 in PAAD (Tumor (T) = 179 samples)
and normal pancreas from TCGA and GTEx cohorts (normal (N) = 171 samples). (C) Immunohistochemistry of an example differentially expressed
molecule EFNA5 in pancreatic tumor (https://www.proteinatlas.org/ENSG00000184349-EFNA5/pathology/pancreatic+cancer#32836_B_4_2) and
normal pancreas (https://www.proteinatlas.org/ENSG00000184349-EFNA5/tissue/pancreas#32837_A_3_3) image credit: Human Protein Atlas version
22 proteinatlas.org (Uhlén et al., 2015; Uhlen et al., 2017), arrow heads depict overexpression of EFNA5 (brown staining) in the tumor sample.
Abbreviations: PNI, perineural invasion; BRCA, breast cancer; PRCA, prostate cancer; HNSCC, head and neck squamous cell carcinoma; STAD, stomach
cancer; COAD, colon adenocarcinoma; CHOL, cholangiocarcinoma; PAAD, pancreatic adenocarcinoma; TPM, transcripts permillion; TCGA, TheCancer
Genome.
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guidance programs were dysregulated in PDAC, HNSCC, and
STAD. Furthermore, the data suggested that the different cancers
analyzed may have evolved differently to disrupt the same
molecular pathways by dysregulation of different paralog
genes from the same pathway.

2.5 Analysis of TCGA datasets revealed axon
guidance pathways to be dysregulated in a
broad range of cancers

We next aimed to examine if axon guidance pathways and
molecules were disrupted more broadly in cancers with a high
incidence of PNI and to examine the validity of the findings from

the GEO data cohorts. For this analysis, independent datasets
from TCGA cohorts were analyzed. TCGA cohorts are composed
of RNA-Seq data compared with the GEO datasets which are
composed of microarray data. In addition to HNSCC, PDAC, and
STAD, other cancer types commonly associated with PNI such as
prostate (PRCA), breast (BRCA), cholangiocarcinoma (CHOL),
and colon (COAD) were also included (Figure 1D; Figure 5A,
Supplementary Figure S18; Supplementary Table S11).
Consistent with the analysis from the GEO datasets, the
analysis of TCGA datasets revealed that several members of
axon guidance families were dysregulated among the cancer
types analyzed (Figure 5; Supplementary Table S11). Overall,
several major axon guidance pathways were consistently
dysregulated in both the GEO and TCGA dataset analysis

FIGURE 6
Axon guidance gene expression influences disease survival. Forest plots of the overall disease survival with respect to relative gene expression. For
this analysis, the reference group included patients with low expression of the candidate gene. The dotted line represents a hazard ratio (HR) of 1. Higher
expression of candidate genes was associated with significant less overall survival when HR > 1, with a confidence interval (CI) of 95%. These are the data
points to the right the dotted line. Higher expression of candidate geneswas associatedwithmore overall survival whenHR < 1 and 95%CI. These are
the data points to the left of the dotted line. Abbreviations: HNSCC, head and neck squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma;
STAD, stomach adenocarcinoma; HR, hazard ratio; CI, confidence interval.
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including Eph/ephrin, laminins, slit/robo, and semaphorins/
plexins. Semaphorins were found more frequently
dysregulated in HNSCC and STAD from GEO cohorts
compared with TCGA cohorts. Of note, from this TCGA
analysis, axon guidance genes were found most frequently
upregulated for PDAC and CHOL cancers (upregulated genes
in red in Figure 5A). For example, the axon guidance ligand
EFNA5 was robustly and significantly upregulated in PDAC

samples at the RNA level and was also noted at the protein
level (Figures 5B, C). This was in sharp contrast to BRCA and
PRCA, where axon guidance genes were less frequently
dysregulated and had a trend toward downregulation
(downregulated genes in blue in Figure 5A).

Taken together, this analysis using TCGA cohorts supported
and extended the findings using GEO cohorts that axon guidance
programs were broadly dysregulated in several cancers with a high

FIGURE 7
Survival analysis of axon guidance gene families analyzing cohorts of paralog genes. Kaplan–Meier plots and number of patients at risk are shown
which visualize HNSCC, PDAC, and STAD overall survival based on combined expression levels for the following paralog gene families: (A) SLIT ligands
(SLIT1, SLIT2, and SLIT3), (B) EPHRIN ligands (EFNA1, EFNA2, EFNA3, EFNA4, EFNA5, EFNB1, EFNB2, and EFNB3), and (C) semaphorin ligands (SEMA3A,
SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G, SEMA4A, SEMA4B, SEMA4C, SEMA4D, SEMA4F, SEMA4G, SEMA5A, SEMA5B, SEMA6A,
SEMA6B, SEMA6C, SEMA6D, and SEMA7A). For this analysis, patients were segregated in two cohorts (low and high ligand expression) based on the most
significant cut-off value for the combined genes. Low- and high-expression groups are depicted in blue and red curves, respectively. Abbreviations:
HNSCC, head and neck squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma; STAD, stomach adenocarcinoma; ns, not significant.
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incidence of PNI. Furthermore, it confirmed the result of our
previous analysis that more commonly gene families rather than
individual genes show distinct trends.

2.6 Dysregulation of axon guidance
pathways linked with overall survival

Since axon guidance families were dysregulated in a number of
cancers associated with PNI, we next asked if the expression level of
axon guidance molecules and pathways was correlated with disease
survival. For this analysis, Kaplan–Meier plots were constructed
using best cutoff expression values for dysregulated axon guidance
genes within the HNSCC, PDAC, and STAD cohorts
(Supplementary Table 12; Figure 6). For pathways where several
paralogs were dysregulated, a combined Kaplan–Meier plot for all
paralogs was constructed (Figure 7 and Supplementary Figure S20).
These data revealed several trends.

Growth factors, including WNT, FGF, and SHH pathways, have
been shown to act as axon guidance molecules (Bovolenta, 2005;
Sánchez-Camacho and Bovolenta, 2009; Yam and Charron, 2013).
Expression above the cutoff of WNT3 showed a marginal trend
toward overall better survival; however, this was not significant. In
contrast, expression above the cutoff of the non-canonical WNT
gene, WNT5A gene was associated with a significant overall worse
survival for PDAC and STAD. Expression of a receptor of the
growth factor SHH, BOC showed a significant impact on survival for
all cancers examined with expression above the cutoff in HNSCC
and PDAC associated with better survival and worse survival in
STAD (Figure 6; Supplementary Table 12).

We observed that, among others, three classical axon guidance
pathways semaphorin/plexin/neuropilin, slit/robo, and Eph/ephrin
axis influenced overall survival in STAD (Figures 6, 7;
Supplementary Figure S20; Supplementary Table 12). SLIT and
ROBO genes conferred similar prognosis trends to each other
within the cancers examined. In particular, the expression above
the cutoff of SLIT and ROBO family members was associated with
better prognosis in HNSCC and PDAC, and with worse prognosis in
STAD (Figures 6, 7A, Supplementary Figure S20; Supplementary
Table 12).

We observed that the expression above the cutoff for ephrin
ligand genes showed a general trend toward worse overall
survival for HNSCC and PDAC (Figures 6B, 7B). Strikingly,
for PDAC, all ephrin genes examined showed a statistically
significant worse survival when expressed above the cutoff
levels, whereas for HNSCC and STAD, this was restricted to a
few members of the family, EFNA1, EFNB1, and EFNB2 for
HNSCC and EFNA5 for STAD (Figures 6, 7B; Supplementary
Table 12). In contrast, the expression levels of the ephrin
receptors produced differing effects on survival depending on
the particular gene and cancer type.

For SEMA3A, SEMA3C, and SEMA7A as well as the semaphorin
receptor neuropilin, there was a clear trend where the expression
above the cutoff was associated with worse survival for all three
cancers (Figures 6, 7C; Supplementary Table 12). Of these, only
SEMA3C was significant for all three cancers. In contrast, the
expressions of other semaphorin ligand family members and
plexin receptors were associated with different survival trends

depending on the individual gene cancer analyzed (Figure 6,
Supplementary Figure S20; Supplementary Table 12).

Taken together, this analysis revealed that the dysregulated axon
guidance pathways significantly impact on survival dynamics in
HNSCC, PDAC, and STAD.

3 Discussion

The most important finding from this study was the
observation that the tumor and tumor microenvironment are
likely important sources of signals for nerve–tumor interactions
including neural tropism, nerve plasticity, and PNI in a wide
range of solid tumors throughout the body. Among other things,
for the cancers analyzed, a common feature was disruption
of the extracellular matrix and core neurodevelopmental
pathways. Furthermore, the data supported the notion that
the cancers analyzed may have evolved distinctly at a
molecular genetic level to achieve disruption of common
pathways by dysregulation of alternative paralog genes. These
results together with the finding that neurodevelopmental
pathways were associated with overall disease survival
highlighted the pathways’ importance during cancer
progression, their potential in influencing nerve/tumor
interactions and in providing disease biomarkers.

3.1 Dysregulation of the extracellular matrix
was a common feature of the cancers
analyzed

Analysis of mRNA expression of whole tumor samples
revealed that the extracellular matrix was the most dominantly
disrupted biological process and cellular component in all cancers
examined. This analysis supported the notion that the formation
and structure of the extracellular matrix was a key component in
HNSCC, PDAC, and STAD, consistent with the known
desmoplasia during cancer progression. Extracellular matrix
(ECM) not only functions as a scaffold for the tissues, which is
remodeled during cancer pathogenesis, but also provides a
reservoir for molecules that signal to different tumor-associated
cell types (Clause and Barker, 2013). This may be important in the
growth of nerves in tumors by anchoring and/modulating the
activity of molecules which facilitate nerve–tumor interactions.
Supporting the role of the ECM in nerve–tumor interactions, ECM
molecules have been shown to be dysregulated in a transcriptomic
analysis of HNSCC comparing samples with clinical PNI to
control and non-PNI tumors (Eviston et al., 2021). Several
studies have associated ECM molecules with PNI (Mukherjee
et al., 2022). For example, laminin 5 was reported to be
overexpressed in HNSCC specimens and significantly correlated
with the presence of PNI (Anderson et al., 2001). Fitting with this
idea, it is well-established that ECM molecules support neural
growth and guidance during embryonic development both by
acting as a support substrate for growing axons but also by
sequestering ligands and co-binding to classical axon guidance
receptors and ligands (Liesi, 1990; Pires-Neto et al., 1999; Shipp
and Hsieh-Wilson, 2007).
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3.2 Neurodevelopmental programs are
associated with nerve growth and perineural
invasion

Our results showed that dysregulation of
neurodevelopmental pathways was a key feature associated
with cancers with PNI. Previous work has identified a number
of molecules involved in cancer nerve growth and PNI in
different cancer types (Liebig et al., 2009; Bapat et al., 2011;
Amit et al., 2016; Liang et al., 2016; Liu et al., 2022). Our analysis
of the PNI gene lists from gastric cancer (Jia) and HNSCC
(Eviston) revealed a high proportion of dysregulated
neurodevelopment genes associated with PNI (Jia et al., 2019;
Eviston et al., 2021). Within the Jia gastric cancer PNI gene list,
14% were known axon guidance genes including classical axon
guidance pathways, neurotrophins, and chemokines (Jia et al.,
2019). This is of particular note since axon guidance genes drive
the growth and migration of developing axons in the embryo and
synaptic and neural plasticity of nerves (Cho and Miller, 2002;
Butler and Tear, 2007; Li and Ransohoff, 2008; Kolodkin and
Tessier-Lavigne, 2011; Stoeckli, 2018). The study here suggests
that axonal guidance molecules could have a broad role in nerve
growth and PNI during tumor development and progression,
which is supported by experimental research in different cancer
types (Biankin et al., 2012; Shao et al., 2013; Göhrig et al., 2014;
Schmitd et al., 2018; Furuhashi et al., 2021; Yin et al., 2021).

Previous studies have reported dysregulation of
semaphorins and their cognate receptors neuropilins and
plexins in a wide range of cancers. Particularly, class
3 semaphorins have shown significant amplification in the
genomes of pancreatic cancer patients (Biankin et al., 2012).
The analysis presented in the study here identified SEMA3C as
significantly upregulated in pancreatic, bile duct, stomach, and
head and neck squamous cell carcinoma, which was correlated
with worse overall survival. Consistent with this, in prostate
cancer, the SEMA3C/PlexinA2/NRP1 axis has been shown to be
correlated with PNI and nerve density within the tumor cancer
model (Yin et al., 2021).

Furthermore, we noted that members of the EFN/EPH pathway
were the most frequently upregulated in the majority of the selected
cancers. Several studies have suggested that these molecules may
have a role in nerve/tumor interactions. For instance, EPHA4A was
found upregulated in a PDAC cell line (MIAPACA), which
enhanced their migration and influenced neurite outgrowth in a
DRG-tumor cell in vitro assay (Furuhashi et al., 2021). In another
study, EFNA1/EPHA2 was correlated with TNM stage and
perineural invasion in adenoid cystic carcinoma of the salivary
glands (Shao et al., 2013).

For the Slit/Robo pathways, differing results have been
obtained. Genomic aberrations of axon guidance SLIT/ROBO
pathways were commonly found in an early-stage pancreatic
cancer cohort (Biankin et al., 2012). Consistent with this, ectopic
expression of SLIT2 in PDAC cell lines impaired cell migration,
invasion, and interaction with neuronal cells in an in vitro co-
culture assay, suggesting that Slit expression inhibits tumor
progression (Göhrig et al., 2014). However, other
evidence suggests that SLIT/ROBO expression increases
progressively from normal pancreas to acinar-ductal

metaplasia and PDAC (Biankin et al., 2012). Consistent with
this, our data showed that in PDAC, SLIT expression was high
and high expression of either Slits or their cognate ligands Robos
was linked to poor survival. In contrast, in gastric, prostate, and
breast cancers, Slits appeared to be downregulated in tumor
tissue, and lower Slit family expression was associated with
worse survival in gastric cancer. These contrasting results
might reflect a difference in the expression levels across the
disease stages and/or the type of neurons or other cells that
are present in each cancer type.

Taken together, while individual studies have revealed several,
sometimes contradictory findings, a clear picture has emerged that
these classical and other neurodevelopmental molecules have a
major role in nerve–tumor interactions.

3.3 Evolution of cancer between individuals
and cancer types—dysregulation of different
paralog genes from the same pathways

Substantial evidence supports the view that nerve–tumor
interactions have a major pathophysiological impact in cancer
development and progression (Amit et al., 2016; Liang et al.,
2016; Zahalka and Frenette, 2020). Therefore, targeting cancer
nerves has gained attraction as a potential therapy. However, at
the time of writing, no treatment directly targeting this process
is in place. Interestingly, this study revealed that a common
feature between different cancers analyzed was the disruption of
the same molecular neurodevelopmental pathways, albeit via
disruption of different paralog genes. This observation
suggested that the cancer types analyzed might have evolved
independently, with the overall effect of disrupting the
same core pathways. This concept also applied to different
individuals with the same cancer type. This notion was
supported by the observation that by comparing several data
cohorts from the same cancer type, individual genes were
significantly dysregulated in some datasets, but not in others.
Similarly, even when highly significant, the degree of
dysregulation between samples from different individuals for
a particular gene varied considerably (e.g., see Supplementary
Figure S18).

This finding has important implications for future cancer
drug design. In order to target signaling pathways in a systematic
way, an important consideration can be to account for genetic
variation between individuals. For example, one of the most
promising pathways to date for targeting cancer nerve growth is
the NGF signaling pathway, a neurotrophic factor, known to
have a neurodevelopmental role. NGF has been shown in
preclinical studies to mediate tumor nerve growth and
has subsequently been targeted in clinical trials in prostate
cancer via a small-molecule inhibitor of the NGF cognate
receptor TRKA (Collins et al., 2007; Zahalka and Frenette,
2020). While this intervention reduced metastasis in patients
where the TRKA receptor was disrupted in the tumor itself, no
effect has been reported on nerve growth (Collins et al., 2007;
Smith et al., 2016; Drilon et al., 2018). Importantly, for
individuals where the TRKA receptor was not disrupted in
the tumor, no positive effect was observed (Collins et al.,
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2007; Smith et al., 2016; Drilon et al., 2018). This highlights the
importance of a conclusion of this study that given the genetic
heterogeneity/evolution between individuals, targeting
individual genes is likely to result in variable outcomes and
personalized approaches or targeting pathways more broadly
may be needed.

3.4 The tumor and tumor environment as a
source of signals for nerve-tumor
interactions

The cancer datasets analyzed here are based on analysis of bulk
tumors and control samples which are cellularly heterogeneous.
Therefore, in this and other studies using similar cohorts, analysis
using standard bioinformatics tools is likely to embody changes among
the most abundant cells and transcripts. This likely represents a broad
range of processes dysregulated during cancer development and
progression. When investigating signaling between nerves and
tumors, an important consideration is that tumor cells and cells
from the microenvironment, such as fibroblasts, are commonly
highly represented within the samples compared with, for example,
tumor nerves (Hanahan and Coussens, 2012). This is especially relevant
in this context since in many cases, the neural cell bodies of the nerves
which innervate organs in the body are located at a distance from the
tumor, in ganglia and/or CNS. In these cases, the neural cell bodies are
unlikely to be included in the sample. Together, this means that
anatomically neurons and other cells in the nerves represent a
relatively small cytoplasmic volume of the tumor. Therefore, the
biological pathways most relevant to tumor-induced nerve–tumor
interactions including PNI during tumor pathogenesis may not be
ranked highly using a bioinformatics standard approach. This will be
confounded by the limitations of the datasets which comprise disease-
free adjacent tissue as control. In the datasets analyzed, the
transcriptome of datasets using adjacent tissue controls segregated
poorly from tumor samples. The implication of using tumor
samples of this type is that our results are more likely to identify the
signaling molecules (paracrine and juxtracrine ligands) coming from
the tumor which attract nerves rather than the protein produced by
neurons or glial cells that signal to the tumor cells. We identified several
ligand molecules that are both dysregulated and are correlated with
survival including members of the SLIT, ephrin, and semaphorin
families, growth factors, chemokines, and other ligand classes.
Interestingly, we observed the dysregulation of a number of cognate
receptors of these ligands, which suggests that these pathways are likely
to play a role in other processes in tumor development and progression.
Such pleotropic roles of axon guidancemolecules, for example, immune
response and vasculogenesis, have been well-documented (Neufeld
et al., 2002; Fujiwara et al., 2006; Zhang and Hughes, 2006; Ji and
Ivashkiv, 2009; Dai et al., 2019; Kiseleva and Rutto, 2022).

Single-cell RNA sequencing would provide a higher resolution of
which molecule may be dysregulated in different cells. However, in
determining signals from the growing neuron, a major caveat to that
approach is the relatively low number of transcripts at the growth cone
and branching nerve. Furthermore, in order to identify potential target
pathways for nerve growth and PNI, in this study, datasets where patient
samples have been segregated into PNI/no PNI have been analyzed. The
caveat to this is that since the presence of PNI is associated with more

advanced disease, it is likely to reflect a number of different processes
associated with a more advanced disease stage.

Finally, the neurodevelopmental and axon guidance gene signatures
used in this study were calculated using the QuickGo repository.
Through this, we noted that molecules and pathways known to play
a role in neurodevelopment and axon guidance were absent from these
computed gene signatures. For example, connexins which form gap
junction channels, which are known to play a role in the guidance of
neurons in some contexts, were absent from the axon guidance gene
signature inQuickGo. Therefore, further analysis may reveal other axon
guidance pathways important in tumor development and progression.

3.5 Dysregulation of axon guidance
pathways showed a different trend among
breast and prostate cancers compared to
the other cancers analyzed

Finally, we observed that the number of dysregulated axon guidance
genes and if they were up or downregulated varied between different
cancers analyzed. For example, PDAC showed a relatively high number
of dysregulated axon guidance genes with a tendency toward
upregulation. In contrast, the sex-enriched/-specific cancers breast
and prostate cancers showed a tendency to fewer dysregulated axon
guidance genes with a trend toward downregulation. Of note in this
respect, PDAC is commonly diagnosed at a relatively late disease stage,
whereas breast and prostate cancers are often detected at earlier disease
stages. The difference in axon guidance gene expression between PDAC
and breast/prostate cancers could therefore reflect the disease stages of
samples analyzed. An alternative explanation is that different organs are
innervated by different nerve types which may respond differently to the
same axon guidance cues. It is well established that during the normal
growth and guidance of neurons during development, different neurons
use different combinations of axon guidance molecules to navigate to
their precise target (Tessier-Lavigne and Goodman, 1996; Chen et al.,
2008; Kolodkin and Tessier-Lavigne, 2011; Blockus and Chédotal, 2016).
Axon guidance cues are commonly attractants to some groups of
neurons and repellants to others (Kolodkin and Tessier-Lavigne,
2011; Blockus and Chédotal, 2016; Boyer and Gupton, 2018). Thus, it
is highly likely that in the adult, the neurons within different organs
would respond differently to the same cues. In this way, in order for the
tumor to evolve the same biological outcome, ectopic nerve growth
would require dysregulation of the axon guidance pathways in a
different way.

3.6 Concluding remarks

Taken together, this study showed the tumor and tumor
microenvironment as a potential reservoir of signals for nerve–tumor
interactions in a wide range of solid tumors throughout the body.
Moreover, it supports the idea that dysregulation axon guidance and
other neurodevelopmental molecular pathways is a core feature in
cancers with a high incidence of tumor nerve growth and PNI. This
highlights the potential broad role of neurodevelopmental pathways in
nerve plasticity including neural signaling, nerve growth, and PNI during
cancer development and progression as a general concept for a wide
range of solid tumors throughout the body.
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4 Materials and methods

4.1 Cancer nomenclature

Several data sources and different cancer types were analyzed
in this study. For several datasets used, the cancers are referred
to in different ways. For clarity, the nomenclature used in this
paper has been made uniform. The cancers where more than one
name are noted in the datasets are as follows, and the
nomenclature referred to by the original datasets is referred
to in Table 1: pancreatic ductal adenocarcinoma (PDAC) is used
in this paper for datasets referred to as PDAC, pancreatic
adenocarcinoma (PAAD) and pancreatic cancer; head and
neck squamous cell carcinoma (HNSCC) is used in this study
for datasets referred to as HNSCC, head and neck cancer and
oral squamous cell carcinoma; stomach adenocarcinoma
(STAD) used in this paper for datasets which are referred to
as STAD and gastric cancer.

4.2 Gene Expression Omnibus (GEO)
datasets

To identify molecular candidates in different cancers with a high
incidence of PNI, a systematic search for datasets from the public Gene
Expression Omnibus (GEO) database was performed (https://www.ncbi.
nlm.nih.gov/geo/) (Edgar et al., 2002; Barrett et al., 2012; Clough and
Barrett, 2016). The search criteria included the terms pancreatic cancer,
pancreatic adenocarcinoma, gastric cancer, stomach cancer,
cholangiocarcinoma, head and neck squamous cellular carcinoma,
head and neck cancer, colorectal cancer, colon and rectal cancer,
prostate cancer, and breast cancer. The GEO datasets used in this
study were composed of microarray data from tumor biopsies or
resected tumors and non-cancerous tissue from the biopsies or paired
healthy tissue. Datasets were selected according to the following criteria: 1)
expression profile by array; 2) type of sample: tissue; 3) organism: Homo
sapiens; and 4) sample size of at least 6. The quality of the datasets was
analyzed using several methods including analysis of the distribution of
the expression values, unsupervised clustering, and for datasets which had
an unbalanced group composition, a group composition equalization
method was used (Supplementary Figures S1–S13). Volcano plots were
constructed to assess the data distribution, statistical significance
(−log10 p-value), and fold change (log2 fold change) (Figure 2 and
Supplementary Figure S14).Datasetswhose volcano plots showedno clear
significant fold changes were excluded.

4.3 Unsupervised clustering

Unsupervised clustering analysis was performed using the R
programming language. The datasets were obtained from the Gene
Expression Omnibus (GEO) repository using series matrix files. The
data were preprocessed when needed for normalization employing
the quantile normalization method. The optimal number of clusters
was determined using a “within groups sum of squares” (WSS) plot.
The k-means clustering algorithm was then used and the resulting
clusters visualized using a cluster plot.

4.4 Dataset equalization analysis

A dataset equalization analysis was performed on GEO
datasets which had an unbalanced sample composition. The
script used was based on the code in the limma package from
GEO2R and is shown in the Supplementary infomation. In
short, DEGs were generated for each dataset by comparing
an equal number of control and tumor samples, where the
samples from the larger group (tumors or controls) were
randomly selected from the dataset. This was repeated
100 times, and the list of DEGs and frequency they occur
was calculated. This was performed first using all probes
from the screen and then using only the probes identified
using the limma package in GEO2R as occurring in all or at
least three datasets from the cancer being analyzed
(Supplementary Figures S1–S5).

4.5 Data processing and differentially
expressed gene identification

All datasets were composed of log-transformed expression
data. The microarray datasets were processed using the limma R
package in the GEO2R platform (https://www.ncbi.nlm.nih.gov/
geo/geo2r/) (Ritchie et al., 2015; Clough and Barrett, 2016).
Fold-change (FC) and adjusted p-values were calculated through
the comparison of tumor versus control tissues using the
statistical test Benjamini and Hochberg with false discovery
rate. When multiple probes were available for the same gene,
all probes were used for the analysis. Differentially expressed
genes (DEGs) were defined as genes with |log2(FC)|≥1 and
adjusted p-values <0.05. Volcano plots of DEGs were
constructed for each dataset using the ggplot2 R package
(Figure 2 and Supplementary Figure S14) (Wickham, 2011).
Subsequently, the DEGs from the same type of cancer were
intersected using the tool VENN DIAGRAMS from Van de
Peer Lab http://bioinformatics.psb.ugent.be/beg/tools/venn-
diagrams. An intersection of the DEGs identified from
different cancers was performed using DEGs common in at
least three different datasets from the same cancer type. This
intersection analysis is presented in a diagram that was
constructed using the bioinformatics software DiVenn (Sun
et al., 2019).

4.6 Functional enrichment analysis of
differentially expressed genes

The enrichment analysis was performed to gain insights about
the functional meaning of differentially expressed genes. This was
performed using the R package ClusterProfiler. The function
enrichGo was used to obtain the cellular component ontology
(CC), biological process (BP), and molecular function (MF). A
significance threshold of p-value <0.05 and q-value <0.05 for
enriched terms was used. The enriched terms were visualized
using dotplot R function, with the top 10 enriched terms
depicted (Figures 2I—K and Supplementary Figure S15).

Frontiers in Genetics frontiersin.org15

González-Castrillón et al. 10.3389/fgene.2023.1181775

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/beg/tools/venn-diagrams
http://bioinformatics.psb.ugent.be/beg/tools/venn-diagrams
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1181775


4.7 Neurodevelopment and axon guidance
gene signature analysis

A gene signature comprising 2,193 genes annotated for human
nervous system development (GO:0007399) was constructed using
the platformQuickGO (Binns et al., 2009) (Supplementary Table S4,
Supplementary Figure S16). This neurodevelopmental gene
signature consisted of terms which have been associated with the
process that leads to the formation and maturation of the nervous
tissue over time. Subsequently, DEGs from the same type of cancer
were combined and compared with the neurodevelopmental
signature. An intersection analysis between the cancers analyzed
was performed by intersecting all neurodevelopmental DEGs for
STAD, PDAC, and HNSCC using DiVenn (Sun et al., 2019). A
hierarchical clustering heatmap was generated to visualize the
neurodevelopmental DEGs common to all cancers using the
package complex heatmap of R software (Figure 3).

Similarly, a gene signature consisting in 281 genes annotated
for axon guidance (GO:0007411) was constructed using
QuickGO (Binns et al., 2009) (Supplementary Table S9). This
gene signature was cross-referenced with the DEGs identified
from PDAC, HNSCC, and STAD GEO datasets to examine the
dysregulation of axon guidance pathways (Supplementary
Table 10). DEGs are depicted and ordered alphabetically. A
heatmap without clustering was constructed to visualize the
axon guidance DEGs (Supplementary Table 19). Gene families
which were shown to be dysregulated by any of the paralogs
across all cancers were selected for further analysis using TCGA
data cohorts.

4.8 TCGA data and survival analysis

Axon guidance genes belonging to commonly dysregulated gene
families in all cancer types were analyzed in the database Gene
Expression Profiling Interactive Analysis (GEPIA) (Tang et al., 2017).
GEPIA is an interactive web server for analyzing RNA-seq data from the
TCGA and the GTEx projects. The expression values of DEGs in several
PNI-associated cancers including breast adenocarcinoma (BRCA),
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), head
and neck squamous cellular carcinoma (HNSCC), pancreatic
adenocarcinoma (PAAD—referred to here as PDAC), prostate
adenocarcinoma (PRAD), and stomach adenocarcinoma (STAD)
were compared. The differential thresholds used in this analysis,
p-value <0.05 and |log2FC|>1, were consistent with the differential
thresholds used for the GEO datasets. The TCGA analysis was based
on TCGA tumors compared with TCGA normal and GTEx normal
tissue. The statistical test used for the comparisons was one-way
ANOVA. The expression analysis was summarized in a wheel chart
(Figure 5). The expression of each individual axon guidance gene is
shown in Supplementary Figure S18.

In order to determine if dysregulation of the genes of interest
was associated with overall survival, the survival analysis tool
KMplot was used (Lánczky and Győrffy, 2021). Briefly, the
hazard ratio (HR) was calculated for each axon guidance gene
when comparing tumors with high versus low mRNA expression
of the gene being analyzed. For this, the best cut-off values were used
for comparison. The summary of the survival analysis is presented in

a forest plot constructed with GraphPad software (Figure 6). Genes
with HR < 1 and p < 0.05 confer worse prognosis when expressed at
a relatively low level, whereas genes with HR > 1 and p < 0.05 confer
worse prognosis when expressed at a relatively high level.

Several paralog genes belonging to the same family were
dysregulated in different cancers and different datasets. Therefore, the
impact of dysregulation of gene cohorts on survival was examined by
combining paralog genes from the same pathway. To do this, TCGA
gene expression and survival matrixes were downloaded from the Xena
repository (https://xenabrowser.net), and R studio was used to compute
the best cut-off value for the paralog gene cohorts and the data displayed
with Kaplan–Meier plots. The script is available in the Supplementary
information.
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